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Abstract

Testing and debugging tools for concurrent programs are
often validated on known bugs. To aid the development
of these tools, we present the Race, Atomicity, and Dead-
lock Benchmark (RADBench) suite. The RADBench
suite contains the full source of 10 real concurrency
bugs found in large open-source software projects in-
cluding Mozilla SpiderMonkey, Mozilla NSPR, Mem-
cached, Apache Web Server, and Google Chromium Web
Browser. We discuss the difficulties we have found in re-
producing these bugs that must be accounted for when
building testing and debugging tools. Finally, we pro-
pose an approach to reproducibility that has a number
of benefits over standard deterministic replay for debug-
ging. RADBench is open source and publicly available.

1 Introduction
Concurrent programs have become more common with
the proliferation of parallel hardware. Bugs that ap-
pear only under very specific thread interleavings—
concurrency bugs—are one challenge that comes with
increased concurrency. Even when the program is exe-
cuted with the same input in the same environment, these
bugs may appear only rarely due to nondeterminism in
the thread scheduler and underlying operating system.
This nondeterminism complicates the discovery of these
bugs during testing. Even when a concurrency bug is
confirmed to be in a program, the debugging process is
often more difficult because cyclic debugging techniques
do not work if a bug cannot be consistently reproduced.

Many researchers have jumped at the opportunity to
develop novel algorithms and tools to address the prob-
lems presented by concurrency bugs. The past few
years have been marked by rapid advancement in test-
ing tools [13, 27, 10], model checking [19, 20] and ver-
ification tools [8, 10], concurrency bug avoidance sys-
tems [30], determinism-by-default systems [12, 22], bug
reproduction tools [25, 6], and debugging systems [15].

A common approach to evaluate tools and systems in
this space is to run them on benchmarks with known
bugs. This can serve as a sanity check for tool developers
as well as a basis for comparison with competing tech-
niques. Moreover, new tools are often developed with
specific types of bugs or benchmarks in mind allowing
for quicker iteration and more targeted impact.

In our own work, we are interested in developing tools
to quickly reproduce concurrency bugs in large open-
source C/C++ programs to speed up the debugging pro-
cess. There are few publicly available C/C++ concur-
rency bug benchmark suites. The BugBench suite [16] is
designed to be a general bug benchmark suite and there-
fore includes only 4 concurrency bugs from 2 projects.
A number of concurrency bugs have been discovered in
the PARSEC [7] benchmark suite over its lifetime, but
the suite itself is designed for performance benchmark-
ing. The Inspect Model Checking Suite [29] contains a
number of smaller buggy concurrent programs. Finally,
the authors of [30] maintain a directory of concurrency
bugs used in their work.

We believe that a large, diverse set of benchmarks
encourages the development of robust tools. Thus, as
a first step towards tackling the reproducibility prob-
lem, we have built a benchmark suite of 10 concurrency
bugs taken from 5 different software projects. Our Race,
Atomicity, and Deadlock Benchmark suite, RADBench,
includes known bugs from large, real-world projects such
as Mozilla SpiderMonkey, Mozilla NSPR, Memcached,
Apache Web Server, and Google Chromium Browser.
RADBench includes full source snapshots of each pro-
gram, inputs and test harnesses to exercise the bench-
mark, and is distributed with a Linux VM image to solve
problems with quirky dependencies.

In this paper, we analyze the bugs in RADBench to
understand why they are not straightforwardly repro-
ducible. We then propose a novel lightweight bug re-
production approach to efficiently tackle the problem of
reproducibility in the realm of debugging. Finally, given



the benefits of having a common set of benchmarks the
research community can draw upon, we are publicly re-
leasing the RADBench benchmark suite so that other re-
searchers can test tools and algorithms on these bugs.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the programs and bugs included in
RADBench. In Section 3, we describe the difficulties in-
volved in finding, reproducing, and fixing these bugs. In
Section 4, we propose a novel approach to the problem of
reproducibility. In Section 5, we describe related work.
Finally, we wrap up in Section 6.

2 The RADBench Suite
The RADBench suite is composed of full source snap-
shots of large open-source software projects containing
real concurrency bugs. Each bug in RADBench has a
corresponding bug report in its respective project’s issue
tracker. To assemble the RADBench suite, we searched
each project’s bug database for bug reports that sug-
gested a concurrency issue. When we found a promising
report, we acquired a snapshot of the code base from be-
fore any fix was applied. We then ensured we could build
and execute the program in a way that would expose the
bug. Finally, we analyzed the root cause of the bug by
studying developer comments and code changes.

Table 1 describes the bugs included in RADBench.
Column 1 (Program) is the name of the application
containing the bug. RADBench includes bugs from
Mozilla’s SpiderMonkey JavaScript engine, Mozilla’s
Netscape Portable Runtime (NSPR), the Memcached
distributed object caching system, Apache’s HTTP
server, and Google’s Chromium Web Browser. Col-
umn 2 (KLOC) shows size of each project in thou-
sands of lines C/C++ code and headers.1 Column 3
(Issue Number) shows the identifier of the bug re-
port that corresponds to the benchmark bug. Column 4
(Manifestation) describes how the bug manifests.
Finally, Column 5 (Time to Fix (days)) shows
the time from the initial report until it was closed as fixed.
The value n/a in this column means the report is open as
of the time of writing.

2.1 Mozilla SpiderMonkey

Mozilla SpiderMonkey [3] is the C implementation of
JavaScript that powers Mozilla’s Firefox browser. Spi-
derMonkey is released as a standalone product so other
projects can embed JavaScript with minimal effort. Spi-
derMonkey exports an API that can be used by arbi-
trary C/C++ programs, and, when combined with NSPR,
can be built in a threadsafe manner. Concurrent garbage
collection is a difficult problem and both SpiderMonkey

1as counted by the CLOC utility. http://cloc.sourceforge.net

bugs in RADBench result from unexpected interactions
during concurrent garbage collection.
SpiderMonkey-1 occurs when the JavaScript

garbage collector is delayed in the middle of collection.
During this delay, another thread can modify the internal
structures the garbage collector uses to track its progress
by clearing a JavaScript context. If the buggy interleav-
ing occurs, the garbage collector may then dereference a
NULL pointer. The fix forced JavaScript contexts to stay
constant during garbage collection.
SpiderMonkey-2 is an instance of incorrect syn-

chronization between threads sharing teardown tasks.
The problem stems from a garbage collector state check
that occurs outside the garbage collector lock. A thread
may check the state and get an incorrect view of the
world if another thread is concurrently running the
garbage collection routine. The fix for this bug is to en-
sure the state check only occurs when the garbage col-
lector is not running.

2.2 Mozilla NSPR
Mozilla Netscape Portable Runtime (NSPR) [2] is a li-
brary designed to provide a platform neutral API for sys-
tem functions and threading. NSPR is used by Mozilla’s
Firefox browser but is also released as a standalone soft-
ware package that allows anyone to develop platform in-
dependent programs by abstracting away system specific
quirks. NSPR was inherited from Netscape and has been
developed for over a decade.
NSPR-1 results from the incorrect synchronization of

a global lock allocation in a threadsafe timing call. Each
thread initially checks if the global lock has been allo-
cated. If not, that thread will then allocate the lock. The
problem occurs when multiple racing calls are made be-
fore the global lock is successfully allocated. This can
lead to multiple threads allocating the same global lock
and assertion failures when mutual exclusion invariants
are not respected.
NSPR-2 is an atomicity violation in the wait con-

struct provided by the NSPR library that can cause a
hang when the waiting thread is awoken by an NSPR
interrupt. There is a small window of vulnerability in the
NSPR wait constructs such that the waiting thread can re-
lease the lock and then an interrupt can occur on another
thread before the waiting thread registers its presence. In
this case, properly synchronized code that uses the NSPR
library can hang.
NSPR-3 is a deadlock that occurs in programs using

NSPR read/write locks. A waiting writer thread blocks
any thread trying to get a read lock. If read locks are
used reentrantly, then the reader thread may get blocked
by the writer in the critical section on the reentrant call,
thus resulting in deadlock.



Program KLOC Issue Manifestation Time to
Number Fix (days)

SpiderMonkey-1 121 476934 Segfault 8
SpiderMonkey-2 121 478336 Assertion Failure 3

NSPR-1 125 354593 Assertion Failure 64
NSPR-2 125 164486 Hang n/a
NSPR-3 125 526805 Hang n/a

Memcached-1 8 127 Inconsistent Cache State n/a
Apache-1 231 44402 Segfault 14
Apache-2 231 45605 Assertion Failure 30

Chromium-1 7523 52394 Assertion Failure 2
Chromium-2 7523 49394 Assertion Failure n/a

Table 1: Bugs included in RADBench.

2.3 Memcached
Memcached [1] is a general purpose, in-memory dis-
tributed caching system. Memcached is designed to
speed up websites by caching commonly requested data
to ease back-end processing and database loads. Mem-
cached has been used by popular sites like Wikipedia,
Twitter, and Craigslist.

The Memcached-1 bug results from built in incre-
ment and decrement functions that are not threadsafe.
Multiple threads can request increment or decrements for
certain cache data and these updates can get lost. As
of writing, the trade offs between safe increments using
locks and higher performance is being debated.

2.4 Apache HTTP Server
Apache HTTP Server [4] is an open source web server.
The Apache HTTP Server project has been under devel-
opment for over 15 years and is used by over 100 million
web sites worldwide. The server itself can be built to use
either a threaded or process based concurrency model.
The Apache bugs included in RADBench result from
rare interleavings that can occur in the threaded version
(especially when under heavy load).
Apache-1 is an atomicity violation in an idle worker

thread tracking system. The system uses an atomic
compare-and-swap to update a global data structure
when a worker becomes idle. However, the check that the
compare-and-swap succeeded is not atomic. The prob-
lem occurs when the compare-and-swap succeeds and
then another thread modifies the global data structure di-
rectly afterwards. This can make the compare-and-swap
appear as a failure. This false failure can result in du-
plicate updates to the global data structure and general
memory corruption that can lead to a segmentation fault.
Interestingly, the level of compiler optimization affects
whether or not this bug can occur.
Apache-2 is also related to idle worker tracking. In

situations with a very few idle workers, incorrect syn-
chronization can result in the number of idle workers be-

ing set to a negative number. This underflow can then
result in assertion failures and segmentation faults.

2.5 Google Chromium
Google Chromium [5] is the open source project from
which Google draws the core code for the Chrome Web
Browser. The Chromium architecture contains both mul-
tithreaded and multiprocess elements and is optimized
for high performance and security. The Chromium con-
currency bugs in RADBench manifest as assertion fail-
ures in the debug build of the browser.
Chromium-1 is an atomicity violation in browser

initialization that is similar to NSPR-1. Multiple threads
each try to allocate a set of global statistics tracking ob-
jects. If incorrectly interleaved, two threads can allocate
the same object, resulting in an assertion failure.
Chromium-2 is a bug where an untrusted download

can be mishandled causing an assertion to fail. This bug
involves specifically ordered GUI events combined with
threaded handling of the events.

3 Difficulties in Reproducing
RADBench was created as part of a study to look into
reproducing concurrency bugs. Reproduction is an im-
portant step in fixing concurrency bugs–developers are
rarely able to fix a bug they cannot reproduce. As we
examined the bugs in RADBench, we discovered a num-
ber of reoccurring obstacles to reproduction. We next
describe these obstacles.

3.1 Environmental Dependencies
In the simplest case, the thread schedule would be the
only nondeterministic input that affects bug manifesta-
tion. Bugs dependent only on the thread schedule would
deterministically occur if you could guarantee a partic-
ular ordering between the execution of specific relevant
instructions. We, however, found that many of the bugs
in RADBench depend on other environmental factors.



For example, In Chromium-1, the bug occurs due
to unexpected interference between multiple threads ex-
ecuting a method to initialize statistics gathering objects.
However, the bug can only occur when very specific val-
ues are passed as parameters to this initialization method.
Most calls to the method cannot result in the bug even in
the presence of outside interference. A general way to
identify the vulnerable calls is not obvious.

As another example, the buggy interleaving in
Apache-1 can corrupt a global data structure. How-
ever, whether or not this corruption results in a crash de-
pends on a large number of other nondeterministic fac-
tors, including the memory allocator, the status of other
threads in the system, OS timing, synchronization events,
and the work load. Just enforcing the interleaving may
not be enough to guarantee the bug’s manifestation.

3.2 Highly Constrained Bugs
Standard order violations require one constraint to be sat-
isfied between two instructions to cause the bug (e.g. in-
struction A must execute before instruction B). Standard
atomicity violations require two constraints to be satis-
fied between three instructions to cause the bug (see [17]
for detailed descriptions of these patterns). A number of
bugs in RADBench require more constraints than the one
or two required by the standard concurrency bug patterns
to guarantee the bug’s manifestation.

For example, the scenario concocted by developers to
explain the SpiderMonkey-2 bug involves a fairly in-
tricate set of interactions among three threads. While
there are certainly many bugs that fit the standard bug
patterns, in our experience there are also many concur-
rency bugs that do not fit these patterns. It is also worth
noting that bugs with a large number of constraints are
often more difficult to reproduce by chance.

3.3 Context is Important
Dynamic context is often very important in analyzing
these concurrency bugs. A simplifying abstraction made
by tools like AVIO [18], AtomTracker [21], and Fal-
con [24] is to reason about the interleaving among static
instruction identifiers. We have found a number of bugs
in RADBench where this abstraction loses too much in-
formation, making the analysis results less useful.

For example, Chromium-1 looks like a standard
atomicity violation. However, the atomicity violation oc-
curs in C++ STL code that is reused in multiple parts
of the system. An atomicity violation occurring in one
context in this STL code (e.g. updating lossy statis-
tics counters) may be benign, whereas atomicity vio-
lations in other contexts may result in assertion failure
(e.g. browser initialization). Reasoning only with static
instruction identifiers can lose context information and

Figure 1: NSPR-2 bug report comment. Developers of-
ten use delays to reason about concurrency bugs.

conflate benign and buggy interleavings when bug man-
ifestation depends on both interleaving and context.

3.4 Programming Paradigm Interactions
Large software systems contain many interacting compo-
nents. Often these components have very different func-
tions and may even represent completely different pro-
gramming paradigms. For example, the Chromium-2
bug results from the interaction between multiple threads
interleaving over shared memory and a set of specif-
ically timed events propagating into the system from
the event-driven GUI. Reproducing bugs that result from
the interaction of multiple programming paradigms like
this require tools that understand each component and
paradigm individually as well as the interaction bound-
aries between the components.

4 Tackling Reproducibility
The classic approach to reproducing concurrency bugs
is to record all nondeterministic events that occur dur-
ing program execution [26, 11]. These nondeterminis-
tic events can include reads from memory, OS interac-
tions, internal timing characteristics, and even the thread
schedule. If one is able to capture all relevant nondeter-
minism during a program execution, then one can guar-
antee the same thread interactions will occur and any
concurrency bug that manifests during recording can be
replayed. These systems have a number of drawbacks.
Without custom hardware, this level of recording can
come with a very high overhead. Further, these system
are often extremely difficult to build and maintain–a sig-
nificant hurdle if they are to be used in a production en-
vironment with tight deadlines.

Recently, researchers have experimented with execu-
tion sketching to mitigate the overhead problem [25, 6].
The key insight is that only a subset of the information
required for deterministic replay must be recorded dur-
ing runtime, thus saving on overhead. Then, if replay



is desired, a high overhead offline search step is used to
fill in the details missing from the sketch. While these
approaches go a long way toward solving the overhead
problem, they still require an expensive offline search as
well as a full deterministic record and replay system to
perform this search. The overhead in producing a usable
replay in this offline search step can foil cyclic debugging
efforts and other classic debugging approaches.

While analyzing actual bug reports at the start of the
project, we were struck by the method that developers
used to reason about concurrency bugs. Figure 1 shows a
comment from the actual bug report for the NSPR-2 bug.
Much of the discussion and reproduction efforts were
centered around adding delays (e.g. sleep, semaphores,
etc.) to make a rare concurrency bug more likely to oc-
cur. Moreover, we noticed that most bugs can be repro-
duced by adding only a small number of delays to code.

We believe that this is a promising approach for bug
reproduction; much as other work have given up deter-
ministic recording in favor of sketching, we believe the
next logical step is to give up deterministic replay. Such
a system would sketch a buggy execution and, instead
of replay, do an analysis of the sketch to determine the
likely causes to the bug. It would then use heuristics
to add in delays to an execution to make that bug more
likely to reoccur. While reproduction is not guaranteed,
more frequent bug manifestation would aid debugging.

This approach to reproducibility has a number of ad-
vantages: the interface with the program under test is the
simple addition of delays, hence the effort to implement
such a system is reduced compared deterministic record
and replay. Moreover, the system can be more robust
since it does not have to cope with details like specific
OS interfaces. Further, the output of such a system would
not be an execution log, but rather it would be the place-
ment of the delays–something developers already use to
reason about concurrency bugs. Finally, it leverages the
reduced overhead of sketching without expensive offline
search, thus enabling cyclic debugging.

We are currently developing this lightweight bug re-
production tool using the RADBench bugs for design
guidance and as an initial testbed.

5 Related Work
Many deterministic record and replay systems have been
proposed. Systems like PinPlay [26] and DejaVu [11]
record enough information at runtime to deterministi-
cally replay a run. It is worth noting that many of the
verification and debugging techniques proposed for con-
current program [20, 15] are built on top of a determin-
istic record and replay system. LEAP [14] is a record
and replay system built for Java that attempts to reduce
overhead by reducing the need for global synchroniza-
tion during record and focusing on recording only glob-

ally visible accesses. PRES [25] and ODR [6] are both
systems that give up deterministic record in favor of
sketching. Sketching greatly reduces the overhead dur-
ing record time, at the cost of a potentially expensive of-
fline search step when replay is desired.

Our lightweight bug reproduction system builds upon
many of the insights underlying concurrency testing sys-
tems. The IBM ConTest tool uses schedule perturbation
and deterministic record to make concurrency bugs more
likely to occur and easier to debug [13]. Race directed
active testing [27] uses a predictive analysis to guide test-
ing efforts. Tools like Ctrigger [23], ConMem [31], and
Penelope [28] focus on pattern identification to root out
bugs. The PCT tool [9] uses a randomized algorithm
to insert a small set of delays and provides probabilistic
guarantees associated with the discovery of bugs. Com-
pared to these techniques, we believe that we will be able
to glean valuable information by analyzing a sketch of an
actual buggy execution that predictive techniques would
have no way of knowing–information like specific con-
texts where the bug can occur (and contexts where suspi-
cious races are benign).

The Falcon tool [24] attempts to analyze a buggy
execution and rates the suspiciousness of interleavings.
We believe this type of analysis can be adapted for
lightweight bug reproduction. We aim to take the next
step and automatically insert delays to make the bug
more likely to occur. Tools like AVIO [18] and Atom-
Tracker [21] are similar in spirit as they want to identify
possible atomicity violations and avoid them by analyz-
ing concurrent executions.

6 Conclusion
In this paper we have discussed the importance of re-
production for debugging concurrency bugs and pro-
posed a lightweight bug reproduction approach for ad-
dressing the problems still remaining with current tech-
niques. We believe that giving up deterministic replay
will make it easier to build reproduction systems for con-
currency bugs in industrial settings. We have also de-
scribed RADBench, a collection of 10 real world con-
currency bugs from large open-source software projects.
RADBench is open-source and available for download
at the first author’s website. RADBench includes full
source code, test harnesses, and documentation.
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