
Towards Automatic Inference of Task Hierarchies in Complex Systems
Haohui Mai◦, Chongnan Gao†, Xuezheng Liu‡, Xi Wang§, Geoffrey M. Voelker ∗

‡ Microsoft Research Asia, † Tsinghua University, ∗ University of California, San Diego
◦ University of Illinois at Urbana-Champaign, § MIT CSAIL

1 INTRODUCTION

As Web services increasingly weave their way into our
everyday lives, their dependability has become of critical
importance [16]. Software defects, however, continue to
plague such services, contributing to either degraded per-
formance or down time. The most difficult bugs are the
ones that make the system deviate from its expected ex-
ecution behavior. Their root causes are usually buried in
convoluted application logic, making their detection and
analysis difficult.

The inherent complexity of such systems further ob-
structs understanding such unexpected runtime behavior.
Typical Web services involve multiple tiers, a hierarchy
of functional abstractions, and high degrees of concur-
rency. They usually execute user-level tasks, e.g., pro-
cessing client requests, in a series of stages, which can
be distributed across multiple machines, processes, and
threads, using events and asynchronous messages as no-
tification mechanisms. Verifying the behavior of such
individual tasks therefore becomes a very challenging
problem since developers have to reconstruct the task
flow by linking together pieces of its execution through-
out the system.

Conceptually, developers can represent such execu-
tion as a hierarchical task model that is consistent with
the layered design of the system. Each task in the hier-
archy represents the execution of a component or a stage
at a particular layer. A task at a higher layer executes by
completing several dependent child tasks at lower lay-
ers. For instance, Figure 1 illustrates the task hierarchy
of committing user data in PacificA, a distributed stor-
age system [12] similar to Google BigTable [6]. The top
task has two sequential child tasks corresponding to the
local and the remote commit. Each child task issues two
parallel RPC calls as lower tasks to storage nodes, and
an RPC call further invokes send and recv functions as
tasks inside the network library for passing messages. At
the bottom layer, each leaf task corresponds to sequential
execution of code between synchronization points. Based
on the task model, developers can better understand the
structures of components and their dependencies, and use
debugging tools (e.g., Pip [15] and D3S [13]) to instru-
ment the system and verify the behavior of tasks at ap-
propriate layers.

However, existing tools require developers to man-
ually specify task models. For example, Pip relies on
developer-provided “expectations” (a hierarchical task

Session::RecvPacket

Queue

PAThreadPool::Threa
dInternal::DoWork

RpcCient::

RpcCallReply
LogicReplica::

ReceiveMutationAck

Session::

WSASendPacket

RpcCient::

RpcAsyncCallChain

LogicReplica::

Mutate

Session::

WSASendPacket

LogicReplica::

ReceiveMutationAck

Cluster - Worker Cluster – Local Commit

Cluster – Remote Commit Acknowledgement

Figure 1: A hierarchical task model of committing user data in Paci-
ficA. The nodes are leaf tasks labeled by function names, with edges
showing causal dependencies among them.

model with assertions on resource usage) to validate sys-
tem behavior. Writing a comprehensive task model that
covers both high-level design and enough low-level im-
plementation details can be tedious and error-prone, es-
pecially for a large system that may evolve rapidly. Path-
based tools such as Magpie [3] can infer per-request
causal paths from event traces, but are restricted to track-
ing predefined events and rely on developers to specify
task boundaries in the event schema.

The goal of this position paper is to explore the extent
to which hierarchical task models can be automatically
inferred, with minimal or no manual assistance from de-
velopers. Developers would no longer have to manually
annotate source code or specify event boundaries, a nec-
essary step towards fully automating the diagnosis of
complex systems. Automatic inference of task models
from a running system can also provide more complete
coverage. As a result, developers and system administra-
tors can use these task models to visualize the design and
implementation of a system, and use the models as input
into other debugging and verification tools.

An automatic inference tool for task models faces
several challenges. First, it must identify appropriate
task boundaries based solely on monitored execution be-
havior, without requiring explicit annotation from de-
velopers. Second, it must correctly associate dependen-
cies among tasks. In particular, the tool must be able to
identify dependencies of tasks that share resources (e.g.,
thread pools, locks) and identify useful causalities. Fi-
nally, it must recover the hierarchical structure among
tasks — a task may call several child tasks, either se-
quentially or in parallel. Given the non-deterministic na-
ture of task executions in complex systems, determining
their hierarchical structure is non-trivial.

In this paper, we describe a framework for automati-
cally inferring hierarchical task models in complex sys-



tems, a debugging tool called Scalpel that implements
this framework, and the use of Scalpel on two systems as
a feasibility case study. In our framework, we transpar-
ently instrument a running service to collect execution
traces of function calls and system calls of synchroniza-
tion points, such as signal/wait on events. We use these
traces as input into an inference engine for creating a hi-
erarchical task model of the service. The inference en-
gine uses a bottom-up approach across three stages, each
addressing one of the above-mentioned challenges.

First, we partition the execution traces into separate
leaf tasks whose boundaries correspond to these synchro-
nization points. Synchronization points identify where
causal dependencies among threads and processes oc-
cur, and therefore are good heuristics for identifying task
boundaries.

Second, we connect leaf tasks together into a directed
causal graph, where an edge between two task nodes sig-
nifies that the execution of one task casually depended on
a previous task (e.g., sending a response message in re-
action to a request). We infer causal dependency using
the happens-before relation among tasks.

Finally, we overlay a hierarchical structure on the
task graph, where each layer in the hierarchy roughly
corresponds to a design or implementation layer of the
system. We use clustering to detect repeated patterns
(i.e., subgraphs) in the causal graph to identify execu-
tions of child tasks (e.g., sending messages) of higher-
layer tasks (e.g., sending an RPC) and recursively apply
the algorithm to identify successively higher layers.

Our preliminary experience with Scalpel is encourag-
ing. We have applied it to two systems, the Apache Web
server and the PacificA distributed storage system, and
have found that Scalpel can automatically infer meaning-
ful task models without any annotation or schema pro-
vided by developers. Furthermore, Scalpel enabled one
developer to track down a performance bug in PacificA
that degraded network throughput by up to 30%.

The rest of the paper is organized as follows. Sec-
tion 2 presents the task inference framework, and Sec-
tion 3 describes the use of Scalpel on Apache and Paci-
ficA as a feasibility case study. Section 4 discusses re-
lated issues. We survey related work in Section 5 and
conclude in Section 6.

2 DESIGN

In this section, we describe the design of our framework
as implemented by Scalpel.

2.1 Collecting Traces
Scalpel collects traces of function calls and their param-
eters, including synchronization calls (e.g., signal and
wait) and OS socket calls (e.g., send and recv). By

default all functions are traced, although in practice we
can use heuristics to prune functions that have no impact
on inferring the hierarchy. Tracing is transparent to the
system and relatively lightweight.

Typically systems have a custom logging facility
which can contain additional useful information for de-
termining task boundaries. This information could be
manually incorporated, e.g., as done by Magpie for cre-
ating log schemas. We defer this to future work.

2.2 Identifying Leaf Tasks
With the execution traces as input, the baseline step is
to identify the boundaries of leaf tasks. Scalpel uses syn-
chronization points as heuristics for defining the bound-
aries. A synchronization point is where two threads syn-
chronize their execution and establish a happens-before
relation: it can be either for mutual exclusion (e.g., a
thread releases a lock before another thread acquires the
lock) or for coordination (e.g., a thread signals an event
to a waiting thread, or sends a message to another thread
on a remote machine).

We refer to the execution between two consecutive
synchronization points as a “continuation”. We consider
the work performed at the granularity of a continuation
as relatively independent and self-contained. As such, we
consider continuations to be a reasonable representation
of the smallest unit of work in a task model and are a
natural definition for a leaf task. Further, since synchro-
nization points define the boundaries of leaf tasks, de-
pendencies among them only occur at their boundaries.

Scalpel currently identifies synchronization points by
instrumenting the appropriate library and system calls for
synchronization primitives (locks, events, etc.) and sock-
ets (we consider communication as synchronization). For
the systems we have experimented with, this instrumen-
tation has been sufficient. If a system uses spin-locks
or lock-free data structures, however, synchronization li-
brary and system call instrumentation is not sufficient.
As a result, Scalpel will define larger leaf tasks that span
these user-level synchronization points — whether the
larger granularity fundamentally degrades the utility of
the task model for debugging remains an open ques-
tion. Manual identification of user-level synchronization
primitives would solve the problem, but would no longer
be automatic. We speculate that heuristics looking at call-
graph patterns and types could help, but we have not ex-
perimented with any approaches and so it simply remains
speculation.

2.3 Constructing Causal Graph
To coalesce tasks into higher layers, we first need a rep-
resentation of the relationships among all the leaf tasks.
Scalpel uses a directed causal graph to reflect leaf task
relationships. In this graph each edge represents a causal



dependency between two dependent leaf tasks, which
execute in succession to accomplish a logically higher-
layer task. For example, in PacificA when a primary
machine receives a commit message, it first stores the
data locally (LogicReplica::Mutate) and then hands
over the data to the secondary node via asynchronous
RPC (RpcClient::RpcAsyncCallChain). Therefore,
an edge is created to connect the two leaf tasks.

Scalpel infers causal dependencies using the
happens-before relation, which includes executions of
two successive leaf tasks by the same thread as well as
executions of leaf tasks across threads at synchronization
points. It is critical to distinguish true causal dependency
from occasional “run-after” relations. For example, a
task that consumes an event in a queue causally depends
on the producer task that enqueues the event. On the
other hand, when accessing shared resources exclusively
threads need to be synchronized via mutual exclusion,
which simply creates a run-after relation. We do not
regard the mutual exclusion as a causal dependency
because the order of thread executions is arbitrarily
decided by the thread scheduler.

Scalpel uses several heuristics to identify true
causal dependencies. When the system uses OS-provided
queues (e.g., I/O completion ports, as used in Apache
and PacificA) and notification mechanisms (e.g., events),
Scalpel can construct the dependencies by matching the
tokens between producer tasks and consumer tasks (the
tokens are recorded in the traces as parameters to instru-
mented system calls). As OS mutexes and semaphores
are used primarily for mutual exclusion, rather than
thread coordination, currently Scalpel simply regards
them as a run-after relation.

For socket communication with TCP, the byte stream
abstraction blurs the message boundaries between sender
and receiver. Currently, developers need to provide ad-
ditional matching information (e.g., annotating the mes-
sage handlers), otherwise Scalpel cannot precisely match
the sender and the receiver of the same message, and may
generate false dependencies between tasks. By adopting
ideas from automatic protocol reverse engineering [4, 8],
it may be possible to further eliminate this annotation
requirement. However, we have yet to explore these pos-
sibilities.

2.4 Inferring Hierarchical Structure
To infer a hierarchical task structure from the causal
graph of leaf tasks, we mine repeated patterns that occur
in the causal graph. Our algorithm is inspired by whole
program paths [11], which searches for “hot subpaths”
(i.e., frequent subsequences in call paths) to infer a
context-free grammar. Similarly, our algorithm searches
for frequently occurring subgraphs. We consider each
subgraph as logically representing a higher-layer task

that is composed of the child tasks in the subgraph. Ap-
plying the algorithm recursively, we obtain a hierarchical
task model.

The algorithm first enumerates all connected sub-
graphs (with more than one node) from the causal graph,
and then clusters these subgraphs into different patterns
based on their similarity (described further below). The
algorithm considers each pattern that has a high num-
ber of occurrences as representing a higher-layer task. It
then substitutes each subgraph having that pattern with
a “super” node. To identify successively higher layers,
Scalpel applies this algorithm recursively until no high-
frequency patterns remain. At this point, the graph has
several super nodes and possibly some unclassified leaf
tasks, and could be connected or disconnected. Scalpel
takes the set of non-trivial super nodes as the final re-
sult, each one representing an inferred highest-layer task
model. By expanding the super-nodes into the subgraphs
that formed them, we obtain the full task hierarchy.

The algorithm requires a similarity measure between
subgraphs for clustering them into patterns. Currently
we use exact matching between subgraphs, i.e., all sub-
graphs in the same cluster are isomorphic. We use a de-
terministic serialization method to encode a subgraph,
and cluster the subgraphs by comparing the hash values
of their encodings. This approach makes the clustering
algorithm very efficient. When encoding leaf tasks, we
use the function names on the call stacks at the begin-
ning and the end of the task, and ignore other function
calls in the middle of the task. For leaf tasks to fall into
the same cluster, they must have identical call stacks of
function names. This heuristic ignores unimportant dif-
ferences among leaf tasks of the same kind, e.g., the dif-
ferent parameter values in functions and the thread con-
text. In our experience, this approach works very well for
identifying the same kind of leaf tasks.

2.5 Implementation
We have implemented Scalpel on the Windows plat-
form using our library-based record&replay tool named
R2 [10]. R2 instruments OS system calls and user func-
tions to record their execution. R2 also tracks sys-
tem calls on synchronization objects (e.g., mutexes and
events) and sockets, and constructs the happens-before
relations among threads and processes. With this infor-
mation provided by R2, Scalpel can easily construct the
call stacks of leaf tasks, and perform the analysis as pre-
sented in Section 2.

3 CASE STUDY

In this section we preliminarily evaluate the effective-
ness of Scalpel. It is not immediately clear how such a
task inference tool should be evaluated, though. Ideally,



mpm_recycle_co

mpletion_context

mpm_get_compl

etion_context

winnt_get_

connection
winnt_accept_1

winnt_accept_2

Queue

IO
CP

Cluster – 

Context Pool

Cluster - SVN Checkout

ap_core

_input_filter

svn_io_file_

read

...

svn_io_file_

getc

ap_lingering

_close

Figure 2: Hierarchal task model of Apache doing SVN checkout.

an effective tool will precisely capture developers’ intu-
ition, which can be difficult to quantify. Therefore, one
approach is to simply let developers verify the inferred
task models and determine whether they match their un-
derstanding of their systems. On the other hand, a task
model is also a means to verify the correctness or per-
formance properties of the system. Therefore, a second
approach is to evaluate the effectiveness of the task mod-
els for debugging.

We use both approaches to evaluate Scalpel. We ex-
periment on the Apache and PacificA systems, each con-
figured in typical scenarios. We ran a Subversion (SVN)
service on Apache, and used a client to perform ten SVN
checkouts. We configured PacificA on two machines,
which form a replication group with one machine as a
primary and the other as a secondary. We ran a small
test benchmark which creates a table and commits 15
items of random user data. We used Scalpel to trace
their executions and infer task models for each system.
We perform all experiments on machines with 2.0 GHz
Xeon dual-core CPUs, 4 GB memory, running Windows
Server 2003 Service Pack 2, and interconnected via a 1
Gb switch.

We first evaluate Scalpel by manually inspecting the
inferred models. Figure 2 shows the result for Apache.
Each node is a leaf task, and the solid and dashed lines
between tasks show their causal dependencies (solid for
same-thread and dashed for cross-thread dependency).
To make the model more readable, Scalpel labels every
leaf task with the state of the call stack at the beginning of
the leaf task. For conciseness, figures in this paper only
show names of the functions that invoke synchronization
operations at leaf task boundaries.

By investigating the source code of Apache and SVN,
we confirm that this inferred model is exactly the Apache
service cycle for SVN checkout operations in which
Apache accepts an incoming connection and uses a
worker thread from a thread pool to invoke SVN service
modules. Scalpel infers 5 leaf tasks in the Apache core
(the left part of Figure 2). Each task represents a major
step for Apache to accept and serve a client connection.
Specifically, the listening thread accepts the connection
(winnt accept 1), fetches a connection context re-

source from a pool (mpm get completion context),
then posts the context to a worker thread through an
I/O completion port (winnt accept 2), and finally
goes back to wait for future connections. At the other
side of the I/O completion port, a worker thread from
a pool will get the context (winnt get connection),
and call the SVN service module to answer the request
(from ap core input filter which reads the mes-
sage from the connection, to ap lingering close

which closes the connection). After that, the
thread recycles the connection context to the pool
(mpm recycle completion context) and goes back
to the waiting status. We omit details of SVN checkout,
but the tasks similarly capture each meaningful step
during the process. This verifies that using synchro-
nization points is an effective heuristic to identify task
boundaries, for at least this system.

In addition, Scalpel successfully identifies two mean-
ingful high-layer tasks, as denoted by rectangles (we
manually give names to them according to their func-
tionality). The first one (context pool) groups the tasks
for recycling and fetching connection contexts. They to-
gether implement a resource pool for reusing connection
contexts. The other one (SVN checkout) contains the en-
tire list of tasks for a SVN checkout operation. Because
these tasks are frequently called with the same causal de-
pendency structure, Scalpel can precisely identify them
as high-layer tasks.

Figure 1 shows the inferred task model for Paci-
ficA, an example of a hierarchical task model. The de-
velopers of PacificA confirmed that this model also char-
acterizes the overall task of committing user data at a
primary node in a precise and meaningful way. There
are three major high-layer tasks: a worker task, a lo-
cal commit task and a remote commit acknowledgement
task. In the worker task, a socket worker which waits
for a client’s request (Session::RecvPacket) repeat-
edly runs as a loop to receive messages from clients,
and triggers a thread pool worker (PAThreadPool-
::ThreadInternal::DoWork) to run the task via a
queue. The local commit task first stores the data
locally (LogicReplica::Mutate) and then hands
over the data to the secondary node via asyn-
chronous RPC (RpcClient::RpcAsyncCallChain)
through the network layer (Session::SendPacket),
and finalizes this local commit (LogicReplica-
::ReceiveMutationAck) by issuing an acknowl-
edgement locally. The remote commit acknowledge-
ment task handles the secondary’s acknowledgement
(LogicReplica::ReceiveMutationAck) and replies
to the client via RPC (RpcClient::RpcCallReply)
through the network layer (Session::SendPacket).

It is worth noting that Scalpel not only identifies the
three major steps for committing data as high-layer tasks,



Apache PacificA
Leaf Tasks 423952 10636
Events 0 47
Mutex 210472 4950
IOCP 23 16
Socket 527 77
run-after 193972 11304
Running Time 69.56s 61.14s

Table 1: Statistics of running inference algorithm, in terms of the num-
ber of leaf tasks, number of dependencies for different types, and total
running time.

but also successfully separates local commit from re-
mote commit acknowledgement as distinct tasks. It is
not that Scalpel “understands” their semantics; it is be-
cause these two tasks are triggered by DoWork tasks sep-
arately. Therefore, our frequent pattern mining algorithm
can separate each task correctly.

Table 1 summarizes the inference algorithm by show-
ing statistics of inferred tasks and their relations after ev-
ery stage.

Second, we evaluate Scalpel by using the inferred
models in a debugging scenario. The developers of Paci-
ficA encouraged us to try Scalpel on PacificA because its
performance under stress tests was not satisfactory. The
developers suspected a performance bug, but could not
isolate the cause even after several attempts at function-
level performance profiling. We used the model in Fig-
ure 1 to profile PacificA’s performance. Our profiling tool
measures performance for each leaf task in terms of la-
tency, bandwidth, and CPU cycles, and aggregates this
data in a per-task manner for each layer.

By profiling the commit operation in a stress test, we
soon found a performance problem: the committing task
could not saturate network bandwidth, while at the same
time the CPU usage remained low. To pinpoint the prob-
lem, we used a a top-down approach with the hierarchi-
cal task model: we started from highest-layer tasks down
to leaf tasks to identify the tasks that consumed most of
the running time. We found that, when sending packets
at high frequency, the sender threads (typically config-
ured as 4 threads) will block at a sleep function for 1
second (see source code in Figure 4) due to the flow con-
trol at the network layer when the internal message buffer
is full. This flow control causes most sending threads to
sleep synchronously. As shown in Figure 3, four threads
make progress at roughly the same time.

A detailed investigation of the code reveals the root
cause of the bug. When the RPC layer uses asynchronous
communication, there is no RPC layer flow control. Ev-
ery thread will send messages in a non-blocking fashion
until the internal buffer at the network layer fills and the
network layer blocks the thread (Figure 4). This causes
the synchronization effect: no matter how many RPC
sending threads are used, they will all be blocked by the

1

2

3

4

0 100 200 300

Th
re

ad
 ID

Time of RPC calls (1 time unit = 10 ms)

Thr-1
Thr-2
Thr-3
Thr-4

Figure 3: Trace of asynchronous PacificA RPC calls by 4 threads.

int Session::WSASendPacket(NetworkStream * pkt) {
CAutoLock guard(_send_lock);
while (_send_size > (64 << 20)) // 64 MB

Sleep(1000);
...
int rt = WSASend(_socket, buf, buf_num, &bytes,

0, (OVERLAPPED*)ce, 0);
...

}

Figure 4: Flow control code in lower layers.

network layer synchronously at high workload, thereby
limiting performance. This bug is caused by poor inter-
actions across software layers. With a clear hierarchical
model, our tool helped us soon identify the location of
the bug and also quickly understand its root cause.

We recognize that our evaluations are more anecdo-
tal than systematic. But these preliminary results provide
encouraging evidence that our approach to automatically
inferring hierarchical task models can be useful both for
helping developers understand a complex system and for
facilitating profiling tools to debug a system.

4 DISCUSSION

Scalpel is primarily designed for developers to under-
stand and debug the systems they build. Therefore,
we assume that debugging information (e.g., symbols
names) is available for Scalpel to trace user functions
and provide readable names of leaf tasks. However, this
requirement is not necessary for generating task struc-
tures. With only stripped executables, we can still instru-
ment system calls to track synchronization points, and
retrieve function addresses in corresponding call stacks
via stack walking. These addresses can be used identi-
cally as function names in our analysis. Therefore, the
inferred task models will have the same structure as be-
fore, only lacking names for leaf tasks. Without readable
labels, these models may be difficult for use by develop-
ers but they could be sufficient for other debugging tools
that can take advantage of a task-level representation.

Traditionally, people usually diagnose system behav-
ior by means of causal path analysis [1, 3, 7], which mod-
els the execution as a collection of single-layer, causal
paths. We believe that the hierarchical representation of
tasks, adopted as a core part in Scalpel’s design, is one
step beyond causal path analysis. Indeed, at the leaf task
layer our task model is the same as causal paths, and
therefore can be used in similar path-based diagnoses



(e.g., optimizing end-to-end latency). However, the hier-
archical representation can provide extra benefits in tack-
ling system complexity. It encapsulates implementation
details with high-level tasks, allowing developers to rea-
son and verify system behavior at various task granulari-
ties. As a case in point, Pip has effectively detected bugs
by checking user-provided properties on various levels
of nested task structures. With our limited experience of
Scalpel, we have not employed similar automatic prop-
erty checking on the inferred task models. We will ex-
tend Scalpel in the future to support property checking,
and further evaluate the benefits of the hierarchical task
models compared with traditional causal path analysis.

5 RELATED WORK

Path-based analysis. To analyze behaviors of multi-
tier, distributed systems, previous work constructs causal
paths from event traces generated at OS, network,
and application levels. Magpie [3] takes user-provided
schemas to correlate events into causal paths. Pin-
point [7] annotates applications to propagate a unique
path identifier for each request. X-trace [9] extends net-
work protocols with path-based metadata so as to main-
tain causal paths across network layers. These systems
essentially require developers to provide application-
specific task structures, in terms of task boundaries, cor-
relation identifiers, and propagating rules. Scalpel auto-
matically infers task structures through general heuris-
tics, and does not require annotations.

Project 5 [1] and Sherlock [2] infer dependencies
among network components from black-box network
traffic. By doing so, they requires less effort than anno-
tating source code. Scalpel also takes advantage of sta-
tistical inference, but further infers tasks hierarchies, and
its tasks are not restricted to network components.
Data-flow tracking. Whodunit [5] and Data Flow To-
mography [14] tracks data-flow among function calls by
capturing all memory operations in an execution scope
with virtual machines. While these systems provide pre-
cise causal dependencies, monitoring fine-grain memory
operations can cause significant performance degrada-
tion. On the contrary, Scalpel only tracks synchroniza-
tion operations and uses heuristics to infer causal de-
pendencies. Therefore, it is more lightweight but pro-
vides less precise results. We see data-flow tracking and
Scalpel as complementary approaches, and will investi-
gate the possibility to combine them.
Predicate checking. Pip [15] and D3S [13] check user-
provided predicates to detect bugs. To define predicates,
Pip requires structured behavior models which are close
to the task models in Scalpel, and D3S also needs to in-
strument specific functions to expose states for checking.
Scalpel’s task models can be used in these systems, mak-
ing predicates easier to specify and check.

6 CONCLUSION AND FUTURE WORK

Based on our initial experience with Scalpel on Apache
and PacificA, we believe that hierarchical task models
of complex systems can be inferred with few or no man-
ual annotations. We plan to further investigate techniques
for improving precision. We will extend our current trace
collecting method, which currently ignores memory ac-
cess operations (e.g., flagging and spinlocks), so that it is
possible to perform a more comprehensive dependency
analysis. In addition, we plan to explore more effective
heuristics to prune occasional “run-after” cases to fil-
ter out unnecessary causalities. We are also interested
in experimenting with various graph mining algorithms
for recovering task hierarchies. Finally, we plan to apply
Scalpel to a wide range of systems to more comprehen-
sively evaluate our techniques.

REFERENCES
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributed sys-
tems of black boxes. In SOSP, 2003.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services
via inference of multi-level dependencies. In SIGCOMM, 2007.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie
for request extraction and workload modelling. In OSDI, 2004.

[4] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic
extraction of protocol message format using dynamic binary anal-
ysis. In CCS, 2007.

[5] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit: Transac-
tional profiling for multi-tier applications. In EuroSys, 2007.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. In OSDI, 2006.

[7] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-based failure and evolution man-
agement. In NSDI, 2004.

[8] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic proto-
col reverse engineering from network traces. In USENIX Security
Symposium, 2007.

[9] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-
trace: A pervasive network tracing framework. In NSDI, 2007.

[10] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek,
and Z. Zhang. R2: An application-level kernel for record and
replay. In OSDI, 2008.

[11] J. R. Larus. Whole program paths. In PLDI, 1999.
[12] W. Lin, M. Yang, L. Zhang, and L. Zhou. Pacifica: Replication

in log-based distributed storage systems. Technical Report TR-
2008-25, Microsoft Research, 2008.

[13] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F.
Kaashoek, and Z. Zhang. D3S: Debugging deployed distributed
systems. In NSDI, 2008.

[14] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood. Under-
standing and visualizing full systems with data flow tomography.
In ASPLOS, 2008.

[15] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah,
and A. Vahdat. Pip: Detecting the unexpected in distributed sys-
tems. In NSDI, 2006.

[16] B. Stone. As Web Traffic Grows, Crashes Take Big-
ger Toll. http://www.nytimes.com/2008/07/06/
technology/06outage.html, July 2008.

http://www.nytimes.com/2008/07/06/technology/06outage.html
http://www.nytimes.com/2008/07/06/technology/06outage.html

