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Many-core processors target improved computational performance by making available various forms of architectural parallelism, 

including but not limited to multiple cores and vector instructions. However, approaches to parallel programming based on targeting these 

low-level parallel mechanisms directly leads to overly complex, non-portable, and often unscalable and unreliable code.  

A more structured approach to designing and implementing parallel algorithms is useful to reduce the complexity of developing software for 

such processors, and is particularly relevant for many-core processors with a large amount of parallelism and multiple parallelism 

mechanisms. In particular, efficient and reliable parallel programs can be designed around the composition of deterministic algorithmic 

skeletons, or patterns. While improving the productivity of experts, specific patterns and fused combinations of patterns can also guide 

relatively inexperienced users to developing efficient algorithm implementations that have good scalability.  

The approach to parallelism described in this document includes both collective “data-parallel” patterns such as map and reduce as well as 

structured “task-parallel” patterns such as pipelining and superscalar task graphs. The structured pattern based approach, like data-parallel 

models, addresses issues of both data access and parallel task distribution in a common framework.  Optimization of data access is important 

for both many-core processors with shared memory systems and accelerators with their own memories not directly attached to the host 

processor. 

A catalog of useful structured serial and parallel patterns will be presented.  Serial patterns are presented because structured parallel 

programming can be considered an extension of structured control flow in serial programming.  We will emphasize deterministic patterns in 

order to support the development of systems that automatically avoid unsafe race conditions and deadlock. 
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I. INTRODUCTION 

ARALLEL PROGRAMMING is challenging for a number of 

reasons. In addition to all the challenges of serial 

computation, parallel programs can also suffer from race 

conditions and deadlock, and even if correct may be non-

deterministic, which complicates testing. Achieving high 

performance with a parallel program also requires 

minimization of contention for limited resources such as 

communication and memory bandwidth.  Failure to properly 

account for these factors can lead to programs which 

dramatically underperform. 

This document discusses and advocates a structured 

approach to parallel programming. This approach is based on 

a core set of common and composable patterns of parallel 

computation and data management with an emphasis on 

determinism and scalability. By using these patterns and also 

paying attention to a small number of factors in algorithm 

design (such as data locality), programs built using this 

approach have the potential to perform and scale well on a 

variety of different parallel computer architectures. 

The structured approach discussed here has also been called 

the algorithmic skeleton approach.  The general idea is that 

specific combinations of computation and data access recur in 

many different algorithms. A system that supports the 

specification and composition of ―good‖ patterns can guide 

the developer towards the construction of well-structured and 

reliable, yet high-performance programs. Patterns can be 

domain-specific, but there are also general-purpose patterns 

that occur in algorithms from many different domains. A 

system only has to support a small number of patterns in order 

to be universal, that is, capable of implementing any 

algorithm. However, it may be useful for efficiency to support 

more than the minimal universal subset, since different 

patterns can also expose different types of data coherency that 

can be used to optimize performance. It may also be useful to 

support specific combinations of ―fused‖ patterns. 

We will first survey previous work in parallel patterns, 

algorithmic skeletons, and some systems based on these. The 

use of patterns in parallel programming bears a strong 

resemblance to the use of structured control flow in serial 

programming.  Both for reasons of analogy and because serial 

computation is an important sub-component of parallel 

computation, some basic patterns for supporting serial 

computation will be presented and discussed, along with some 

serial programming models based on universal subsets of 

these patterns.  A useful set of structured and deterministic 

parallel patterns will then be presented and discussed. 

II. BACKGROUND 

The concept of ―algorithmic skeleton‖ was introduced by 

Cole [1989,2004] and elaborated by Skillicorn [1998]. It is 

similar to the modern idea of design pattern [Gamma 1994, 

Mattson 2004], and so we will use the term ―parallel pattern‖.  

We will define a parallel pattern as specific recurring 

configuration of computation and data access. In the View 

from Berkeley [Asanovic 2006] some characteristic workloads 

called dwarves or motifs are identified. These are workloads 

that consist primarily of one type of pattern. In most 

applications, however, a variety of patterns are composed in 

complicated ways. Programming systems can be based 

entirely on composition of pattern-oriented operators 

[Bromling 2002, Tan 2003, Sérot 2002]. 

In the 1970s, it was noted that serial programs could be 

made easier to understand and reason about if they were built 

by composing their control flow out of only a small number of 

specific control flow patterns: sequence, selection, and 

iteration (and/or recursion). This structured programming 

approach has led to the elimination of goto from most 

programs, although not without a lot of controversy 

[Dijkstra1968].  Now, however, the use of structured control 

flow is so widely accepted that goto is either omitted from or 

deprecated in most modern programming languages. 
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In the same way, structured parallel patterns can eliminate 

the need for explicit threading and synchronization while 

making programs easier to understand. In particular, one 

desirable property that structured parallel patterns should 

possess is deterministic semantics that are consistent with a 

specific serial ordering of the program.  In contrast, threads 

share a strong resemblance to goto in their flexibility but also 

their lack of structure [Lee 2006]. Like goto, use of threads (at 

least when combined with global random access to data) can 

make it difficult to do local reasoning about a program, since 

it becomes impossible to isolate the effect of one part of a 

program's code from another. 

One alternative is to use functional programming. However, 

most mainstream programming languages are not functional, 

and some algorithms, especially graph and matrix problems, 

are difficult to express efficiently in purely functional 

languages. However, we can interpret functional programming 

as one instance of our structured parallel programming, just 

using a restricted set of patterns.  

There is also a large class of collective languages that 

express parallelism explicitly through operations over entire 

collections of data.  Collective languages can be imperative or 

functional, and collective operations are often available 

through libraries or as built-in operations in mainstream 

languages. NESL is an example of a collective pure functional 

language [Blelloch 1990, 1993, 1996], while FORTRAN 2003 

is an example of an imperative language with built-in 

collective operations.  RapidMind [McCool 2006] and Ct are 

examples of imperative languages based on collective 

operations.  Deterministic imperative collective languages can 

be given a consistent sequential interpretation that makes it 

straightforward to reason about their behavior. 

We do not have space to discuss the implementation or 

specification of patterns in programming models in detail. 

However, patterns can be implemented or supported in a 

variety of ways: as conventions; using code generators 

[Herrington 2003]; supported explicitly in new language 

designs; or implemented in libraries.  The ―library‖ approach 

can be made as efficient as a compiled language if dynamic 

code generation is used to support optimization and fusion 

[McCool 2002, McCool 2006].  

In the following will first discuss serial patterns. This is 

important for three reasons. First, the serial semantics of a 

programming system needs to mesh well with the parallel 

semantics. Second, serial computation is still a large part of 

any program, and often a parallel implementation is derived 

from a serial implementation by a set of transformations (for 

example, turning loops into a set of parallel tasks over an 

index space). Third, studying patterns in a ―familiar‖ space 

such as serial computation will lay a solid foundation for their 

extension to parallel patterns. 

III. SERIAL CONTROL FLOW PATTERNS 

Early serial programming languages had a similar structure 

to the underlying machine language control flow mechanisms, 

with commands being executed in sequence but with the 

ability to jump or goto a different point in the sequence.   It 

was soon realized, however, that indiscriminate use of a goto 

led to unreadable and unmaintainable programs.   Structured 

programming limited control flow constructs to a small, 

composable set with desirable properties. Structured control 

flow constructs also make it possible to assign coordinates and 

locally reason about a program [Dijkstra1968]. 

Not all of the serial patterns described in this section are 

actually needed to allow universal computation.  Two 

common universal subsets of the following patterns lead to the 

classes of imperative and functional programming languages. 

In general, either recursion or iteration can be chosen (but both 

are not required), and likewise for dynamic memory allocation 

and random write. 

A. Sequence 

Two tasks are considered to be in sequence if the execution 

of the second task may only begin once all operations in the 

first task have completed, including all memory updates.  

B. Selection 

The selection pattern executes one of two tasks based on the 

result of a Boolean-valued condition expression (whose 

evaluation constitutes a third task).  

C. Iteration 

The iteration pattern repeats a task (its ―loop body‖) until 

some condition is met. Every invocation of the loop body is 

finished before the next one is started, as if they were in 

sequence. Evaluation of the condition is also executed in 

sequence with the loop body. 

Memory locations that are both read and written by a loop 

body are called loop-carried dependencies. While a loop-

carried dependency is often used to compute an index, the 

loop index can also be considered to be a natural part of the 

looping pattern itself. Many loops can be parallelized even if 

they have loop-carried dependencies. 

D. Functions and Recursion 

Sequences of operations can be stored in functions which 

can then be invoked repeatedly.  Functions are parameterized 

by input data that is used for a specific activation of the 

function, and have their own local state.  Functions compute 

values and return them.  A pure function cannot modify its 

inputs or cause other side effects, such as modification of 

memory. 

Functions can have their own local storage. If fresh 

locations for this local storage are allocated with every 

activation of the function, then it is possible for a function to 

be called recursively. Such recursive functions lead to a 

divide-and-conquer algorithmic pattern. 

IV. SERIAL DATA MANAGEMENT PATTERNS 

The random read and write data access pattern maps directly 

onto underlying hardware mechanisms. Stack and dynamic 

memory (heap) allocation are common higher-level patterns. 

A. Random Access Read 

Given an index a random access read retrieves the value 

associated with that index.  Arrays are the simplest form of 

randomly-accessible memory, but all other data structures can 

be built on top of them: a physical computer's RAM is nothing 

more than a large 1D array of fixed-length integers. 



 

Indices can be computed and can be stored in other memory 

elements. The former property allows for the construction of 

higher-level patterns such as stacks while the ability to store 

indices in memory allows for complex data structures based 

on pointers (which are just abstractions for indices). 

B. Stack Allocation 

A stack supports a last-in first-out (LIFO) model of memory 

allocation, which is often useful in nested function calls for 

supporting allocation of fresh copies of local state. Stack 

allocation has excellent coherency properties both in space 

and time.  

Stack allocation can take place on serially nested activations 

of functions for local variables. 

C. Dynamic Memory (Heap) Allocation 

When the LIFO model of memory allocation supported by the 

stack is not suitable, a more general model of memory 

allocation can be used that allocates a fresh memory location 

whenever requested.    

D. Collections and Data Abstraction 

In addition to simple arrays, collection abstractions can 

include nested arrays and databases. A nested array can hold a 

collection of other arrays inside it. The subarrays can be of a 

fixed size or can vary in size. The former type of nested array 

we will call a partitioned array; the latter we will call a 

segmented array.  

One-dimensional segmented arrays and operations on them 

can be implemented efficiently using auxiliary index and flag 

arrays [Blelloch 1990]. Likewise, partitioned arrays can be 

represented and operated on efficiently using a packed 

representation for the data itself and auxiliary data structures 

to track the partition boundaries. 

A database maintains a set of elements, and supports search 

operations. Specifically, elements can be found by partial 

matches based on their content. 

V. SERIAL PROGRAMMING MODELS 

We can now describe the two most common serial 

programming models in terms of these patterns. 

A. Imperative Programming 

In the imperative model of computation, the programmer 

directly tells the computer what to do and the order in which 

to do it. Serial imperative programming models, in order to be 

universal, need at a minimum to support the sequence, 

selection, and iteration control-flow patterns and typically the 

random-read and random-write patterns. 

In addition, recursion and functions are usually supported, 

although they are technically not needed. FORTRAN, in 

particular, only relatively recently added support for recursion. 

Imperative programming is the dominant serial 

programming model today. Its chief disadvantage from the 

point of view of parallelization is its over-specification of the 

ordering of operations. It is difficult to determine 

automatically, given an imperative program, which ordering 

constraints are essential for the correct operation of the 

program and which are an accidental result of the way the 

programmer expressed the computation. In particular, since 

pointers can refer anywhere in the global array, the global 

memory array is a potential source and destination for all 

operations, making it a universal data dependency. 

B. Functional Programming 

The functional model of computation is based on rewriting 

nested trees or graphs. Pure functional languages typically 

only support selection and recursion for control flow, and 

random read for data access. Data structures can be created 

(using dynamic memory allocation) but not modified. Despite 

their simplicity, pure functional languages are universal. Some 

algorithms that depend on incremental modification of data in-

place are however difficult to express in purely functional 

languages. 

The chief advantage of functional languages from a 

parallelization point of view is that only the essential data 

dependencies are expressed and only these data dependencies 

constrain the order of operations. 

VI. PARALLEL COMPUTATION PATTERNS 

We will now introduce a collection of parallel computation 

patterns. We have divided parallel patterns into two 

categories: computational patterns, which can actually operate 

on data values, and data access patterns, which cannot. These 

are often combined, and many of the computational patterns in 

this section also access and update data in specific (and 

typically coherent) ways.  

A. Map 

The map parallel computation pattern applies a function to 

every element of a collection (or set of collections with the 

same shape), and creates a new collection (or set of 

collections) with the results from the function invocations.  

The order of execution of the function invocations is not 

specified, which allows for parallel execution.  If the functions 

are pure functions with no side effects, then the map operation 

is deterministic while succinctly allowing the specification of 

a large amount of parallelism. In general, the (pure) functions 

used by the map can also recursively support other kinds of 

serial and parallel patterns and data management. 

The map operation accesses data for input and output in a 

way that exposes useful spatial coherence.  Many functions 

are executed at once, and it is known in advance which 

functions access neighboring values in the input and output 

collections. This makes it possible to automatically implement 

a variety of serial, parallel, and memory optimizations in the 

implementation of the map function, including software 

pipelining, cache prefetch and eviction, and cache boundary 

alignment. If the behavior of neighboring elements in a map 

can be assumed to lead to similar control flow behavior, then 

some simple approaches to vectorization based on masking 

can also be effective. 

B. Reduction 

A reduction applies a pairwise associative operation to all 

the elements of a collection, reducing it to a single element.  

Sometimes, when writing a function intended to be used in 

a map operation, it is desired to also compute a reduction at 

the same time. A good example is an iterative solver. The 

inner loop of such a solver usually performs both a matrix-



 

vector operation and a reduction, the latter being used to test 

convergence. In general, efficient implementations will need 

to fuse patterns together. There are other examples, such as 

pack, where fusion is even more important for performance. 

Some other forms of reduction are sometimes used.  These 

can be seen as fusions of pure reductions with other patterns. 

Multidimensional reductions (for example, reductions of the 

rows of an array) can be expressed by combining a 

partitioning pattern with a map and a reduction. In a category 

reduction an operator is applied that labels elements and then 

a reduction is applied to all elements with the same label. The 

Google map-reduce programming model is based a single 

fused map and category reduction operation combined with 

the serial execution patterns. 

C. Superscalar sequences 

Sequence is a fundamental serial pattern. In the sequence 

pattern, one operation is completely finished before another 

one is started. However, when the operations are pure 

functions without side effects, the operations given in a 

sequence only need to be ordered by their data dependencies, 

which in the case of pure functions are made explicit.   

In general a sequence generates a DAG (task graph) of data 

dependencies.  A simple asynchronous execution rule allows 

for parallelism while still permitting serial reasoning by the 

programmer: if a task tries to read data that is not yet ready, it 

blocks until the input data is ready.  

Although in this pattern the input code is conceptually 

serial, the data dependencies in the graph allow independent 

tasks to execute in parallel.    

Under the superscalar model direct communication and 

synchronization between tasks using message passing is not 

permitted. In fact, tasks do not need to be simultaneously 

active, and their execution may in fact be serialized.  Instead 

of unstructured low-level communication, two other structured 

patterns for sharing and communicating data between 

simultaneously active tasks can be used: the pipeline pattern 

and nested parallelism. The pipeline pattern allows for 

producer-consumer communication, while the nested 

parallelism pattern allows for child-parent communication.  

D. Pipeline 

A pipeline is a set of simultaneously active tasks or ―stages‖ 

that communicate in a producer-consumer relationship. A 

pipeline is not expressible as a superscalar task graph, since in 

a pipeline the data in a stage is persistent and stages are 

conceptually activated at the same time, unlike the tasks in a 

superscalar task graph.    Pipelines are common in image and 

signal processing. Their model of local state update is a form 

of coherence not covered by other patterns. In addition, 

pipelines can be used to parallelize serially dependent 

activities (―folds‖) like compression and decompression. 

Pipelines by themselves are not a complete solution to 

parallelization since pipelines tend to have a fixed number of 

stages. As such, they do not automatically scale to a large 

number of cores.  However, pipelines can provide a useful 

multiplier on parallelism in otherwise difficult to parallelize 

problems. 

E. Nesting 

Recursion is another fundamental serial control flow 

pattern. It is also associated with stack-based data allocation, 

which has good data coherence properties. When parallel 

patterns are nested recursively, they can be used to spawn 

additional parallel tasks. This allows a program to generate an 

arbitrary amount of nested parallelism. This form of nested 

parallelism is distinct from the form of nested parallelism that 

can be derived from segmented collective operations. 

However, it may be possible in many cases to identify certain 

patterns of more general recursive nested parallelism and map 

them into segmented operations for efficiency. 

Nested parallelism can be invoked simply by invoking 

parallel patterns inside other parallel patterns, for example, by 

using a reduction or a map inside a function used inside 

another reduction or map.   This generates a hierarchical task 

graph that can be expanded as needed to generate additional 

parallelism.  The nested parallelism can be either task-parallel 

or data-parallel.  

As a practical matter, arbitrary amounts of parallelism may 

not be useful. One of the advantages of deterministic parallel 

patterns is that they are all consistent with a specific serial 

ordering.  An implementation needs to target a ―grain size‖ 

that is most efficient for a given hardware target. Tasks that 

are too small need to be merged into larger serial tasks, while 

large serial tasks need to be decomposed into parallel tasks, 

preferably automatically.  Serial consistency allows this to 

happen automatically without changing the result of the 

program. 

F. Scans and Recurrences 

A recurrence expresses one output from a function in terms 

of prior outputs. Recurrences often occur in serial code due to 

the use of loop-carried dependencies, but in certain cases they 

can be parallelized. One-dimensional recurrences can be 

parallelized into logarithmic time implementations if the 

dependency is associative, in which case it is usually called a 

scan [Blelloch 1990]. Multidimensional recurrences with a 

nesting depth of n can also always be parallelized over n-1 

dimensions, even if the operator is not associative, using 

Lamport's hyperplane theorem [Lamport 1974].   

A 1D recurrence, even if is not associative, is common and 

is often known as a fold. Folds will typically need to be 

implemented serially, although sequences of folds inside a 

map can be transformed into a parallel implementation using 

pipelines. As with reductions, there is a fundamental problem 

with identifying associative functions to allow parallelization 

in scans, as well as the problem of semi-associative operations 

such as floating point arithmetic.  

Examples of recurrences include integration and infinite-

impulse response (recursive) filters. Many matrix factorization 

algorithms, such as Chebyshev factorization, can also often be 

expressed as recurrences.   

Scans (and, in general, recurrences) over segmented and 

partitioned collections can also be implemented efficiently in a 

load-balanced form even in the case of segmented arrays 

where the sub-arrays may not all be the same size.   Using 

such balanced primitive operations, it is possible to 

implement, for example, a balanced parallel form of recursive 

and ―irregular‖ algorithms such as quicksort. 



 

VII. PARALLEL DATA MANAGEMENT PATTERNS 

Data access and management patterns organize access to 

data but do not operate on the values themselves. Many 

combinations of specific data-access and computational 

patterns are common and may be considered patterns in their 

own right. This is because for efficient implementation it is 

often imperative for a data-access pattern to be fused with a 

specific parallel computational pattern. 

A. Gather 

Given a collection of indices and an indexable collection, a 

gather generates an output collection by reading from all the 

locations given by the indices in parallel. 

A random read is a serial pattern but when used from within 

a map it becomes a collective gather. In addition, a gather 

might be supported by an explicit collective operation.  

B. Search 

The search pattern is like gather, but retrieves data from a 

―database‖ collection based on matching against content. 

Parallelism is achieved by searching for all keys in parallel, or 

by searching in different parts of the database in parallel. 

C. Subdivision 

In parallel algorithms, we often want to divide the input into 

a number of pieces and then operate on each piece in parallel. 

There are several possible variants of subdivision. The 

partition of a collection divides it into a nested collection of 

non-overlapping regions of the same size. The segmentation of 

a collection divides it into a segmented collection of non-

overlapping regions of possibly different sizes.  The tiling of a 

collection creates a collection of possibly overlapping 

references to regions within the larger collection. 

D. Stencil 

A useful extension of map (which can also be seen as a 

regular variant of tiling followed by map) is the neighborhood 

stencil. In this pattern, regular spatial neighborhoods in an 

input array are operated on rather than only single elements.  

This is known as a finite convolution in signal processing, but 

this pattern also occurs in many simulation (PDE solvers) and 

matrix computations. 

Some attention has to be paid to neighborhoods that extend 

past the edge of the array. Such accesses should be 

transformed (for example, by wrapping or clamping the index) 

so it maps to a well-defined value. 

Implementing this pattern efficiently using low-level 

operations is surprisingly complicated, which argues for its 

inclusion as a basic pattern. It is useful to generate separate 

versions of the task for the interior of the input array and the 

boundaries. Also, a sliding window over partially overlapping 

regions of the input array may be useful. 

However, for portability these optimizations can and should 

take place in the language implementation itself, since they 

vary by hardware target. Also, while induction variable 

analysis can and should be used to identify the stencil pattern 

whenever possible, the interface should also allow a 

straightforward and direct specification of the stencil.  

E. Scatter 

Scatter writes data to a random location (given by an integer 

index) in a collection, overwriting any data that may already 

be stored at that location.  Several varieties of scatter can be 

identified, depending on how collisions (parallel writes to the 

same location) are resolved. 

A priority scatter allows writes into a collection of locations 

in an existing collection given a collection of data. Collisions 

(duplicate writes to the same location) are resolved using a 

deterministic rule. 

The priority scatter operation is useful because the serial 

ordering of loop bodies can be used to generate the 

disambiguating rule.  Loops with scatter operations (as long as 

they are not also loop-carried dependencies) can then be safely 

converted into priority scatters.   

There are a number of ways to implement priority scatter 

efficiently. If it can be proven that no collisions are possible 

with other threads, then it can be implemented using ordinary 

serial semantics. For example, if the output of a map is a 

partition, it is only possible for each invocation of a function 

to scatter into its own output partition. Another case is when 

output data is allocated dynamically by a thread. 

Atomic scatter is a non-deterministic pattern (the only one 

considered in this paper) that only guarantees that one result 

will survive in an output location when a collision occurs.  

Implementing atomic scatter is still potentially expensive if 

locking is necessary to preserve atomic writes. 

A permutation scatter is a scatter that is only guaranteed to 

work correctly if there are no collisions. It can be typically be 

implemented efficiently in terms of an unsafe scatter. 

However, this means that it may produce incorrect results if 

incorrectly used with a set of write locations that do contain 

duplicate address values, so a debug mode should be provided 

that checks for such incorrect usage. 

A merge scatter uses an associative operator to combine 

elements when a collision occurs.  This rule can also be used 

to combine scattered values with existing data in an array.  An 

example of this is the computation of a histogram. 

F. Pack 

The pack pattern is used to eliminate wasted space in a 

sparse collection and to handle variable-rate output from a 

map. From within map, each function activation is allowed to 

either keep or discard its outputs.  The survivors are then 

packed together into a single collection. A variant of this is the 

expand pattern that can output zero or more values. A 

standalone pack collective operation is not as useful as one 

that can be fused with map, since the latter does not need to 

allocate memory for data that is to be discarded. 

VIII. CONCLUSION 

Deterministic parallel programs can be built from the bottom 

up by composing deterministic parallel patterns of 

computation and data access.  However, an implementation of 

a programming model based on these patterns must not only 

support a sufficiently wide variety of patterns, it also needs to 

be able to control the granularity of their execution, expanding 

and fusing them as needed. 
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