
A Scheduling Framework that Makes any Disk Schedulers
Non-work-conserving solely based on Request Characteristics

Yuehai Xu
ECE Department

Wayne State University
Detroit, MI 48202, USA

yhxu@wayne.edu

Song Jiang
ECE Department

Wayne State University
Detroit, MI 48202, USA
sjiang@eng.wayne.edu

Abstract
Exploiting spatial locality is critical for a disk scheduler to
achieve high throughput. Because of the high cost of disk
head seeks and the non-preemptible nature of request ser-
vice, state-of-the-art disk schedulers consider the locality
of both pending and future requests. Though schedulers
adopting the approach, such as the anticipatory scheduler,
show substantial performance advantages, they need to
know from which processes requests are issued to evaluate
locality. This approach is not effective when the knowl-
edge about processes is not available (e.g., in virtual ma-
chine environment, network or parallel file systems, and
SAN) or the locality exhibited on a disk region is not solely
determined by individual processes (e.g., in the case of co-
operative process groups and disk array where requested
data are striped).

We propose a light-weight disk scheduling framework
that does not require any process knowledge for analyzing
request locality. Solely based on requests’ own characteris-
tics the framework can make any work-conserving sched-
uler non-work-conserving, i.e., able to take future requests
as dispatching candidates, to fully exploit locality. Addi-
tionally, we show how to effectively extend the framework
to the disk array environment. Our design, Stream Schedul-
ing, is prototyped in the Linux kernel 2.6.31. With ex-
tensive experiments of representative benchmarks, and in
various environments such as the Xen virtual machine and
the PVFS parallel file system, we show that the proposed
scheduling framework can improve their performance by
up to 3.2 times.

1 Introduction
While the hard disk has maintained exponential growth in
capacity as a function of time, and sustained improvement
in peak throughput, its random access performance, which
is mainly determined by disk seek time, is increasingly a
bottleneck. This makes the disk scheduler, which aims to

minimize disk seeks by exploiting spatial locality in the
requests, increasingly important to disk performance.

1.1 Non-work-conserving Disk Scheduling
Traditionally a disk scheduler such as CSCAN and SPTF
chooses a request from those that have arrived and are
pending in its dispatch queue and dispatches it to the disk.
In a work-conserving mode, the scheduler must choose one
of the pending requests, if any, to dispatch, even if the
pending requests are far away from the current disk head
position. The rationale for non-work-conserving sched-
ulers, such as the anticipatory scheduler (AS) [16] and
Completely Fair Queuing (CFQ) [1], is that a request that
is soon to arrive might be much closer to the disk head
than the currently pending requests, in which case it may
be worthwhile to wait for the future request.1 If such a re-
quest does arrive soon and the benefit of avoiding the long-
distance disk seek outweighs the cost of idle waiting, the
decision to keep the disk head in place may be justified.
This is commonly observed when there are multiple pro-
cesses concurrently issuing synchronous requests. For a re-
quest synchronously issued by a process, the scheduler can
see its next request only after the request is served. Without
a short waiting period the spatial locality of requests from
such a process cannot be exploited. In this context the spa-
tial locality refers to the fact that nearby disk locations are
likely to be accessed by two consecutive requests within a
short period of time. A process has strong locality if soon
after its current request is completed, the scheduler will re-
ceive its next request for a location close to the current re-
quest. While the traditional scheduler selects a request for
dispatching only from currently pending requests, a non-
work-conserving scheduler, in essence, selects one from
currently pending requests and future requests to exploit
locality among synchronously issued requests.

1Descriptions of requests’ statuses, such as “currently pending” or
“future requests”, are relative to the time when a scheduling decision is
being made.

1.2 The Issues

To be effective, a non-work-conserving scheduler needs to
predict how long it will take for the next nearby request
to arrive—the strength of the process’s locality—with rea-
sonable accuracy, so that a decision can be whether to
wait, and if so, for how long. To this end, existing non-
work-conserving schedulers, such as AS and CFQ, group
requests according to their issuing processes, analyze lo-
cality for each group, and make predictions for each pro-
cess. While analyzing and utilizing locality in the context
of process is an intuitive and convenient choice, there are
three scenarios that challenge this practice.

First, if the requests to a limited disk region are from
multiple processes, the locality, which is the basis for any
scheduler to make scheduling decisions, is the result of
these processes’ combined I/O behaviors. This is espe-
cially the case when these processes coordinate to issue
their requests. To determine whether the disk head should
wait for a future request, the scheduler cares only about
the probability for a nearby request to appear quickly, re-
gardless of whether the request is from the same process.
Limiting locality analysis to each individual process may
underestimate the locality actually available to the sched-
uler and lose opportunity for seek reduction.

Second, in many important system settings process in-
formation is not available to the disk scheduler. For exam-
ple, in the virtual machine environment only the scheduler
in the host OS or VMM can actually dispatch I/O requests
to the disk, on behalf of guest VMs where processes run
and generate the requests. The scheduler in the host usu-
ally can only tell from which VM it receives a request but
cannot distinguish from which process on a VM the re-
quest is issued. When there are multiple processes running
on a VM, lack of such knowledge at the host would make
non-work-conserving host scheduler less effective. In dis-
tributed or parallel file systems such as NFS and PVFS, the
daemon at the file server receives requests from the clients
and passes them to the disk scheduler without telling it
which processes at the client side actually issued them.
For another example, the SAN system and hardware RAID
have internal disk schedulers that are critical to the sys-
tems’ efficiency. The system interface for through which
I/O requests are accepted usually does not include process
information about request source.

Third, one of assumptions made by non-work-
conserving schedulers is that it is solely the process that
determines how long it will take for its next request to be
issued. For this reason, thinktime, the time period between
two consecutive I/O calls of a process, is treated as an at-
tribute of the process and is estimated using the process’s
history information to predict when its next request will
arrive. However, if the disk is a member of a disk ar-
ray over which data are striped, the next several requests
from the process might go to other disks in the array and

may not be immediately scheduled for those disks. Conse-
quently, the timing for this disk to see its next request from
the process is determined not only by the process’s think-
times, but also by the data striping pattern on the array as
well as the scheduling decisions made at the other disks.
By mistaking the time period between two consecutive re-
quests from a process for the process’s thinktime, a disk’s
scheduler finds little opportunity for non-work-conserving
scheduling. However, the fact is that by coordinating the
scheduling of disks in the array, it is possible to reduce the
time period so that waiting for the next request can still be
beneficial.

1.3 The Challenges

To address these issues, we have to give up the assump-
tion on the availability of process information. Specially,
a scheduler is still expected to take future requests into
account when making scheduling decisions, even without
the process information, so that the most suitable request
among both currently pending requests and future requests
can be selected for dispatching. There are several critical
challenges in achieving this objective.

First, if locality were to be explicitly analyzed for pre-
dicting timing and location of the next request, we have to
group requests according to some criteria to track locality
for each group of requests. However, without process in-
formation, for any artificial grouping method it would be
hard to accurately predict whether a request would appear
whose locality is stronger than any of currently pending
requests. For example, a seemingly effective method is
to divide the disk into different regions, either evenly or
accordingly to request concentrations, and then track lo-
cality in each region. However, if the region were set too
small, one process’s synchronous requests could span mul-
tiple regions, which makes the arrival of the next request
in a region too late and thus the locality in each region too
weak. If the region were set too large, requests in a large
disk area would be included for locality tracking, making
the measured locality weak because of large inter-request
distance. In both cases the scheduler may lose the oppor-
tunity to schedule future requests. In addition, region size
may have to be dynamically adjusted according to chang-
ing request distribution on disk, making meaningful local-
ity analysis yet more difficult.

Second, locality is relative. When there are pending re-
quests relatively close to the current disk head, the sched-
uler must evaluate only the probability of requests of strong
locality, and the relatively remote requests become less rel-
evant. In contrast, if pending requests are relatively remote,
even some not-very-close requests need to be included for
locality analysis so as not to lose opportunity for higher
disk efficiency. Therefore one must determine which re-
quests should be included in an analysis adapting to the lo-

cations of pending requests. This would significantly add
to the complexity and cost of such algorithms.

Third, for data striped on a disk array, even if think-
times can be sufficiently short for I/O-intensive applica-
tions, the time gaps between two continuous requests seen
at each disk can be too large to be exploited by non-work-
conserving schedulers at individual disks. In this case the
challenge is whether it is possible to reduce the time gaps
by coordinating individual disks’ scheduling so that it be-
comes worthwhile for a disk to wait for a future request.
If the answer is yes, the question is how to know when
there is such a potential before taking action for the co-
ordination. As such an action usually entails postponing
service of other applications’ requests, it could cause ex-
cessive overhead and adversely affect performance if it did
not produce the expected saving in disk seek time.

1.4 Our Contributions

In this paper we propose a light-weight framework that
uses only requests’ characteristics, specifically requests’
arrival times and requested data locations, to turn any
work-conserving scheduler into a non-work-conserving
one. These request characteristics are readily available in
any storage system and are employed in almost all disk
schedulers. In summary, we make the following contribu-
tions.

First, instead of using the conventional method of di-
rect analysis of locality to make a prediction about future
requests, we propose to track the judicious actions, either
waiting for future requests or seeking to a pending request,
that should have been taken for greater disk efficiency. A
judicious action is the one that helps improve disk effi-
ciency, and may or may not have actually been taken in
the prior scheduling. After observing a consistent pattern
of judicious actions, our scheduling framework guides the
scheduler to follow the trend in making its next decision. In
the meantime, the framework retains the mechanism pro-
vided by the corresponding work-conserving scheduler for
avoiding long delay or even starvation in its request ser-
vice. The framework is simple, efficient, effective, and
minimally intrusive to the work-conserving scheduler.

Second, we propose an efficient scheme for non-work-
conserving scheduling for the disk array. To this end, we
create a virtual disk corresponding to a disk array and apply
our proposed framework on it to evaluate the potential ben-
efit of coordinating scheduling across the disks for a par-
ticular stream of requests. When the evaluation is positive,
coordinated scheduling of all disks is conducted to make it
possible for scheduling of future requests to be profitable.

Third, we have implemented and evaluated the schedul-
ing framework for single disks and for disk arrays, collec-
tively named stream scheduling, in the Linux 2.6.31 and
Linux software RAID MD. Our experiments on the proto-

type system with a variety of benchmarks demonstrate its
significant performance advantages.

Section 2 of this paper details the design of stream
scheduling. Section 3 presents an extensive experimental
evaluation. Section 4 describes related work, and Section
5 concludes.

2 The design of Stream Scheduling

While a non-work-conserving scheduler is designed to se-
lect one request of the lowest cost from currently pend-
ing requests and future requests, a key technique in the
scheduling is the effective comparison of costs for serv-
ing these two types of requests. Because future requests
are not available for immediate dispatching, the scheduler
keeps the disk idle for some period of time waiting for them
if it decides to schedule a future request. Accordingly the
cost for dispatching a future request is the sum of the wait
time and the request’s service time, while the cost of dis-
patching a pending request is just its service time. To effec-
tively implement a non-work-conserving scheduler, there
are two critical questions to answer: (1) how likely it is to
see a future request whose cost is lower than that of the
pending requests; and, (2) which future requests can be the
candidates for selection. The answer to the first question
determines whether a future request should be selected—
whether the disk should wait—and the answer to the sec-
ond question determines the threshold of the wait period
beyond which no requests would be qualified. In the pro-
posed framework it is the stream scheduling algorithm that
answers the two questions by taking three inputs, namely
request arrival time, arriving request location, and pending
request location.

When a scheduler is ready to dispatch a new request
the stream scheduling algorithm makes the decision on
whether or not to schedule a future request. If yes, it will
leave the disk waiting for an incoming request of relatively
strong locality. Otherwise, it will dispatch a pending re-
quest selected by the working-conserving scheduling algo-
rithm. As the stream scheduling algorithm makes its deci-
sions independently of the working-conserving scheduling
algorithm, the scheduling framework is applicable to any
working-conserving scheduling algorithms.

2.1 The Stream Scheduling Algorithm

We consider a decision to make the disk wait for future
requests a judicious one if there exists a future request
R such that wait time(R) + service time(R) <
service time(selected pending request), where
wait time(R) is the time period from the time when
the decision is made to the time when request R arrives,
service time(R) is the time spent to serve request R,
the first dispatched future request after the decision is

made, and service time(selected pending request)
is the service time for request selected by the work-
conserving scheduling algorithm when the decision is
made. If the inequality does not hold, the decision that
demands immediate dispatching of a pending request is a
judicious one. Note that the evaluation of the inequality
cannot be completed until a future request satisfying
the inequality actually arrives or until wait time(R) ≥
service time(selected pending request) becomes true.
To evaluate the inequality, the service time of a known
request can be estimated according to the distance between
the location of its requested data and current disk head
position, which can be considered to be the location of the
most recently served request [14, 16]. Therefore, no matter
whether request selected pending request is actually
dispatched, service time(selected pending request)
can be estimated.

In the inequality only
service time(selected pending request) is known
when the decision is being made, while wait time(R)
and service time(R) are unknown. Generally there
are two methods to predict whether the inequality will
hold. One is the method adopted by existing non-work-
conserving schedulers, which use wait times and service
times of previous requests that belong to the same process
to predict these two times for the next request from the
process, respectively. This method does not work when
the process information is unavailable, because we do not
know which previous requests and which future requests
should be included in the evaluation of the inequality. To
address the issue we propose the second method, which
identifies a series of recently served requests for which the
inequality held to form a so-called stream. A stream of
sufficient size indicates that it is likely that the inequality
would continue to hold and a judicious decision is to wait
for future requests.

Figure 1 illustrates how a stream is formed and how it
is used for request scheduling. The figure shows the ar-
rival and completion times of requests as well as the re-
quests’ positions on the disk in terms of their requested
data’s LBNs (Logical Block Numbers). When the sched-
uler is notified that a request is completed is the time for
the scheduler to select one request from currently pend-
ing requests and eligible future requests, or requests sat-
isfying the inequality. As we can see, the positions of
pending requests determine the eligibility of future re-
quests. This is what we expect. If there are nearby
pending requests, the criteria to schedule a future re-
quest must be more strict to make it profitable. Oth-
erwise, it may be affordable for the disk to wait for a
longer time and/or for a request with longer distance to
the recently completed request. We may not come to
a conclusion on whether a future request should be se-
lected, or whether the scheduling decision is judicious,

Pending request

Arrival of a request

Completion of a request

Time period serving other requests

Time period serving this request

Link showing relationship between
parent request and child request

TimeTime

LBNLBN

i

2 2 3 3
4 5 6

1

Request i

Figure 1: Illustration of forming a stream and using the stream
for scheduling. In the figure, the mushroom-shaped area ahead of
each completed request describes the inequality on the eligibility
of being a child request. The size of an area is determined by how
close its corresponding pending requests are from the completed
request. When a new request arrives in such an area, it becomes
the child of the completed request associated with the area and
extends the corresponding stream. As shown in the graph, the
arrival of request 2 in the area following request 1 extends the
stream to [1, 2]. When request 2 is completed, its area is cre-
ated and the arrival of request 3 in the area further extends the
stream to [1, 2, 3]. A stream cannot be established without new
requests arriving in the defined areas, as shown in the upper part
of the figure. In the lower part of the figure, before the stream
is established, the disk head must leave and then seek back to
serve its next request. When request 4 becomes a child request
and joins the the stream, the stream is established (assuming that
stream threshold is 4). After this, the disk keeps serving requests
in the stream (such as requests 5 and 6) for some period of time
for high I/O efficiency.

until service time(selected pending request) after the
decision is made. Note that the conclusion does not de-
pend on what the actual decision is. If later on we do
find a request arriving at a time and a position that sat-
isfy the inequality, this request is called the child of the
recently completed request. Therefore, for a request that
is highly likely to have a child, the scheduler should wait
for the child request, instead of immediately dispatching a
pending request. To predict whether a recently completed
request would have a child, we introduce the concept of
stream, which is a sequence of requests [R0, R1, ..., Rn−1]
that have arrived in time-ascending order. For any two ad-
jacent requests (Rk−1, Rk) in the stream, Rk is the child
of Rk−1. If the length of the stream is equal to or greater
than a predefined threshold stream threshold, the stream is
considered established.

The assumption we make in the stream scheduling algo-
rithm is that for an established stream [R0, R1, ..., Rn−1]
(n ≥ stream threshold), request Rn−1 is highly likely
to have its child request Rn extend the stream. The child
request is the first one that arrives after the completion of
Rn−1 and satisfies the inequality, and the the disk should
wait for the child request. This assumption is consistent
with those made by other non-work-conserving algorithms
to estimate thinktime and seek time of a process’s next
request. In addition, as we do not independently predict
these two times, we can take the relationship between
pending requests and future requests into account in the
assumption. A disk waiting for a child request will stay
idle for at most service time(selected pending request)
if there exist pending requests. The time when ser-
vice time(selected pending request) passes a request’s
completion time is called the request’s deadline. Af-
ter its deadline, it is not possible to find an eligible
request to be the request’s child. If the most recent
request in a stream fails to find its child request, the stream
aborts. Pseudo code for the algorithm is shown in Figure 2.

As shown in the pseudo code, when a request is com-
pleted it is possible for it to become a parent of a future re-
quest. So we insert the request into the parent-to-be queue
to see if it would have a child that turns it into a parent.
The queue is sorted by requests’ deadlines, and only re-
quests whose deadlines are not yet passed remain in the
queue. Therefore, the size of the queue is usually very
small. If the recently completed request is at the head of
an established stream, we let the disk wait for a future re-
quest and in the meantime activate a timer for the com-
pleted request. Note that the algorithm does not remember
every member of a stream. Instead, it only needs to keep
track of the most recent request of a stream as well as its
current length. When a new request arrives, we examine
requests in the parent-to-be queue to see if it can extend a
stream. If a request in the queue reaches its deadline with-
out seeing a new request as its child, the stream led by the
request is usually abandoned. One exception is that when
stream has been sufficiently long—when its size is larger
than stream threshold by a factor of tolerance factor, or
50% by default—we give the stream a second chance to
get extended. When the disk has kept serving a stream for
more than a threshold time period (stream time slice), the
disk will dispatch a selected pending request, instead of
waiting for a future child request in the stream (not shown
in the pseudo code). In our work, we leave the issue of
fairness to the external scheduler that has process infor-
mation, or to the local work-conserving scheduler, such as
the Deadline scheduler. When Deadline boosts the priority
for dispatching of requests that have waited for too long
the stream algorithm respects the decision by immediately
sending them to the disk.

/* Procedure invoked upon completion of request R*/
R.completion_time = current_time;
R.position = LBN of data requested by R;

/* ’selected_pending_request’ is the request selected
by the work-conserving algorithm */

R.service_time =calculate_service_time(R.position,
selected_pending_request.position);

R.deadline = R.completion_time + R.service_time;

/* insert R into the queue sorted by requests’
deadlines */

queue_of_parent_to_be <-- R;

/* If the stream is established, wait for a
potential child request */

if (R.stream_size >= stream_threshold) {
R.timer.timeout = R.service_time;
activate R.timer;

} else
dispatch selected_pending_request;

/* Procedure invoked upon arrival of request new_R*/
new_R.arrival_time = new_R’s arrival time;
new_R.position = LBN of data requested by new_R;

for each request R in ’queue_of_parent_to_be’ {
if (R.deadline < current_time)
remove R out of the queue;

if (new_R.arrival_time-R.completion_time+
calculate_service_time(R.position, new_R.position)
< R.service_time) {
/* new_R is R’s child */
if (R.stream_size >= stream_threshold) {
turn off R’s timer;
dispatch new_R;

}
new_R.stream_size = R.stream_size + 1;
remove R from queue_of_parent_to_be;

}
else
new_R.stream_size = 1;

}

/* Procedure invoked upon expiration of
request R’s timer */

if (R.stream_size >=
(1+tolerance_factor)*stream_threshold){

R.timer.timeout = R.service_time*tolerance_factor;
R.service_time *= (1+tolerance_factor);
R.deadline = R.completion_time + R.service_time;
R.stream_size = stream_threshold;
activate R.timer;

}
else
remove R out of ’queue_of_parent_to_be’;

Figure 2: Stream scheduling Algorithm. In the pseudo code,
function calculate service time(disk pos, req pos) is used to cal-
culate the service time when the disk head is at disk pos and the
requested data is at req pos, all in terms of LBNs. While we re-
member only the most recent member request of a stream and the
size of a stream, we treat the size as an attribute of the request,
denoted as R.stream size.

The forming of streams and scheduling of requests are
two independent procedures. That is, no matter what the
scheduling decision is, the stream’s development is not af-
fected. The forming of streams is determined by the ar-
rival and location of future requests, which usually do not
depend on whether the disk actually waits for a child re-
quest, though the time period between a request’s arrival
and its completion is determined by the scheduling deci-
sion. Therefore, the stream scheduling algorithm can be
used with any work-conserving scheduler. In addition, as
the size of the parent-to-be queue is small, the algorithm is
of low cost, specifically O(N), where N is the size of the
queue.

2.2 The Stream Scheduling Algorithm in a
Disk Array

The effectiveness of non-work-conserving scheduling al-
gorithms depends on the existence of locality in the re-
quests of a process or a stream. This locality can be suf-
ficiently strong to form an established stream when it is
presented to the entire storage system. However, when the
storage system consists of an array of disks where data
are striped, each disk only sees a subset of the requests
and the locality presented to individual disks can be much
weaker. As each disk has to be individually scheduled to
accommodate its specific data layout and request pattern,
instead of all disks being fully synchronized and using one
request scheduler [19, 8], it would be hard for each sched-
uler, on its own, to take advantage of the potential ben-
efit of non-work-conserving scheduling. As an example,
for a sequence of synchronous requests [R0, R1, ..., Rn−1],
which could be a stream if they were all served by a sin-
gle disk, let us assume that only requests Ri (i mod m =
k) reach disk k, where m is the number of disks in the ar-
ray (k = 0, 1, ...,m − 1). After serving R0, disk 0 would
not see Rm until R1, R2, ..., and Rm−1 have been served
by other disks, whose service times depend on their re-
spective scheduling decisions and could be significant if
long-distance seeks are involved. Even worse, when one
request has to access data spread on multiple disks, it is
not completed until the last piece of the data is served, and
the request’s service time can be long if the disks are not
coordinated to serve it quickly.

The time period between completion of a request and
arrival of the next request of a stream observed at one par-
ticular disk (such as completion of R0 and arrival of Rm at
disk 0 in the example) consists of two types of time com-
ponents. One is thinktime, or the time period from the
completion of one request to the arrival of the next one
of the stream observed by the disk array (such as comple-
tion of R0 and arrival of R1 in the example stream); an-
other is response time, or the time period from the arrival
to the completion of a request in the stream. A request’s

response time consists of its wait time and service time. To
enable non-work-conserving scheduling, we need to min-
imize the time period for a disk to see its potential child
request. While the involved thinktimes cannot be reduced
for synchronous requests, the response time can be reduced
by dedicating all disks to serving requests of a stream dur-
ing a certain time period through disk coordination.

As we do not have process information, we set up a disk-
array scheduler that treats the disk array as one big virtual
disk and uses the method described in the stream schedul-
ing algorithm to identify streams. The disk-array sched-
uler uses the array’s logical addresses for calculating ser-
vice times and uses pending requests on respective phys-
ical disks to evaluate the inequality for identifying child
requests. The stream threshold for established streams is
increased by m times, where m is the number of disks.
Once a stream is established in the virtual disk, which we
call a virtual stream, we attempt to find a stream on each
physical disk corresponding to the virtual stream, which
we call physical stream. Without dedicating all disks to
the virtual stream, there is little chance for a physical disk
to see its corresponding physical stream because of high
response times. However, forcing all disks to serve only
the virtual stream’s requests before knowing whether the
physical streams can be formed runs the risk of idling mul-
tiple disks for an excessively long time.

To address the challenge, we do not use a request’s ac-
tual arrival time to determine whether it can extend a phys-
ical stream at a physical disk, as this time might be sig-
nificantly reduced if all disks were dedicated to the corre-
sponding virtual stream. Instead, we use the arrival time
less the response times between the completed request and
the disk’s next request in the virtual stream (such as the
arrival time of Rm minus the sum of response times of re-
quests Ri (1 ≤ k ≤ m − 1) in the example stream). The
physical streams formed in this way represent the most
optimistic estimates on future requests’ arrival times, be-
cause the response times cannot be reduced to zero even
if all disks are dedicated to the virtual stream. Once the
array scheduler finds that physical streams have been es-
tablished on all the disks for a particular virtual stream, it
marks the virtual stream’s next request to each disk as ur-
gent so that it can be dispatched immediately to bring each
disk head to the corresponding physical stream. After this,
the array’s scheduler instructs each disk’s scheduler to use
their respective physical stream for non-work-conserving
scheduling and use the actual request arrival time to extend
the stream. In this way, the non-work-conserving schedul-
ing is certain to be cost-effective even though the physical
streams are initiated with optimistic estimates of request
arrival times. When a disk’s physical stream is broken be-
cause it fails to find its next child request, this phenomenon
usually cascades to other disks as it would cause other
disks’ streams to take longer time to see their respective

next requests. When the array’s scheduler observes broken
physical streams, it will mark the virtual stream as unus-
able. Note the scheduler will keep maintaining the virtual
stream to prevent a new stream from being formed and trig-
gering non-work-conserving scheduling on the disks once
again, which has been shown not to be cost effective. For
the disk array, instead of letting each disk decide how long
it continuously serves a physical stream, we let the array
scheduler determine the time period during which each
disk is supposed to serve its physical stream corresponding
to the virtual stream. In this way the serving of requests in
a virtual stream is fully coordinated across the disks.

3 Performance Evaluation

To evaluate the performance of the stream schedul-
ing framework, we implemented it in the Linux kernel
2.6.31.3, either as a wrapper of a work-conserving disk
scheduler to create a stream scheduler for individual disks,
or as a revised implementation of the Linux software RAID
mdadm for a disk array. In the experiments the CPU is an
Intel Core2 Duo with 2GB DRAM memory and the disks
are 7200RPM, 500GB Western Digital Caviar Blue SATA
II (WD5000AAKS) with a 16MB built-in cache. The disk
array has five disks connected to the host via a RAID card
(RocketRAID 2320).

3.1 Disk Schedulers in Linux

Currently there are four configurable disk scheduler mod-
ules in the Linux distributions, each implementing a com-
monly used scheduler: Noop, Deadline, AS (or Antic-
ipatory), and CFQ. Among them, Noop and Deadline
are work-conserving while the other two are non-work-
conserving. Noop simply dispatches a request as soon as
it is received and does nothing beyond merging contiguous
requests. Though it does not sound meaningful when the
scheduler is used for dispatching requests directly to the
hard disk, it is actually the preferred choice in other cases,
such as in guest VMs of virtual machines and the systems
using the SAN block device. This not only saves CPU cy-
cles but also allows the requests to reach the lower level
as early as possible, where a scheduler can see requests
from different guest VMs or hosts and know how data
are actually laid out on the disk(s) [32]. For this reason,
we include Noop in the evaluation. Deadline is a sched-
uler approximating CSCAN augmented with a deadline-
enforcement mechanism to prevent starvation. AS is a
deadline scheduler enhanced with the anticipatory capabil-
ity to wait for a future request that is of strong locality and
is issued by the same process. CFQ aims to fairly distribute
disk time among I/O-intensive processes and to bound re-
quest response time as Deadline does. As CFQ allows the

disk to be idle waiting for future requests, it is non-work-
conserving.

3.2 The Stream Scheduling in Linux

In the implementation we place Deadline in the stream
scheduling framework and turn it into a non-work-
conserving scheduler, the stream scheduler (SS). To
accommodate the starvation avoidance mechanism, the
stream scheduling algorithm respects the decision made
by Deadline about immediate dispatching of expired re-
quests by suspending its dedicated service to a stream. In
the evaluation we set stream threshold to be 4. We set
stream time slice to 124ms if not stated otherwise, that is,
a stream can be uninterruptedly served for at most 124ms
if there are other pending requests in the system. This set-
ting is consistent with that in AS for continuous requests
from one process. We will present results of a sensitivity
study on the parameter in Section 3.6.

Today’s hard disks store multiple requests pending in it
and enables its own scheduler such as NCQ for internal
scheduling. The disk will continue serving requests pend-
ing in it after it completes a request. This poses a challenge
to the implementation of the stream scheduling framework
because the location of the most recently completed re-
quest is not necessarily the disk head position when the re-
quest it will dispatch next gets served. For example, when
SS decides to idle the disk to wait for a future request by
suspending dispatching requests, it assumes that the disk
head will stay where it is. However, in a hard disk with
stored pending requests, the disk head may have sought to
another pending request scheduled by NCQ. To address the
issue, we make a customization of the SS algorithm. In the
kernel, there is a FIFO queue (struct request queue), into
which the disk scheduler dispatches its requests and from
which the disk driver takes requests to the disk hardware.
In other words, the actual service order will be basically
consistent to the order in which the requests stay in the
queue, assuming NCQ does not make a major change in the
order. Accordingly, the disk head position when the next
request is dispatched can be best indicated by the request
at the queue tail, or the most recently inserted request. For
this reason, SS makes a scheduling decision for the tail re-
quest when it is added into the queue, or considers it as
the completed request in the stream scheduling algorithm,
instead of for the actually completed request. If the deci-
sion is to wait for a future request, none of the currently
pending requests are allowed to get into the queue and the
corresponding timer will be activated at this time. In this
way, the assumption made by SS about the disk head loca-
tion still holds.

To estimate the service time of a request when the disk
head is at disk pos and the request is at req pos, all in terms
of LBNs (calculate service time(disk pos, req pos)), we

adopted a simple empirical method which has been widely
used for its effectiveness [25, 14, 16]. In this method,
requests of various distances between two adjacent ones
are sent to the disk and corresponding service times are
collected. A smooth curve is fit through the measured
[distance, time] data points and is used to represent cal-
culate service time() function. In addition, as CSCAN
prefers to serve requests in the forward direction, for the
same inter-request distance we increase the cost of back-
ward access by 50%.

3.3 Storage without Process Information

 0

 50

 100

 150

 200

 250

 300

 350

par-read grep TPC-H PostMark

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
ts

 (
%

)

SS
AS

CFQ
Deadline

Noop

Figure 3: Performance of benchmarks par-read, grep, Post-
Mark, and TPC-H with different disk schedulers (SS, AS, CFQ,
Deadline, and Noop) when the process information of requests
is removed from the workloads. The performance is presented
as the schedulers’ percentage improvement over that of Noop.
For par-read and PostMark the performance is measured with
throughputs, which are 16.0MB/s and 815.9KB/s, respectively
for Noop. For grep and TPC-H the performance is measured
with execution times, which are 73.5s and 228.2s, respectively,
for Noop.

We first evaluate schedulers of storage systems for
which process information for requests is not available,
such as hardware RAID, SAN, and iSCSI connected stor-
age devices. As the devices usually use proprietary soft-
ware and their internal disk schedulers are not open-
sourced for instrumentation, we hide process context in-
formation from the schedulers, or equivalently we make
the schedulers believe that all requests are issued by the
same process. In this section, we discuss the experimen-
tal results for one disk, and leave those for disk arrays to
Section 3.5.

The benchmarks we use in this experiment are par-read,
grep, PostMark, and TPC-H. par-read is a microbench-
mark we wrote to study the impact of varying thinktime
on the schedulers’ performance. It creates four indepen-
dent processes, each reading a 1GB file using 4KB re-
quests in parallel. There is a 50GB gap between each two

adjacent files. By default the thinktime between consecu-
tive requests of a process is set to 0. grep is a Linux text
search program we run to look for a non-existent word in
the Linux 2.6.31 source code tree so that the entire direc-
tory tree is read. In the experiment we run two greps, each
reading one of two copies of the Linux directory with a
50GB gap between them. PostMark is to measure the per-
formance of an Internet server running e-mail, netnews, or
e-commerce applications, where random access of small
files is the dominant access pattern [26]. In the experi-
ment, we run four PostMark benchmarks (version 1.5.1),
each creating a data set consisting of 10,000 files whose
sizes are in the range between 0.5KB and 10KB. Each data
set is 50GB away from the next data set. TPC-H is a deci-
sion support benchmark that processes business-oriented
queries against a database system to examine large vol-
umes of data. In our experiment we use PostgreSQL 8.3.7
as the database server and use DBT3 1.5.0 to create ta-
bles in it. We choose the scale factor 1 to generate the
database and run query 19 against it. We run three TPC-H
instances, with a 50GB space gap between adjacent data
sets. Figure 3 shows the performance improvements of the
four schedulers (SS, AS, CFQ, and Deadline) over Noop
for the four benchmarks.

The experiments demonstrate that without process infor-
mation both AS and CFQ lose the performance advantages
they had enjoyed when they knew which requests are is-
sued by the same process. Each process in the benchmarks
synchronously issues its requests. For benchmarks grep
and PostMark, which issue random requests and generally
do not trigger prefetching in the operating system, the disk
scheduler can see at most one request from a process at
a time. Without seeing a nearby pending request, Dead-
line would dispatch a remote one and constantly move the
disk head between remote data sets. This causes its per-
formance to be as low as Noop. Without knowing which
process actually issues a request, AS and CFQ assume all
requests are from the same process and serve any pend-
ing requests when they see them, even if they are in dis-
tant regions. Consequently, they degenerate into work-
conserving schedulers such as Deadline. However, if we
let the information available to AS and CFQ in the exper-
iments, they would perform as well as SS (with a perfor-
mance difference less than 3%), demonstrating the impor-
tance of non-work-conserving scheduling.

Interestingly, the observations for random access can
also be made on the other two benchmarks issuing sequen-
tial requests, which triggers prefetching in the operating
system and allows the scheduler to see asynchronously is-
sued requests. The condition for a work-conserving sched-
uler to keep serving one process’s requests is to eliminate
quiet periods in the process’s I/O service, or the time period
during which the scheduler does not see any requests from
the process since last time when the scheduler attempts to

 0

 10

 20

 30

 40

 50

0 20 50 100 150 200

T
hr

ou
gh

pu
t (

M
B

/s
)

Thinktime (us)

SS
AS

CFQ
Deadline

Noop

Figure 4: Throughputs of par-read with varying thinktimes, the
time period between two continuous requests issued by a process.

dispatch this process’s request. However, prefetching does
not eliminate quiet periods in the system for two reasons.
First, Linux maintains two readahead windows to prefetch
file data. Prefetch requests issued for one window are con-
tiguous and sent to the scheduler together. The scheduler
has a good chance to merge them into one request. Con-
sequently, the next prefetch request would not be triggered
and sent to the scheduler until this request is completed and
its data is consumed by the process. Second, as today’s
hard disks store multiple pending requests, a scheduling
decision may have to be made before the process’s request
is completed. At this moment, it is likely the process’s next
prefetch request has not been generated, creating a quiet
period. In both cases, Deadline, as well as AS and CFQ
when process information is unavailable, would schedule
other process’s request and thrash the disk head among
processes. While increasing the prefetch window can re-
duce number of quiet periods, they are unlikely to be fully
removed. While SS does not rely on process information,
its performance advantage is impressive with about 3.2X
throughput improvement over the other schedulers. If we
increase the thinktime, the performance improvement of
SS becomes increasingly small as their wait times become
larger (shown in Figure 4). When the thinktime is as large
as 200µs, the corresponding quiet periods increase to as
large as about 8.5ms, which causes streams to break and
accordingly causes SS to stop waiting for future requests
and behave like Deadline.

3.4 Storage with Inadequate Process Infor-
mation

Next we consider four benchmarks running in an envi-
ronment where the process information is inadequate or
misleading. To investigate how synchronization of I/O-
intensive threads affects behaviors of disk schedulers, we
wrote a microbenchmark called multi-threads, in which
there are four processes, each forking two threads. Each
thread reads a 40MB file in a strided pattern, reading the

 0

 50

 100

 150

 200

multi-
threads

mpi-
io-test

ProFTPD
 (1VM)

 ProFTPD
 (2VM)

TPC-H
 (1VM)

TPC-H
 (2VM)

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
ts

 (
%

)

SS
AS

CFQ
Deadline

Noop

Figure 5: Performance of benchmarks multi-threads, PVFS,
ProFTPD, and TPC-H with different disk schedulers. ProFTPD
and TPC-H run either on one virtual machine or on two virtual
machines. The performance is presented as the schedulers’ per-
centage improvement over that of Noop. For multi-threads, TPC-
H(1VM), and TPC-H(2VM) the performance is measured with
execution times, which are 65.7s, 231.4s, and 332.0s, respec-
tively, with Noop. The performance of PVFS, ProFTPD(1VM),
and ProFTPD(2VM), is measured with throughputs, which are
132.0MB/s, 17.1MB/s, and 12.5MB/s, respectively, with Noop.

first 4KB of data of every 16KB segment from the begin-
ning to the end of the file. The distance between the two
files accessed by one process is 100MB, and the distance of
files read by adjacent processes is 50GB. Two threads of a
process synchronizes after each makes every five requests.
The performance improvements of the schedulers for the
benchmark over that of Noop are presented in Figure 5.
We can see that SS more than doubles the performance of
Deadline in terms of reduction of execution time. Unfortu-
nately AS and CFQ deliver performance even worse than
that of Noop. The reason is that the synchronization dis-
rupts their non-work-conserving scheduling, which is un-
necessarily tied to the process. For example, assuming that
two threads of a process are TA and TB , AS keeps serv-
ing requests from TA by anticipatory wait until TA reaches
a synchronization point. Then AS has to wait for about
4ms until its timer expires and then it starts to serves TB’s
requests, even though a TB’s request is pending nearby.
In Linux a thread is presented as a light-weight process.
Because the nearby pending request belongs to another
thread, AS does not immediately dispatch it. Instead it
suffers a long and unfruitful wait. In comparison, without
relying on the process information SS is not constrained by
the synchronization and dispatches any nearby requests.

PVFS is a parallel file system widely used in high-
performance computing clusters [9]. We run the mpi-
io-test program, an MPI-IO benchmark from the PVFS2
software package [30], on PVFS 2.8.2. The cluster has
four compute nodes and eight data servers, where files are
striped with a 64KB striping unit. Each data servers has

a SATA disk (Seagate Barracuda 7200.10) with NCQ en-
abled. We run four such programs, each reading a distinct
file with 10GB space in between. Each program has eight
MPI processes, two per compute node, to read or write one
10GB file. The processes take turns reading 64KB blocks
of data sequentially from a 1GB file. For a particular data
server, while requests from the same program have strong
locality and SS can exploit the locality and achieve an im-
provement of aggregate throughput for all four MPI pro-
grams by 87% over Deadline or Noop, AS and CFQ seri-
ously underperform (Figure 5). On each PVFS server there
is a daemon called pvfs2-server accepting requests from
compute nodes. To achieve asynchrony in its service, the
daemon maintains a pool of threads and uses any available
thread to dispatch its requests to the kernel. Consequently,
AS or CFQ see requests associated with essentially ran-
domly assigned thread numbers and can hardly recognize
the locality within requests from the same thread, which
leads to disk head thrashing among blocks of different files.

Xen is a virtual machine monitor that allows multiple
guest virtual machines (VMs) to run on it [3]. In Xen,
guest VMs send requests to their respective virtual block
devices, which use the blktap mechanism to pass the re-
quests to the kernel driver in the host VM, a privileged vir-
tual machine that does the actual dispatch of I/O requests to
disk. In the experiment we run two benchmarks, ProFTPD
1.3.1 and TPC-H, on Xen 4.0.1-rc6 to evaluate the disk
scheduler in the host VM while leaving the schedulers in
the guest VMs as Noop to quickly release requests into the
host VM. ProFTPD is an FTP server [28]. In the test, we
run a ProFTPD instance on each guest VM to serve four
clients simultaneously downloading four 300MB files, re-
spectively. There are 20GB space gaps between the files.
For TPC-H, we use the same experimental setting for each
guest VM as described in Section 3.3. From the exper-
imental results shown in Figure 5 we see that SS signif-
icantly improves throughput, while AS and CFQ exhibit
only limited, if any, improvements over Deadline and Noop
because of their lack of process information about requests
issued by processes on the same guest VM. When we run
two guest VMs, each of the same setting as that in the one-
VM scenario, AS and CFQ produce higher throughput im-
provement as they can differentiate requests from differ-
ent guest VMs and thus reduce long-distance seeks among
data requested by different VMs. Accordingly the relative
performance advantage of SS is reduced.

3.5 Storage with Disk Array

To evaluate the performance impact of disk schedulers on
the disk array, we select three benchmarks: par-read, TPC-
H, and PostMark, whose settings are the same as described
in Section 3.3, except that all files are striped over five disks
with a 64KB striping unit. The disk array is organized

 0

 50

 100

 150

 200

 250

 300

par-read TPC-H PostMark

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
ts

 (
%

)

SS
AS

CFQ
Deadline

Noop

Figure 6: Performance of benchmarks par-read, TPC-H, and
PostMark, with different disk schedulers in a 5-disk array. The
performance is presented as the schedulers’ percentage improve-
ment over that of Noop. Performance of TPC-H is measured with
execution time, which is 104.6s with Noop. For par-read and
PostMark, it is measured with throughputs, which are 168.0MB/s
and 1.3MB/s, respectively, with Noop

as RAID0. We have also experimented with RAID5 and
obtained consistent results. To focus on the performance
challenges imposed by data striping on the disk array, we
do not hide process information in the test. The experimen-
tal results are presented in Figure 6, which shows that for
benchmarks of sequential access pattern, such as (par-read
and TPC-H), SS achieves impressive improvements, 114%
and 174% over that of Noop, respectively. Without op-
portunistic synchronization of the disks, the improvements
made by AS or CFQ are limited. For example, AS reduces
the execution time of TPC-H by only 25% while it can re-
duce the time by 72% when only one disk is used over
that of Deadline (see the measurement in Figure 3 for SS,
which produces about the same execution time as AS with
known process information). The throughput of par-read
with SS (361MB/s) approaches the peak throughput of the
RAID card (around 400MB/s). The sequential access pat-
tern with the help of aggressive prefetching in the RAID
is turned into streams on each physical disk in SS, which
helps eliminate disk thrashing. However, with the random
access pattern of PostMark, SS shows minimal improve-
ment as physical streams can hardly be formed.

3.6 Impact of Stream Scheduling on
Throughput and Response Time

SS achieves its performance advantage mostly through its
dedication of disk service to one stream of requests dur-
ing a certain period of time (stream time slice). By doing
so, potentially long distance disk seeks take place only be-
tween time slices. Therefore, increasing the time slice is
expected to reduce long-distance seeks and thus improve

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

T
h

r
o

u
g

h
p

u
t

(
M

B
/s

)

Stream Time Slice (ms)

 (a)

Thinktime = 0us
Thinktime = 20us
Thinktime = 50us

Thinktime = 100us
Thinktime = 150us

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.5 1 1.5 2 2.5 3 3.5 4

 W
a
it

 t
im

e
 (

m
s
)

 Execution time (s)

 (b)

SS
Deadline

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

 S
e
r
v

ic
e
 t

im
e
 (

m
s
)

 Execution time (s)

 (c)

SS
Deadline

Figure 7: Impact of streaming scheduling on throughput improvement and variation of request response time. (a) Throughputs
with varying stream time slices for benchmark par-read of different thinktimes. (b) Request wait times with SS of default time slice
(124ms) for par-read of 0 thinktime with SS and Deadline. (c) Request service times with SS of default time slice (124ms) for
par-read of 0 thinktime for SS and Deadline.

I/O throughput. However, requests that are pending but do
not belong to the currently served stream may experience
a longer pending period with increased time slice, which
can increase variation in response time. To study the ef-
fect of the time slice on throughput and response time,
we run benchmark par-read with an experimental setting
the same as described in Section 3.3. As shown in Fig-
ure 7(a), the throughput improves with the increasing time
slice. The more I/O intensive (with a smaller thinktime)
the program is, the larger the improvement. The through-
put improves quickly with I/O-intensive programs before
the time slice reaches 100ms. After that, further increas-
ing the slice yields only diminishing returns. This is why
SS uses the default time slice of 124ms, the same value as
adopted by Linux’s AS. With this time slice, we measure
two components of every request’s response time, namely
wait time and service time, during the execution of par-
read with zero thinktime, and show them for the first four
seconds of execution with SS and Deadline in Figure 7(b)
and Figure 7(c), respectively. Unsurprisingly, SS produces
some substantially large wait times (as large as 0.37s), as
it rotates its service among four streams with a 124ms
slice. Considering that Deadline’s default timeout period
for boosting request priority is 0.5s, these wait times are
deemed acceptable. Meanwhile, as each cycle of such ro-
tation produces only a few long wait times for synchronous
requests, the percentage of requests with long wait times
is very small and most requests have significantly reduced
wait times with SS (Figure 7(b)). Furthermore, the use of
a modest time slice in SS, which increases variation of re-
sponse time, is paid off with significantly reduced request
service time (Figure 7(c)) and improved disk efficiency.

4 Related Work
The effectiveness of disk scheduling is highly dependent
on the existence of request locality. For this reason, there

are many efforts to improve disk access locality. In the
high-performance computing field many optimizations are
made in the middleware to transform a large number of
small non-contiguous requests into a smaller number of
larger contiguous requests, including Data sieving [34],
Datatype I/O [6], and Collective I/O [34, 43]. Because lo-
cality is about requested data locations on disk, there are
many efforts to rearrange on-disk data layout to improve
spatial locality, including data relocation [15] or data repli-
cation, either within one disk [14, 4, 20] or across mul-
tiple disks [42]. In addition, compiler techniques can be
employed to improve locality by forming preferable I/O
access patterns for the disks as well as optimizing file
layouts matching known access patterns [18, 21]. How-
ever, the enhanced locality can be weakened or even lost
when there are multiple processes, each concurrently issu-
ing synchronous I/O requests. The locality can be recov-
ered by non-work-conserving disk schedulers, such as the
Anticipatory Scheduler [16]. Anticipatory scheduling has
been implemented in some popular Linux disk schedulers
including anticipatory [24] and (CFQ) [1].

The problem with the assumption by existing non-work-
conserving schedulers on the availability of process infor-
mation has been recognized in the literature, but effective
solutions have not yet been proposed. One scenario is that
the disk scheduler in the virtual machine monitor, such as
AS, does not know from which specific process running on
a guest virtual machine a request is issued. The Antfarm
facility can help infer process information for disk schedul-
ing by tracking activities of OS processes [17]. However,
application of the technique is limited in the virtual ma-
chine environment. In addition, effort must be expended to
implement the facility for each individual virtual machine
system and the system must be open for instrumentation
and patching. The difficulty caused by the lack of pro-
cess information has also been found with the AS sched-
uler deployed in the NFS server [11], where the proposed

approach is to use other access context information, such
as accessed files’ directory or owner, as hints to group re-
quests for scheduling. While this approach can make up for
the inadequacy to some extent, the hints may not be always
relevant in revealing on-disk locality to the scheduler and
could be misleading. A study of the Linux disk schedulers
found that AS or CFQ can underperform significantly even
when process information is available but multiple pro-
cesses cooperatively send synchronous requests, because
AS or CFQ may fail to find anticipation opportunity when
it attempts to attribute history access statistics to individ-
ual processes [36]. By identifying access streams for non-
work-conserving scheduling directly from the access loca-
tions, SS discards the requirement for process information
instead of looking for its possibly inadequate substitutes
with additional overhead in the OS or file systems.

The use of an I/O stream, or request sequence, to ana-
lyze and exploit access locality has been used before. Re-
garding I/O prefetching, though many sophisticated de-
signs have been proposed, such as those based on proba-
bility graph model [38], information-theoretic Lempel-Ziv
algorithm [7], or time series model [37], the stream-based
approach dominates the design of prefetching in the system
and has proven its effectiveness and efficiency [27, 41, 35].
Streams are also formed on the hard disk addresses to track
disk access history and enable on-disk prefecthing [12].
Another interesting work is a tool called C-Miner that uses
a data mining technique to find streams of disk block ac-
cess representing repeatable block sequences, which can
be used for initiating reliable prefetching [22]. While SS
also tries to form streams among requests to the disk, the
streams serve a different purpose. For prefetching, a well-
established stream will lead to prefetching of multiple data
blocks ahead of stream, while for SS the stream is main-
tained to determine whether the disk should wait for an
upcoming request. More importantly, the cost of using
streams in the aforementioned works can be much higher
than that for SS when stream members have to be remem-
bered for evaluation of stream quality, while SS needs only
to track the latest member of a stream.

Regarding scheduling in the disk array, the necessity of
coordinating requests has been widely recognized, espe-
cially for those with small striping units. When multiple
disks are involved to serve a request, “disks take differ-
ent amounts of time to position, the request must wait for
the slowest-positioning disk to transfer its data” [10]. A
possible solution is a synchronized interleaved disk sys-
tem that synchronizes disk spindles and serves one request
at a time in a disk array [19, 8]. However, for striping
unit size larger than one byte or for a number of disks in
a disk system beyond a certain limit, a fully synchronized
disk array could seriously hurt performance by limiting the
number of concurrently served requests [31]. The inter-
ference among requests from different processes caused

by uncoordinated disk access has been reported and ad-
dressed in the cluster-based storage environment by using a
timeslice-based co-scheduling method [40]. Though their
work is similar to ours in the coordination of some or all
disks and dedication of them to one process at a time, it
cannot be effectively used as a disk scheduler to exploit
spatial locality for higher performance. One reason is that
their work requires an offline-calculated scheduling plan
according to QoS specifications that does not adapt to the
workload dynamics. Another reason is that it does not eval-
uate the benefits of dedicated service to a process relative
to the cost of disk synchronization, and indiscriminately
applies the synchronization to all programs. In contrast, SS
dynamically evaluates the cost effectiveness of non-work-
conserving scheduling by tracking and validating streams
and opportunistically allows the disks to serve one virtual
stream at a time. A scheme using opportunistic synchro-
nization to reduce I/O interference among multiple MPI
programs accessing a cluster of data servers has been pro-
posed [44]. Without identifying streams, the scheme must
assume a file is accessed by only one program and the MPI
library and parallel file system must be instrumented to in-
fer the assumed relationship and make it available to the
scheduler. In contrast, SS provides a more general solution
not constrained by availability of process information.

5 Conclusions

We have described the design and implementation of
a stream scheduling framework that turns any work-
conserving disk scheduler into a non-work-conserving one,
even without process information available, to exploit lo-
cality embedded in the sequences of synchronous requests.
The framework can also opportunistically coordinate the
services at different disks of a disk array to recover and
exploit the locality weakened by file striping. The frame-
work has been prototyped in the Linux kernel, both as a
disk scheduler and as a software RAID scheduler. Exten-
sive experiments have demonstrated that SS can signifi-
cantly improve the performance of representative bench-
marks such as by TPC-H, PostMark, grep, FTP, as well as
MPI programs. In particular, SS shows its unique value
in environments where process information is unavailable,
such as block or file storage servers and virtual machines.

6 Acknowledgements

We thank Kei Davis, Xuechen Zhang, our shepherd Eliz-
abeth Varki, and the anonymous reviewers for their con-
structive comments that helped us to improve the paper.
This research is supported by U.S. NSF CAREER award
CCF-0845711.

References
[1] J. Axboe, “Completely Fair Queueing (CFQ) Scheduler,”

http://en.wikipedia.org/wiki/CFQ, 2010.

[2] D. Boutcher and A. Chandra, “Does Virtualization Make
Disk Scheduling Pass?,” ACM SIGOPS Operating Systems
Review, Vol. 44, Issue 1, 2010.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
Art of Virtualization,” Proc. of the 19th ACM Symposium
on Operating Systems Principles, 2003.

[4] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Lip-
tak, R. Rangaswami, and V. Hristidis, “BORG: Block-
reORGanization for Self-optimizing Storage Systems,”
Proc. of the 7th USENIX Conferenece on File and Storage
Technologies, 2009.

[5] A. Ching, A. Choudhary, K. Coloma, and W. Liao, “Non-
contiguous I/O Accesses Through MPI-IO,” Proc. of IEEE
International Symposium on Cluster, Cloud, and Grid Com-
puting, 2003.

[6] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp,
“Efficient Structured Data Access in Parallel File System,”
Proc. of IEEE International Conference on Cluster Com-
puting, 2003.

[7] K. M. Curewitz, P. Krishnan, and J. S. Vitter, “Practical
Prefetching via Data Compression,” ACM SIGMOD Record
Archive, Vol. 22, Issue 2, 1993.

[8] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson, “RAID: High-Performance, Reliable Secondary
Storage”, ACM Computing Surveys, Vol. 26, No. 2, 1994.

[9] P. Carns, W. Ligon III, R. Ross, and R. Thakur, “PVFS: A
Parallel File System For Linux Clusters”, Proc. of the 4th
Annual Linux Showcase and Conference, 2000.

[10] P. M. Chen and D. A. Patterson, “Maximizing Performance
in a Striped Disk Array,“ Proc. of 17th annual international
symposium on Computer Architecture, 1990.

[11] H. Chen, J. Xiong, and N. Sun, “A Novel Hint-based I/O
Mechanism for Centralized File Server of Cluster,” Proc.
of IEEE International Conference on Cluster Computing,
2008.

[12] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang,
“DiskSeen: Exploiting Disk Layout and Access History to
Enhance I/O Prefetch,” Proc. of USENIX Annual Technical
Conference, 2007.

[13] G. Peng and T. Chiueh, “Availability and Fairness Support
for Storage QoS Guarantee,” Proc. of IEEE International
Conference on Distributed Computing Systems Conference,
2008.

[14] H. Huang, W. Hung, and K. Shin, “FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk Perfor-
mance and Energy Consumption”, Proc. of the 20th ACM
Symposium on Operating Systems Principles, 2005.

[15] W. Hsu, A. Smith, and H. Young, “The Automatic Improve-
ment of Locality in Storage Systems,” ACM Transactions
on Computer Systems, Vol. 23, Issue 4, 2005.

[16] S. Iyer and P. Druschel, “Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness in
Synchronous I/O,” Proc. of the 18th ACM Symposium on
Operating Systems Principles, 2001.

[17] S. T. Jones, A. C. Arpaci-dusseau, and R. H. Arpaci-
dusseau, “Antfarm: Tracking Processes in a Virtual Ma-
chine Environment,” Proc. of the USENIX Annual Technical
Conference, 2006.

[18] M. Kandemir and A. Choudhary, “Compiler-Directed I/O
Optimization,” Proc. of the 16th International Symposium
on Parallel and Distributed Processing, 2002.

[19] M.Y. Kim, “Synchronized Disk Interleaving,” IEEE Trans-
actions on Computers, Vol. C-35, No. 11, 1986.

[20] R. Koller and R. Rangaswami, “I/O Deduplication: Utiliz-
ing Content Similarity to Improve I/O Performance,” Proc.
of the 8th USENIX Conferenece on File and Storage Tech-
nologies, 2010.

[21] M. Kandemir, S. Son, and M. Karakoy, “Improving I/O Per-
formance of Applications through Compiler-Directed Code
Restructuring,” Proc. of 6th USENIX Conference on File
and Storage Technologies, 2008.

[22] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou, “C-Miner:
Mining Block Correlations in Storage Systems,” Proc. of
3rd USENIX Conference on File and Storage Technologies,
2004.

[23] E. K. Lee and R. H. Katz, “An Analytic Performance Model
of Disk Arrays and its Applications”, Tech. Rep. UCB/CSD
91/660, Univ. of California, Berkeley, Calif.

[24] A. Morton, “Linux: Anticipatory I/O Scheduler”,
http://kerneltrap.org/node/567

[25] F. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Robust, Portable I/O Scheduling with the Disk
Mimic,” Proc. of the 2003 USENIX Annual Technical Con-
ference, 2003.

[26] “The PostMark Benchmark”,
www.freshports.org/benchmarks/postmark/, 2010.

[27] R. Pai, B. Pulavarty, and M. Cao, “Linux 2.6 Performance
Improvement through Readahead Optimization”, Proc. of
the Linux Symposium, 2004.

[28] “The ProFTPD Project”, http://www.proftpd.org/, 2010.

[29] A. E. Papathanasiou and M. L. Scott, “Aggressive Prefetch-
ing: An Idea Whose Time Has Come,” Proc. of the 10th
Workshop on Hot Topics in Operating Systems, 2005.

[30] PVFS, http://www.pvfs.org/. Online-document, 2010.

[31] A. L. N. Reddy and P. Banerjee, “An Evaluation of
Multiple-disk I/O Systems,” IEEE Transactions on Comput-
ers, Vol. 38, No.12, 1989.

[32] Red Hat, Inc., “Oracle 10g Server on Red Hat En-
terprise Linux 5 Deployment Recommendations,”
http://www.redhat.com/, 2008.

[33] E. Rosti, E. Smirni, G. Serazzi, Giuseppe, and L. Dowdy,
“Analysis of Non-Work-Conserving Processor Partitioning
Policies,” Proc. of the Workshop on Job Scheduling Strate-
gies for Parallel Processing, 1995.

[34] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Col-
lective I/O in ROMIO,” Proc. of the 7th Symposium on the
Frontiers of Massively Parallel Computation, 1999.

[35] A. J. Smith, “Sequentiality and Prefetching in Database
Systems,” ACM Transactions on Database Systems, Vol. 3,
No. 3, 1978.

[36] S. Seelam, R. Romero, P. Teller, and B. Buros, “Enhance-
ments to Linux I/O Scheduling,” Proc. of the Linux Sympo-
sium, 2005.

[37] N. Tran and D. A. Reed, “Automatic ARIMA Time Series
Modeling for Adaptive I/O Prefetching,” IEEE Transactions
on Parallel and Distributed Systems, Vol. 15, Issue 4, 2004.

[38] V. Vellanki and A. Chervenak, “A Cost-Benefit Scheme
for High Performance Predictive Prefetching,” Proc. of the
ACM/IEEE conference on Supercomputing, 1999.

[39] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger, “Argon: Performance Insulation for Shared Stor-
age Servers,” Proc. of the 6th USENIX Conference on File
and Storage Technologies , 2007.

[40] M. Wachs and G. Ganger,“Co-scheduling of disk head time
in cluster-based storage,” Proc. of 28th International Sym-
posium on Reliable Distributed Systems, 2009.

[41] F Wu, H. Xi, and C. Xu, “On the Design of a New Linux
Readahead Framework,” ACM SIGOPS Operating System
Review, Vol. 42, No. 5, 2008.

[42] X. Zhang and S. Jiang, “InterferenceRemoval: Removing
Interference of Disk Access for MPI Programs through Data
Replication,” Proc. of International Conference on Super-
computing, 2010.

[43] X. Zhang, S. Jiang, and K. Davis, “Making Resonance a
Common Case: A High-Performance Implementation of
Collective I/O on Parallel File System,” Proc. of IEEE Inter-
national Parallel and Distributed Processing Symposium,
2009.

[44] X. Zhang, K. Davis, and S. Jiang,“IOrchestrator: Improving
the Performance of Multi-node I/O Systems via Inter-Server
Coordination,” Proc. of Supercomputing, 2010.

