
A Common Substrate for Cluster Computing

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ion Stoica
University of California, Berkeley

{benh,andyk,matei,istoica}@cs.berkeley.edu

Abstract

The success of MapReduce has sparked many efforts
to design cluster computing frameworks. We argue
that no single framework will be optimal for all ap-
plications, and that we should instead enable organi-
zations to run multiple frameworks efficiently in the
same cloud. Furthermore, to ease development of new
frameworks, it is critical to identify common abstrac-
tions and modularize their architectures. To achieve
these goals, we propose Nexus, a low-level substrate
that provides isolation and efficient resource sharing
across frameworks running on the same cluster, while
giving each framework freedom to implement its own
programming model and fully control the execution
of its jobs. Nexus fosters innovation in the cloud by
letting organizations run new frameworks alongside
existing ones and by letting framework developers fo-
cus on specific applications rather than building one-
size-fits-all frameworks.

1 Introduction

It has become increasingly clear that different
cloud applications benefit from different program-
ming models. MapReduce [8] is attractive for its
simplicity, but this simplicity makes it difficult to
express some computations. This led to the devel-
opment of higher-level, domain-specific abstractions
that use MapReduce as an execution substrate, like
Sawzall [15] and Pig [14], and of more general pro-
gramming models that provide their own execution
substrate, like Dryad [12]. However, making a pro-
gramming model too general increases complexity
(Dryad is arguably more complex than MapReduce)
and decreases the opportunity to optimize programs
using application-specific knowledge. We have iden-
tified several applications that are hard to express
efficiently even in Dryad. We believe that no single
general programming model for the cloud will exist.
Instead, multiple cluster computing frameworks will
emerge, providing various programming models with
different tradeoffs. In this context, it is critical to
identify abstractions and system constructs that fa-
cilitate the development of such new frameworks.

As new programming models and new frameworks
emerge, they will need to share computing resources
and data sets. For example, a company using
Hadoop [3] should not have to build a second cluster
and copy data into it to run a Dryad job. Sharing re-
sources between frameworks is difficult today because
frameworks perform both job execution management
and resource management. For example, Hadoop acts
like a “cluster OS” that allocates resources among
users in addition to running jobs. To enable diverse
frameworks to coexist, Nexus decouples job execution
management from resource management by provid-
ing a simple resource management layer over which
frameworks like Hadoop and Dryad can run. Nexus
provides a “slot” abstraction, in which frameworks
may run “tasks” that do arbitrary work. Along with a
mechanism called “slot offers”, the fine granularity of
slots lets Nexus achieve more efficient resource shar-
ing across frameworks than would be possible with
traditional coarse-grained cluster scheduling systems
like Torque [17]. Nexus is analogous to a “cluster
hypervisor”: it provides isolation and multiplexing
while giving each framework a high level of control
over its own execution.

Nexus is beneficial even to organizations that only
wish to run Hadoop. Two concerns in Hadoop to-
day are scalability and robustness of the master pro-
cess. Because the master manages all jobs running in
the cluster (so it can perform resource allocation), it
must be highly robust, and must scale to hundreds of
jobs across thousands of nodes. Any scheduling logic
that goes into the master must be tested extensively,
because a bug in the master will crash the whole clus-
ter. Consequently, companies like Yahoo! and Face-
book run 6-10 month old versions of Hadoop even
though new versions provide significant performance
and functionality improvements. If these organiza-
tions ran Hadoop on Nexus, they would be able to run
separate Hadoop masters for each job, mitigating the
scaling and robustness problems. Furthermore, they
could even run a stable version of Hadoop for pro-
duction jobs and a faster but less stable version for
experimental jobs simultaneously. The Nexus master

1



can be made robust and scalable more easily than
the Hadoop master because it is a smaller codebase,
performs simpler logic, and rarely needs to change.
In this way, Nexus resembles a microkernel architec-
ture: the component that must be the most reliable
(the resource manager) is made as small as possible.

This paper is organized as follows. In Section 2 we
show examples of applications to which MapReduce
and Dryad are not well suited. Section 3 describes the
Nexus architecture. Section 4 describes our current
prototype. We survey related work in Section 5 and
present a discussion and future work in Section 6.

2 Beyond MapReduce and Dryad

Although MapReduce and Dryad support many ap-
plications, these frameworks have limitations. We list
four examples of applications for which these frame-
works are not ideal. In all four cases, one could
envision extending MapReduce and Dryad to better
support the listed application. However, this would
require extensive engineering and testing to ensure
that the changes do not break existing applications,
and would increase the complexity of these systems.
Nexus provides an alternative: a developer can build
a framework more suitable than MapReduce or Dryad
for her application, and this framework can share a
cluster efficiently with MapReduce and Dryad.

1. Iterative Jobs: Many machine learning algo-
rithms start with a random value for a parameter
and repeatedly evaluate a function of this parame-
ter over a dataset to compute a direction in which
to move the parameter. Each evaluation can be ex-
pressed as a MapReduce job. However, systems like
Hadoop launch new worker processes for each job,
which must re-read the input data, because they do
not know that the jobs are related. In many applica-
tions, the amount of data per node is small enough
that it would be more efficient to keep it in memory
between iterations.

2. Nested Parallelism: As parallel programming
libraries for clusters are developed, it becomes attrac-
tive to compose them. For example, a machine learn-
ing job might want to call a parallel matrix multipli-
cation library from each task. Neither MapReduce
nor Dryad support clean nesting of data flows: for
example, if a Dryad vertex launches a computation as
a second Dryad job, it has to stay running while the
second job executes, consuming a node in the clus-
ter. Nested parallelism is expressed more naturally
in other programming models, like Cilk [6].

3. Irregular Parallelism: In applications like
graph search, the data flow graph is not known in ad-
vance. For example, a branch-and-bound algorithm

Hadoop 

Nexus 
master 

Hadoop 
scheduler 

Nexus 
slave 

App 1 

Hadoop 
executor 

task 

Nexus 
slave Dryad 

executor 

task 

Nexus slave 

Dryad 
scheduler 

App 2 

Nexus 

Hadoop 
master 

App 

task 

Hadoop 
slave 

task  task 

Hadoop 
slave 

task  task 

Hadoop 
slave 

task 
Dryad  
executor  task 

Hadoop 
executor  task 

Figure 1: Comparing the architectures of Nexus and
Hadoop. The shaded regions make up Nexus. Hadoop
can run on top of Nexus, alongside Dryad.

might wish to add objects to explore onto a “work
queue” and prioritize them based on how attractive
they look. Neither MapReduce nor Dryad allow this
level of control over the execution order of tasks.

4. Existing Parallel Applications: It would be
useful to run parallel applications like distcc [2] on
the same infrastructure as Hadoop. However, ex-
pressing these applications as maps and reduces is
awkward. Nexus allows more natural wrapping of
these applications into tasks.

3 Nexus Architecture

3.1 Overview

The goal of Nexus is to provide isolation and efficient
resource sharing across cluster computing frameworks
running on the same cluster. To accomplish this,
Nexus provides abstractions of computing resources
and an API to let frameworks access these resources.
Nexus exports two abstractions: tasks and slots. A
task represents a unit of work, such as a map task in
MapReduce. A slot represents a computing resource
in which a framework may run a task, such as a core
and some associated memory on a multicore machine.
We rely on standard OS facilities (e.g. setrlimit in
Linux) to isolate slots. We are also considering using
virtual machines.

Nexus employs two-level scheduling. At the first
level, Nexus allocates slots between frameworks us-
ing fair sharing. At the second level, each framework
is responsible for dividing its work into tasks, select-
ing which tasks to run in each slot, and as we shall
explain, deciding which slots to use. This lets frame-
works perform application-specific optimizations.

Figure 1 shows the architecture of Nexus. Like
Hadoop, Nexus has a master process that controls

2



a slave daemon running on each node in the clus-
ter. Each framework that uses Nexus has a sched-
uler process that registers with the master. Sched-
ulers launch tasks in their allocated slots by provid-
ing task descriptors. These descriptors are passed
to a framework-specific executor process that Nexus
launches on slave nodes. A framework assigned mul-
tiple slots on the same node has one executor per
slot. Executors are also reused for subsequent tasks
run in their slot. This amortizes initialization costs
and lets executors cache data shared across tasks in
memory which is highly beneficial for jobs like the
iterative one described in Section 2. Finally, Nexus
passes status updates about tasks to schedulers, in-
cluding notification if a task fails or a node is lost.
The elements of Nexus – schedulers, executors and
tasks – map closely to components of frameworks like
Hadoop and Dryad. Nexus factors these elements out
into a common layer.

Nexus purposely does not provide abstractions for
storage and communication. We concentrate only
on allocating computing resources (slots), and allow
tasks to use whichever storage and communication li-
braries they wish. For example, we expect many sites
to install Hadoop’s HDFS distributed file system for
storage. We do, however, plan to build communica-
tion and storage abstractions for framework develop-
ers to use on top of Nexus.

3.2 Slot Assignment

The main challenge with Nexus’s two-level schedul-
ing design is ensuring that frameworks are allocated
slots they wish to run in. For example, a MapRe-
duce framework needs to run maps on the nodes that
contain its input file to avoid reading data over the
network. Nexus addresses this issue through a mech-
anism called slot offers. When a slot becomes free,
Nexus offers it to each framework in turn, in order of
how far each framework is below its fair share. Each
framework may accept the slot and launch a task in
it, or refuse the slot if, for example, it has no data
on that machine. Refusing a slot keeps the frame-
work below its fair share, ensuring that it is offered
future slots before other frameworks. If the frame-
work has still not found a data-local slot after wait-
ing for some time, it can always accept a non-local
slot. While it may seem counterintuitive that refus-
ing slots can be beneficial to frameworks, experience
with job scheduling in Hadoop [4] has shown that this
simple policy is enough to achieve 99% data locality1

and high fairness in workloads with dozens of jobs.
In general, slot offers let frameworks use arbitrary

criteria for selecting slots without requiring Nexus
to be aware of these criteria. For example, while a

MapReduce job wishes to run on nodes that have its
input data, the iterative job in Section 2 might prefer
to reuse its previous slots, to take advantage of data
loaded into memory by its executors.

A second concern is how to reassign slots when
frameworks’ demands change (e.g., a new framework
registers). In normal operation, Nexus simply reas-
signs slots to new frameworks as tasks from over-
allocated frameworks finish. As long as tasks are
short, this is sufficient to redistribute slots quickly.
For example, if the average task length is one minute
in a 100-node cluster with 4 slots per node is, then
there will be about 6.7 tasks finishing per second. If
we need to reassign, say, 40 slots (10% of the clus-
ter), we only need to wait 6 seconds. To ensure that
frameworks are not starved even when some tasks
are long, Nexus can also reclaim a slot by killing the
task executing in it after a timeout. Nexus reclaims
most-recently launched tasks from each framework
first, minimizing wasted work. Because frameworks
running on large clusters need to tolerate losing tasks
due to hardware failures, reclamation does not impact
them significantly – it is as if they never received the
slot. We are also considering mechanisms for letting
frameworks choose which slots they prefer to lose.

4 Implementation Status

We have implemented a prototype of Nexus in ap-
proximately 2,000 lines of C and C++. By limit-
ing the scope of Nexus’s concerns we were able to
focus on optimizing for performance and scalability;
for example, we used asynchronous I/O techniques
for network communication. A framework registers
and unregisters with Nexus using the API presented
in Table 1. Table 2 lists the callbacks that Nexus
uses to communicate with a framework for task man-
agement. Once registered, a framework receives slot
offers and task status updates from the Nexus mas-
ter via the schedule and status callbacks. The Nexus
slave passes a task descriptor to an executor by in-
voking its execute callback. Preliminary evaluation
shows that Nexus can schedule thousands of tasks per
second, an order of magnitude more than Hadoop.
We have also implemented an iterative machine learn-
ing job (logistic regression) as described in Section
2 against Nexus, and measured factor of 10 perfor-
mance gains from executor reuse.

5 Related Work

5.1 Infrastructure as a Service

Cloud infrastructures such as Amazon EC2 [1] and
Eucalyptus [13] allow for sharing between users by al-
lowing virtual machines in a shared cloud to be rented
by the hour. In such an environment, it would be pos-

3



Function Description
nexus register(scheduler, executor) Register framework’s scheduler and executor with the Nexus master.
nexus unregister() Terminate the current framework.

Table 1: Nexus API.

Function Description
schedule(slot id) Invoked when Nexus offers a slot to a framework.
status() Invoked when Nexus conveys information about a scheduled task to a framework.
execute(task id, args...) Invoked in the slot the framework scheduled the task.

Table 2: Nexus framework callbacks.

sible for separate frameworks to run concurrently on
the same physical cluster by creating separate virtual
clusters (i.e., EC2 allocations). However, VMs can
take minutes to start and sharing data between sepa-
rate virtual clusters is difficult to accomplish and can
result in poor data locality. Nexus provides abstrac-
tions (i.e., tasks and slots) that eradicate the need for
many applications to use heavyweight VMs. In addi-
tion, Nexus allows frameworks to select where to run
tasks via the slot offer mechanism, allowing multiple
frameworks to share data while achieving good data
locality.

5.2 Cluster Computing Frameworks

MapReduce was originally described in [8].
Sawzall [15] and Pig [14] built richer program-
ming models, like relational operators, on top of
MapReduce. However, running all jobs over MapRe-
duce can be inefficient: for example, a Pig query that
is broken into a series of MapReduce jobs cannot
pipeline data directly between them.

Dryad [12] addresses this problem by providing
a more general execution model: data flow DAGs.
Clustera [9] provides a similar execution model.
These frameworks are valuable because they supply
common execution abstractions, like worker vertices
and channels, to applications. However, the set of
abstractions provided is still limited. For example,
vertices in Dryad form a DAG, which makes it diffi-
cult to write the iterative job in Section 2 where one
would like to send a parameter to a worker, have it
compute a function, and use this result to compute
a new parameter for the same worker. Rather than
trying to build an even more general set of abstrac-
tions than Dryad, Nexus lets Dryad layer over it, but
also enables other frameworks to be written against
its lower-level interface of tasks.

5.3 Cluster Scheduling Systems

Nexus differs from previous cluster scheduling sys-
tems in two aspects: its slot offer mechanism and the
fine-grained nature of slots.

Of the frameworks listed in the previous section,
only Clustera [9] describes multi-user support. Clus-
tera uses a heuristic incorporating user priorities,
data locality and starvation to match work to idle
nodes. However, Clustera requires each job to ex-
plicitly list its locality needs (e.g. by listing its input
files), meaning that needs that cannot be listed in
this manner (e.g. reusing a node to reuse a worker
process) cannot be taken into account. In contrast,
Nexus’s slot offer mechanism lets jobs use whichever
heuristics they desire to select a slot.

Batch cluster schedulers like Torque [17] give each
job a fixed block of machines at once, rather than
letting a job’s allocation scale up and down in a fine-
grained manner, and do not account for data local-
ity. Grid schedulers like Condor [18] support locality
constraints, though usually at the level of geographic
sites. Condor uses a “ClassAd” mechanism match
node properties to job needs. As in Clustera, this
means that job needs that cannot be expressed as
ClassAds cannot be accounted for. Nexus gives jobs
finer control over where they run through slot offers.

6 Discussion and Future Work

By letting diverse cluster computing frameworks
coexist efficiently, Nexus accelerates innovation in
the cloud and encourages development of special-
ized frameworks rather than one-size-fits-all solu-
tions. Nexus is strongly inspired by work on micro-
kernels [5], exokernels [10] and hypervisors [11] in the
OS community and by the success of the narrow-waist
IP model [7] in computer networks. Like a microker-
nel or hypervisor, Nexus is a stable, minimal core that
provides performance and fault isolation to frame-
works sharing a cluster. Like an exokernel, Nexus
aims to give frameworks as much control over their
execution as possible. Finally, like IP, Nexus encour-
ages diversity and innovation in cluster computing by
providing a “narrow waist” API which lets different
frameworks run over shared hardware.

We have already written some applications directly
against Nexus, and are currently porting Hadoop to

4



run over it. However, to ease the development of new
frameworks, we plan to build a stack of higher-level
abstractions over Nexus for framework developers to
use. For example, if Nexus represents the IP of cluster
computing, then a fault-tolerance library providing a
concept of “reliable tasks” might represent the TCP.
Other reusable abstractions that we intend to build
are a data flow DAG library similar to Dryad and a
task-queue library similar to Intel Threading Build-
ing Blocks [16] for frameworks that wish to employ
nested or irregular parallelism.

Using Nexus, we intend to explore both how to pro-
vide better programming models for existing cloud
applications and how to enable other applications to
benefit from cloud computing. Some of the new ap-
plications we wish to explore include:
1. Scientific Computing: Many scientific applica-

tions are not communication-intensive and could
therefore run on commodity clusters, but scien-
tists typically write such applications using li-
braries like MPI rather than MapReduce.

2. Parallel Build/Test Tools: It would be benefi-
cial to run build tools like distcc and distributed
unit testing tools on the same infrastructure as
Hadoop clusters to maximize utilization.

3. Web Servers: It may even be possible to use
Nexus to share resources between batch comput-
ing frameworks and interactive web applications.
Web servers are stateless, so they can be started
and stopped dynamically as “tasks” as long as
load balancers are aware of this. This would let
an organization use a portion of its cluster for web
serving during the day and batch applications at
night, improving data center utilization.

Finally, from an operational standpoint, Nexus al-
lows an organization to use multiple cluster comput-
ing frameworks without having to allocate separate
hardware to each one. For example, if a new im-
plementation of MapReduce appears that is faster
than Hadoop on some workloads, an organization can
switch a portion of its jobs to it. If an organization
wishes to run two isolated instances of Hadoop, or two
different versions of Hadoop, it can do this as well.
Lastly, if a developer builds a specialized framework
optimized for only one type of application, an orga-
nization can run this framework alongside Hadoop.

7 Acknowledgments

We would like to thank Randy Katz, Anthony Joseph,
Scott Shenker, Krste Asanović, George Necula, and
the anonymous reviewers. This research was sup-
ported by California MICRO, California Discov-
ery, the Natural Sciences and Engineering Research

Council of Canada, a National Science Foundation
Graduate Research Fellowship2, and the Berkeley
RAD Lab sponsors: Sun, Google, Microsoft, HP,
Cisco, NetApp, VMWare, Amazon and Facebook.

References

[1] Amazon EC2. http://aws.amazon.com/ec2/.
[2] distcc: a fast, free distributed c/c++ compiler. http:

//distcc.samba.org/.
[3] Hadoop. http://lucene.apache.org/hadoop.
[4] Hadoop scheduling discussion. http://issues.apache.

org/jira/browse/HADOOP-4667.
[5] M. J. Accetta, R. V. Baron, W. J. Bolosky, D. B. Golub,

R. F. Rashid, A. Tevanian, and M. Young. Mach: A
new kernel foundation for unix development. In USENIX
Summer, pages 93–113, 1986.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leis-
erson, K. H. Randall, and Y. Zhou. Cilk: An efficient
multithreaded runtime system. In Journal of Parallel and
Distributed Computing, pages 207–216, 1995.

[7] V. G. Cerf, Robert, and E. Icahn. A protocol for
packet network intercommunication. IEEE Transactions
on Communications, 22:637–648, 1974.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, pages 137–150,
2004.

[9] D. J. DeWitt, E. Paulson, E. Robinson, J. F. Naughton,
J. Royalty, S. Shankar, and A. Krioukov. Clustera: an
integrated computation and data management system.
PVLDB, 1(1):28–41, 2008.

[10] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel:
An operating system architecture for application-level re-
source management. In SOSP, pages 251–266, 1995.

[11] E. C. Hendricks and T. C. Hartmann. Evolution of
a virtual machine subsystem. IBM Systems Journal,
18(1):111–142, 1979.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequen-
tial building blocks. In EuroSys 07, pages 59–72, 2007.

[13] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. So-
man, L. Youseff, and D. Zagorodnov. The eucalyptus
open-source cloud-computing system. In Proceedings of
Cloud Computing and Its Applications [Online], Chicago,
Illinois, 10 2008.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD Conference, pages 1099–1110,
2008.

[15] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Inter-
preting the data: Parallel analysis with sawzall. Scientific
Programming, 13(4):277–298, 2005.

[16] J. Reinders. Intel Threading Building Blocks: Outfitting
C++ for Mul ti-core PRocessor Parallelism. O’Reilly,
2007.

[17] G. Staples. Torque - torque resource manager. In SC,
page 8, 2006.

[18] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the Condor experience. Concur-
rency and Computation - Practice and Experience, 17(2-
4):323–356, 2005.

Notes
1That is, 99% of map tasks read from local disk.
2Any opinions, findings, conclusions, or recommendations

expressed in this publication are those of the authors and do
not necessarily reflect the views of the NSF.

5


