

Structured Parallel Programming with Deterministic Patterns

Michael D. McCool, Intel, michael.mccool@intel.com

Many-core processors target improved computational performance by making available various forms of architectural parallelism,

including but not limited to multiple cores and vector instructions. However, approaches to parallel programming based on targeting these

low-level parallel mechanisms directly leads to overly complex, non-portable, and often unscalable and unreliable code.

A more structured approach to designing and implementing parallel algorithms is useful to reduce the complexity of developing software for

such processors, and is particularly relevant for many-core processors with a large amount of parallelism and multiple parallelism

mechanisms. In particular, efficient and reliable parallel programs can be designed around the composition of deterministic algorithmic

skeletons, or patterns. While improving the productivity of experts, specific patterns and fused combinations of patterns can also guide

relatively inexperienced users to developing efficient algorithm implementations that have good scalability.

The approach to parallelism described in this document includes both collective “data-parallel” patterns such as map and reduce as well as

structured “task-parallel” patterns such as pipelining and superscalar task graphs. The structured pattern based approach, like data-parallel

models, addresses issues of both data access and parallel task distribution in a common framework. Optimization of data access is important

for both many-core processors with shared memory systems and accelerators with their own memories not directly attached to the host

processor.

A catalog of useful structured serial and parallel patterns will be presented. Serial patterns are presented because structured parallel

programming can be considered an extension of structured control flow in serial programming. We will emphasize deterministic patterns in

order to support the development of systems that automatically avoid unsafe race conditions and deadlock.

Keywords—Deterministic parallel computing, patterns, software engineering, structured programming, many-core computing.

I. INTRODUCTION

ARALLEL PROGRAMMING is challenging for a number of

reasons. In addition to all the challenges of serial

computation, parallel programs can also suffer from race

conditions and deadlock, and even if correct may be non-

deterministic, which complicates testing. Achieving high

performance with a parallel program also requires

minimization of contention for limited resources such as

communication and memory bandwidth. Failure to properly

account for these factors can lead to programs which

dramatically underperform.

This document discusses and advocates a structured

approach to parallel programming. This approach is based on

a core set of common and composable patterns of parallel

computation and data management with an emphasis on

determinism and scalability. By using these patterns and also

paying attention to a small number of factors in algorithm

design (such as data locality), programs built using this

approach have the potential to perform and scale well on a

variety of different parallel computer architectures.

The structured approach discussed here has also been called

the algorithmic skeleton approach. The general idea is that

specific combinations of computation and data access recur in

many different algorithms. A system that supports the

specification and composition of ―good‖ patterns can guide

the developer towards the construction of well-structured and

reliable, yet high-performance programs. Patterns can be

domain-specific, but there are also general-purpose patterns

that occur in algorithms from many different domains. A

system only has to support a small number of patterns in order

to be universal, that is, capable of implementing any

algorithm. However, it may be useful for efficiency to support

more than the minimal universal subset, since different

patterns can also expose different types of data coherency that

can be used to optimize performance. It may also be useful to

support specific combinations of ―fused‖ patterns.

We will first survey previous work in parallel patterns,

algorithmic skeletons, and some systems based on these. The

use of patterns in parallel programming bears a strong

resemblance to the use of structured control flow in serial

programming. Both for reasons of analogy and because serial

computation is an important sub-component of parallel

computation, some basic patterns for supporting serial

computation will be presented and discussed, along with some

serial programming models based on universal subsets of

these patterns. A useful set of structured and deterministic

parallel patterns will then be presented and discussed.

II. BACKGROUND

The concept of ―algorithmic skeleton‖ was introduced by

Cole [1989,2004] and elaborated by Skillicorn [1998]. It is

similar to the modern idea of design pattern [Gamma 1994,

Mattson 2004], and so we will use the term ―parallel pattern‖.

We will define a parallel pattern as specific recurring

configuration of computation and data access. In the View

from Berkeley [Asanovic 2006] some characteristic workloads

called dwarves or motifs are identified. These are workloads

that consist primarily of one type of pattern. In most

applications, however, a variety of patterns are composed in

complicated ways. Programming systems can be based

entirely on composition of pattern-oriented operators

[Bromling 2002, Tan 2003, Sérot 2002].

In the 1970s, it was noted that serial programs could be

made easier to understand and reason about if they were built

by composing their control flow out of only a small number of

specific control flow patterns: sequence, selection, and

iteration (and/or recursion). This structured programming

approach has led to the elimination of goto from most

programs, although not without a lot of controversy

[Dijkstra1968]. Now, however, the use of structured control

flow is so widely accepted that goto is either omitted from or

deprecated in most modern programming languages.

P

In the same way, structured parallel patterns can eliminate

the need for explicit threading and synchronization while

making programs easier to understand. In particular, one

desirable property that structured parallel patterns should

possess is deterministic semantics that are consistent with a

specific serial ordering of the program. In contrast, threads

share a strong resemblance to goto in their flexibility but also

their lack of structure [Lee 2006]. Like goto, use of threads (at

least when combined with global random access to data) can

make it difficult to do local reasoning about a program, since

it becomes impossible to isolate the effect of one part of a

program's code from another.

One alternative is to use functional programming. However,

most mainstream programming languages are not functional,

and some algorithms, especially graph and matrix problems,

are difficult to express efficiently in purely functional

languages. However, we can interpret functional programming

as one instance of our structured parallel programming, just

using a restricted set of patterns.

There is also a large class of collective languages that

express parallelism explicitly through operations over entire

collections of data. Collective languages can be imperative or

functional, and collective operations are often available

through libraries or as built-in operations in mainstream

languages. NESL is an example of a collective pure functional

language [Blelloch 1990, 1993, 1996], while FORTRAN 2003

is an example of an imperative language with built-in

collective operations. RapidMind [McCool 2006] and Ct are

examples of imperative languages based on collective

operations. Deterministic imperative collective languages can

be given a consistent sequential interpretation that makes it

straightforward to reason about their behavior.

We do not have space to discuss the implementation or

specification of patterns in programming models in detail.

However, patterns can be implemented or supported in a

variety of ways: as conventions; using code generators

[Herrington 2003]; supported explicitly in new language

designs; or implemented in libraries. The ―library‖ approach

can be made as efficient as a compiled language if dynamic

code generation is used to support optimization and fusion

[McCool 2002, McCool 2006].

In the following will first discuss serial patterns. This is

important for three reasons. First, the serial semantics of a

programming system needs to mesh well with the parallel

semantics. Second, serial computation is still a large part of

any program, and often a parallel implementation is derived

from a serial implementation by a set of transformations (for

example, turning loops into a set of parallel tasks over an

index space). Third, studying patterns in a ―familiar‖ space

such as serial computation will lay a solid foundation for their

extension to parallel patterns.

III. SERIAL CONTROL FLOW PATTERNS

Early serial programming languages had a similar structure

to the underlying machine language control flow mechanisms,

with commands being executed in sequence but with the

ability to jump or goto a different point in the sequence. It

was soon realized, however, that indiscriminate use of a goto

led to unreadable and unmaintainable programs. Structured

programming limited control flow constructs to a small,

composable set with desirable properties. Structured control

flow constructs also make it possible to assign coordinates and

locally reason about a program [Dijkstra1968].

Not all of the serial patterns described in this section are

actually needed to allow universal computation. Two

common universal subsets of the following patterns lead to the

classes of imperative and functional programming languages.

In general, either recursion or iteration can be chosen (but both

are not required), and likewise for dynamic memory allocation

and random write.

A. Sequence

Two tasks are considered to be in sequence if the execution

of the second task may only begin once all operations in the

first task have completed, including all memory updates.

B. Selection

The selection pattern executes one of two tasks based on the

result of a Boolean-valued condition expression (whose

evaluation constitutes a third task).

C. Iteration

The iteration pattern repeats a task (its ―loop body‖) until

some condition is met. Every invocation of the loop body is

finished before the next one is started, as if they were in

sequence. Evaluation of the condition is also executed in

sequence with the loop body.

Memory locations that are both read and written by a loop

body are called loop-carried dependencies. While a loop-

carried dependency is often used to compute an index, the

loop index can also be considered to be a natural part of the

looping pattern itself. Many loops can be parallelized even if

they have loop-carried dependencies.

D. Functions and Recursion

Sequences of operations can be stored in functions which

can then be invoked repeatedly. Functions are parameterized

by input data that is used for a specific activation of the

function, and have their own local state. Functions compute

values and return them. A pure function cannot modify its

inputs or cause other side effects, such as modification of

memory.

Functions can have their own local storage. If fresh

locations for this local storage are allocated with every

activation of the function, then it is possible for a function to

be called recursively. Such recursive functions lead to a

divide-and-conquer algorithmic pattern.

IV. SERIAL DATA MANAGEMENT PATTERNS

The random read and write data access pattern maps directly

onto underlying hardware mechanisms. Stack and dynamic

memory (heap) allocation are common higher-level patterns.

A. Random Access Read

Given an index a random access read retrieves the value

associated with that index. Arrays are the simplest form of

randomly-accessible memory, but all other data structures can

be built on top of them: a physical computer's RAM is nothing

more than a large 1D array of fixed-length integers.

Indices can be computed and can be stored in other memory

elements. The former property allows for the construction of

higher-level patterns such as stacks while the ability to store

indices in memory allows for complex data structures based

on pointers (which are just abstractions for indices).

B. Stack Allocation

A stack supports a last-in first-out (LIFO) model of memory

allocation, which is often useful in nested function calls for

supporting allocation of fresh copies of local state. Stack

allocation has excellent coherency properties both in space

and time.

Stack allocation can take place on serially nested activations

of functions for local variables.

C. Dynamic Memory (Heap) Allocation

When the LIFO model of memory allocation supported by the

stack is not suitable, a more general model of memory

allocation can be used that allocates a fresh memory location

whenever requested.

D. Collections and Data Abstraction

In addition to simple arrays, collection abstractions can

include nested arrays and databases. A nested array can hold a

collection of other arrays inside it. The subarrays can be of a

fixed size or can vary in size. The former type of nested array

we will call a partitioned array; the latter we will call a

segmented array.

One-dimensional segmented arrays and operations on them

can be implemented efficiently using auxiliary index and flag

arrays [Blelloch 1990]. Likewise, partitioned arrays can be

represented and operated on efficiently using a packed

representation for the data itself and auxiliary data structures

to track the partition boundaries.

A database maintains a set of elements, and supports search

operations. Specifically, elements can be found by partial

matches based on their content.

V. SERIAL PROGRAMMING MODELS

We can now describe the two most common serial

programming models in terms of these patterns.

A. Imperative Programming

In the imperative model of computation, the programmer

directly tells the computer what to do and the order in which

to do it. Serial imperative programming models, in order to be

universal, need at a minimum to support the sequence,

selection, and iteration control-flow patterns and typically the

random-read and random-write patterns.

In addition, recursion and functions are usually supported,

although they are technically not needed. FORTRAN, in

particular, only relatively recently added support for recursion.

Imperative programming is the dominant serial

programming model today. Its chief disadvantage from the

point of view of parallelization is its over-specification of the

ordering of operations. It is difficult to determine

automatically, given an imperative program, which ordering

constraints are essential for the correct operation of the

program and which are an accidental result of the way the

programmer expressed the computation. In particular, since

pointers can refer anywhere in the global array, the global

memory array is a potential source and destination for all

operations, making it a universal data dependency.

B. Functional Programming

The functional model of computation is based on rewriting

nested trees or graphs. Pure functional languages typically

only support selection and recursion for control flow, and

random read for data access. Data structures can be created

(using dynamic memory allocation) but not modified. Despite

their simplicity, pure functional languages are universal. Some

algorithms that depend on incremental modification of data in-

place are however difficult to express in purely functional

languages.

The chief advantage of functional languages from a

parallelization point of view is that only the essential data

dependencies are expressed and only these data dependencies

constrain the order of operations.

VI. PARALLEL COMPUTATION PATTERNS

We will now introduce a collection of parallel computation

patterns. We have divided parallel patterns into two

categories: computational patterns, which can actually operate

on data values, and data access patterns, which cannot. These

are often combined, and many of the computational patterns in

this section also access and update data in specific (and

typically coherent) ways.

A. Map

The map parallel computation pattern applies a function to

every element of a collection (or set of collections with the

same shape), and creates a new collection (or set of

collections) with the results from the function invocations.

The order of execution of the function invocations is not

specified, which allows for parallel execution. If the functions

are pure functions with no side effects, then the map operation

is deterministic while succinctly allowing the specification of

a large amount of parallelism. In general, the (pure) functions

used by the map can also recursively support other kinds of

serial and parallel patterns and data management.

The map operation accesses data for input and output in a

way that exposes useful spatial coherence. Many functions

are executed at once, and it is known in advance which

functions access neighboring values in the input and output

collections. This makes it possible to automatically implement

a variety of serial, parallel, and memory optimizations in the

implementation of the map function, including software

pipelining, cache prefetch and eviction, and cache boundary

alignment. If the behavior of neighboring elements in a map

can be assumed to lead to similar control flow behavior, then

some simple approaches to vectorization based on masking

can also be effective.

B. Reduction

A reduction applies a pairwise associative operation to all

the elements of a collection, reducing it to a single element.

Sometimes, when writing a function intended to be used in

a map operation, it is desired to also compute a reduction at

the same time. A good example is an iterative solver. The

inner loop of such a solver usually performs both a matrix-

vector operation and a reduction, the latter being used to test

convergence. In general, efficient implementations will need

to fuse patterns together. There are other examples, such as

pack, where fusion is even more important for performance.

Some other forms of reduction are sometimes used. These

can be seen as fusions of pure reductions with other patterns.

Multidimensional reductions (for example, reductions of the

rows of an array) can be expressed by combining a

partitioning pattern with a map and a reduction. In a category

reduction an operator is applied that labels elements and then

a reduction is applied to all elements with the same label. The

Google map-reduce programming model is based a single

fused map and category reduction operation combined with

the serial execution patterns.

C. Superscalar sequences

Sequence is a fundamental serial pattern. In the sequence

pattern, one operation is completely finished before another

one is started. However, when the operations are pure

functions without side effects, the operations given in a

sequence only need to be ordered by their data dependencies,

which in the case of pure functions are made explicit.

In general a sequence generates a DAG (task graph) of data

dependencies. A simple asynchronous execution rule allows

for parallelism while still permitting serial reasoning by the

programmer: if a task tries to read data that is not yet ready, it

blocks until the input data is ready.

Although in this pattern the input code is conceptually

serial, the data dependencies in the graph allow independent

tasks to execute in parallel.

Under the superscalar model direct communication and

synchronization between tasks using message passing is not

permitted. In fact, tasks do not need to be simultaneously

active, and their execution may in fact be serialized. Instead

of unstructured low-level communication, two other structured

patterns for sharing and communicating data between

simultaneously active tasks can be used: the pipeline pattern

and nested parallelism. The pipeline pattern allows for

producer-consumer communication, while the nested

parallelism pattern allows for child-parent communication.

D. Pipeline

A pipeline is a set of simultaneously active tasks or ―stages‖

that communicate in a producer-consumer relationship. A

pipeline is not expressible as a superscalar task graph, since in

a pipeline the data in a stage is persistent and stages are

conceptually activated at the same time, unlike the tasks in a

superscalar task graph. Pipelines are common in image and

signal processing. Their model of local state update is a form

of coherence not covered by other patterns. In addition,

pipelines can be used to parallelize serially dependent

activities (―folds‖) like compression and decompression.

Pipelines by themselves are not a complete solution to

parallelization since pipelines tend to have a fixed number of

stages. As such, they do not automatically scale to a large

number of cores. However, pipelines can provide a useful

multiplier on parallelism in otherwise difficult to parallelize

problems.

E. Nesting

Recursion is another fundamental serial control flow

pattern. It is also associated with stack-based data allocation,

which has good data coherence properties. When parallel

patterns are nested recursively, they can be used to spawn

additional parallel tasks. This allows a program to generate an

arbitrary amount of nested parallelism. This form of nested

parallelism is distinct from the form of nested parallelism that

can be derived from segmented collective operations.

However, it may be possible in many cases to identify certain

patterns of more general recursive nested parallelism and map

them into segmented operations for efficiency.

Nested parallelism can be invoked simply by invoking

parallel patterns inside other parallel patterns, for example, by

using a reduction or a map inside a function used inside

another reduction or map. This generates a hierarchical task

graph that can be expanded as needed to generate additional

parallelism. The nested parallelism can be either task-parallel

or data-parallel.

As a practical matter, arbitrary amounts of parallelism may

not be useful. One of the advantages of deterministic parallel

patterns is that they are all consistent with a specific serial

ordering. An implementation needs to target a ―grain size‖

that is most efficient for a given hardware target. Tasks that

are too small need to be merged into larger serial tasks, while

large serial tasks need to be decomposed into parallel tasks,

preferably automatically. Serial consistency allows this to

happen automatically without changing the result of the

program.

F. Scans and Recurrences

A recurrence expresses one output from a function in terms

of prior outputs. Recurrences often occur in serial code due to

the use of loop-carried dependencies, but in certain cases they

can be parallelized. One-dimensional recurrences can be

parallelized into logarithmic time implementations if the

dependency is associative, in which case it is usually called a

scan [Blelloch 1990]. Multidimensional recurrences with a

nesting depth of n can also always be parallelized over n-1

dimensions, even if the operator is not associative, using

Lamport's hyperplane theorem [Lamport 1974].

A 1D recurrence, even if is not associative, is common and

is often known as a fold. Folds will typically need to be

implemented serially, although sequences of folds inside a

map can be transformed into a parallel implementation using

pipelines. As with reductions, there is a fundamental problem

with identifying associative functions to allow parallelization

in scans, as well as the problem of semi-associative operations

such as floating point arithmetic.

Examples of recurrences include integration and infinite-

impulse response (recursive) filters. Many matrix factorization

algorithms, such as Chebyshev factorization, can also often be

expressed as recurrences.

Scans (and, in general, recurrences) over segmented and

partitioned collections can also be implemented efficiently in a

load-balanced form even in the case of segmented arrays

where the sub-arrays may not all be the same size. Using

such balanced primitive operations, it is possible to

implement, for example, a balanced parallel form of recursive

and ―irregular‖ algorithms such as quicksort.

VII. PARALLEL DATA MANAGEMENT PATTERNS

Data access and management patterns organize access to

data but do not operate on the values themselves. Many

combinations of specific data-access and computational

patterns are common and may be considered patterns in their

own right. This is because for efficient implementation it is

often imperative for a data-access pattern to be fused with a

specific parallel computational pattern.

A. Gather

Given a collection of indices and an indexable collection, a

gather generates an output collection by reading from all the

locations given by the indices in parallel.

A random read is a serial pattern but when used from within

a map it becomes a collective gather. In addition, a gather

might be supported by an explicit collective operation.

B. Search

The search pattern is like gather, but retrieves data from a

―database‖ collection based on matching against content.

Parallelism is achieved by searching for all keys in parallel, or

by searching in different parts of the database in parallel.

C. Subdivision

In parallel algorithms, we often want to divide the input into

a number of pieces and then operate on each piece in parallel.

There are several possible variants of subdivision. The

partition of a collection divides it into a nested collection of

non-overlapping regions of the same size. The segmentation of

a collection divides it into a segmented collection of non-

overlapping regions of possibly different sizes. The tiling of a

collection creates a collection of possibly overlapping

references to regions within the larger collection.

D. Stencil

A useful extension of map (which can also be seen as a

regular variant of tiling followed by map) is the neighborhood

stencil. In this pattern, regular spatial neighborhoods in an

input array are operated on rather than only single elements.

This is known as a finite convolution in signal processing, but

this pattern also occurs in many simulation (PDE solvers) and

matrix computations.

Some attention has to be paid to neighborhoods that extend

past the edge of the array. Such accesses should be

transformed (for example, by wrapping or clamping the index)

so it maps to a well-defined value.

Implementing this pattern efficiently using low-level

operations is surprisingly complicated, which argues for its

inclusion as a basic pattern. It is useful to generate separate

versions of the task for the interior of the input array and the

boundaries. Also, a sliding window over partially overlapping

regions of the input array may be useful.

However, for portability these optimizations can and should

take place in the language implementation itself, since they

vary by hardware target. Also, while induction variable

analysis can and should be used to identify the stencil pattern

whenever possible, the interface should also allow a

straightforward and direct specification of the stencil.

E. Scatter

Scatter writes data to a random location (given by an integer

index) in a collection, overwriting any data that may already

be stored at that location. Several varieties of scatter can be

identified, depending on how collisions (parallel writes to the

same location) are resolved.

A priority scatter allows writes into a collection of locations

in an existing collection given a collection of data. Collisions

(duplicate writes to the same location) are resolved using a

deterministic rule.

The priority scatter operation is useful because the serial

ordering of loop bodies can be used to generate the

disambiguating rule. Loops with scatter operations (as long as

they are not also loop-carried dependencies) can then be safely

converted into priority scatters.

There are a number of ways to implement priority scatter

efficiently. If it can be proven that no collisions are possible

with other threads, then it can be implemented using ordinary

serial semantics. For example, if the output of a map is a

partition, it is only possible for each invocation of a function

to scatter into its own output partition. Another case is when

output data is allocated dynamically by a thread.

Atomic scatter is a non-deterministic pattern (the only one

considered in this paper) that only guarantees that one result

will survive in an output location when a collision occurs.

Implementing atomic scatter is still potentially expensive if

locking is necessary to preserve atomic writes.

A permutation scatter is a scatter that is only guaranteed to

work correctly if there are no collisions. It can be typically be

implemented efficiently in terms of an unsafe scatter.

However, this means that it may produce incorrect results if

incorrectly used with a set of write locations that do contain

duplicate address values, so a debug mode should be provided

that checks for such incorrect usage.

A merge scatter uses an associative operator to combine

elements when a collision occurs. This rule can also be used

to combine scattered values with existing data in an array. An

example of this is the computation of a histogram.

F. Pack

The pack pattern is used to eliminate wasted space in a

sparse collection and to handle variable-rate output from a

map. From within map, each function activation is allowed to

either keep or discard its outputs. The survivors are then

packed together into a single collection. A variant of this is the

expand pattern that can output zero or more values. A

standalone pack collective operation is not as useful as one

that can be fused with map, since the latter does not need to

allocate memory for data that is to be discarded.

VIII. CONCLUSION

Deterministic parallel programs can be built from the bottom

up by composing deterministic parallel patterns of

computation and data access. However, an implementation of

a programming model based on these patterns must not only

support a sufficiently wide variety of patterns, it also needs to

be able to control the granularity of their execution, expanding

and fusing them as needed.

REFERENCES

[Aldinucci 2007] M. Aldinucci and M. Danelutto, Skeleton-based

parallel programming: Functional and parallel semantics in a

single shot, Comput. Lang. Syst. Struct., 33(3-4), 2007, pp. 179-

192.

[Asanovic 2006] K. Asanovic et al, The Landscape of Parallel

Computing Research: A View from Berkeley, EECS Department,

University of California, Berkeley EECS-2006-183, 2006.

[Blelloch 1993] G. E. Blelloch, J. C. Hardwick, S. Chatterjee, J.

Sipelstein and M. Zagha, Implementation of a portable nested

data-parallel language, PPOPP '93: Proceedings of the fourth

ACM SIGPLAN symposium on Principles and practice of

parallel programming, 1993, pp. 102-111

[Blelloch 1996] G. E. Blelloch, Programming parallel algorithms,

Commun. ACM, 39(3), 1996, pp. 85-97.

[Blelloch 1990] G. E. Blelloch, Vector models for data-parallel

computing, MIT Press, 1990.

[Bosch 1998] J. Bosch. Design patterns as language constructs.

Journal of Object-Oriented Programming, 11(2):18-32, 1998.

[Bromling 2002] S. Bromling, S. MacDonald, J. Anvik, J. Schaefer,

D. Szafron, K. Tan, Pattern-based parallel programming,

Proceedings of the International Conference on Parallel

Programming (ICPP'2002), August 2002, Vancouver Canada,

pp. 257-265.

[Buck 2007] I. Buck, GPU Computing: Programming a Massively

Parallel Processor, Proceedings of the International Symposium

on Code Generation and Optimization, IEEE Computer Society,

March 11-14, 2007.

[Cole 1989] M. Cole. Algorithmic Skeletons: Structured

Management of Parallel Computation, Pitman/MIT Press, 1989.

[Cole 2004] M. Cole, Bringing skeletons out of the closet: a

pragmatic manifesto for skeletal parallel programming, Parallel

Computing, 30(3), pp. 389-406, March 2004

[Czarnecki 2000] K. Czarnecki and U. Eisenecker, Generative

Programming: Methods, Tools, and Applications, 2000, ACM

Press/Addison-Wesley.

[Darlington 1995] J. Darlington, Y. Guo, H. W. To and J. Yang,

Parallel skeletons for structured composition, SIGPLAN Not.,

30(8), 1995, pp.19-28.

[Dijkstra 1968] E. Dijkstra, Go To Statement Considered Harmful,

Communications of the ACM, 11 (3), March 1968, 147-148.

[Dorta 2006] A. Dorta, P. López and F. de Sande, Basic skeletons in

11c, Parallel Computing, 32(7), pp. 491-506, September 2006.

[Gamma 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1994.

[Gorlatch 1999] S. Gorlatch, C. Wedler and C. Lengauer,

Optimization Rules for Programming with Collective

Operations, Proceedings of the 13th International Symposium

on Parallel Processing and the 10th Symposium on Parallel and

Distributed Processing, pp. 492-499, April 12-16, 1999.

[Herrington 2003] J. Herrington, Code Generation in Action, 2003,

Manning Publications.

[Kessler 2004] C. Kessler, A practical access to the theory of

parallel algorithms, ACM SIGCSE Bulletin, 36(1), March 2004

[Klusik 2000] U. Klusik, R. Loogen, S. Priebe, F. Rubio,

Implementation Skeletons in Eden: Low-Effort Parallel

Programming, Selected Papers from the 12th International

Workshop on Implementation of Functional Languages, pp.71-

88, September 2000.

[Lamport 1974] L. Lamport, The Parallel Execution of DO Loops,

Communications of the ACM 17(2), February 1974, pp. 83-93.

[Lee 1996] P. Lee and M. Leone, Optimizing ML with run-time code

generation, Proceedings of the ACM SIGPLAN 1996

conference on Programming language design and

implementation, p.137-148, May 1996.

[Lee 2006] E. A. Lee, The Problem with Threads, IEEE Computer,

39(5), May 2006, pp. 33-42.

[MacDonald 2002] S. MacDonald, J. Anvik, S. Bromling, D.

Szafron, J. Schaeffer and K. Tan. From patterns to frameworks

to parallel programs, Parallel Computing, 28(12);1663-1683,

2002.

[Massingill 1999] M. Massingill, T. Mattson, and B. Sanders. A

pattern language for parallel application programs. Technical

Report CISE TR 99-022, University of Florida, 1999.

[Mattson 2004] T. Mattson, B. Sanders, B. Massingill, Patterns for

Parallel Programming, 2004, Pearson Education.

[McCool 2002] M. McCool, Z. Qin, and T. Popa, Shader

metaprogramming, HWWS '02: Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, 2002, pp. 57-68.

[McCool 2004] M. McCool, S. Du Toit, T. Popa, B. Chan and K.

Moule, Shader algebra, ACM Trans. Graph., 23(3), 2004, pp.

787-795.

[McCool 2004] M. McCool and S. Du Toit, Metaprogramming

GPUs with Sh, 2004, AK Peters.

[McCool 2006] M. McCool. Data-Parallel Programming on the Cell

BE and the GPU Using the RapidMind Development Platform.

GSPx Multicore Applications Conference, 9 pages, 2006.

[Pelagatti 1998] S. Pelagatti, Structured development of parallel

programs, Taylor & Francis, Inc., Bristol, PA, 1998.

[Owens 2005] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.

Krueger, A. E. Lefohn, and T. J. Purcell, A survey of general-

purpose computation on graphics hardware, Eurographics 2005,

State of Art Report.

[Schmidt 2000] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.

Pattern-Oriented Software Architecture: Patterns for

Concurrent and Networked Objects, volume 2. Wiley & Sons,

2000.

[Sérot 2002] J. Sérot, D. Ginhac, Skeletons for parallel image

processing: an overview of the SKIPPER project, Parallel

Computing, 28(12), pp.1685-1708, December 2002.

[Siu 1996] S. Siu, M. De Simone, D. Goswami, and A. Singh. Design

patterns for parallel programming. Proceedings of the 1996

International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA’96), pp. 230–240, 1996.

[Skillicorn 1998] D. B. Skillicorn and D. Talia, Models and

languages for parallel computation, ACM Comput. Surv., 30(2),

1998, pp.123-169.

[Tan 2003] K. Tan, D. Szafron, J. Schaeffer, J. Anvik and S.

MacDonald, Using generative design patterns to generate

parallel code for a distributed memory environment, PPoPP '03:

Proceedings of the ninth ACM SIGPLAN symposium on

Principles and practice of parallel programming, 2003, pp 203-

215.

[Veldhuizen 1999] T. L. Veldhuizen, C++ templates as partial

evaluation, In ACM SIGPLAN Workshop on Partial Evaluation

and Semantics-Based Program Manipulation, 1999.

