
quFiles: The right file at the right time

Kaushik Veeraraghavan
Jason Flinn

Ed Nightingale*

Brian Noble

University of Michigan
*Microsoft Research (Redmond)

Users need different data for different contexts

Kaushik Veeraraghavan 2

Users want to see the right file at the right time

Screen size &
battery lifetime Platform

Network bandwidth
& latency

•  Problem: each application builds both, an adaptation
system and a data management system

•  Our contribution: common abstraction for context-
aware data management

 Free developers to build interesting adaptation schemes!

Decouple adaptation from management

Kaushik Veeraraghavan 3

Energy-aware
adaptation: SOSP ‘99

Distillation: ASPLOS ‘96

Proxy

Layer context-awareness in existing FS

•  The way data is presented to users can be different from
how it is stored
–  Change the interface used to access data

Kaushik Veeraraghavan 4

•  Create new context-aware systems by just writing policies
-  We built two new applications in a couple weeks!

•  Existing applications that use the file system become
context-aware without any modification

•  quFiles multiplex different views of a single logical object
•  Context-aware mechanism selects the best representation

quFiles: a unifying abstraction

5 Kaushik Veeraraghavan

Talk outline

•  What are quFiles?
•  Design & Implementation
•  Case studies
•  Evaluation
•  Related work
•  Conclusion

Kaushik Veeraraghavan 6

Life of a quFile

•  Utility creates alternate representations of video

quFile utility foo.mp4

foo_low.mp4 foo.tivo

7 Kaushik Veeraraghavan

/videos/foo.qufile

•  Utility creates a quFile and moves representations into it

~~~ 
~~~ 

~~~ 
~~~ 

~~~ 
~~~ 

•  Links in the policies

Name policy: choosing the right name

•  Name policy: 0 or more file names

Kaushik Veeraraghavan 8

foo.mp4

foo.tivo

foo.mp4

Name policy:
If (device == TiVo) {
 return “foo.tivo”;
} else {
 return “foo.mp4”;
}

•  Policy may dynamically instantiate a new name

Content policy: choosing the right content

Kaushik Veeraraghavan 9

•  Content policy: specific content for file name

•  Policy may dynamically create a new file and content

foo.mp4

foo.tivo

foo.mp4

quFile edit and cache policies

•  Edit policy: allow, disallow or version

•  Cache policy: which representation to cache

Kaushik Veeraraghavan 10

foo.mp4

foo.tivo

foo.mp4

ALLOW

DISALLOW

% % ls video.qufile.raw
%

quFiles support multiple views

•  Raw view: shows all contents i.e. representations, policies,…

11 Kaushik Veeraraghavan

~~~ 
~~~ 

~~~ 
~~~ 

~~~ 
~~~ 

% ls video.qufile.highres
%

•  Custom view: policy may return any representation it wishes

•  No application modification is required to see other views

Talk outline

•  What are quFiles?
•  Design & Implementation
•  Case studies
•  Evaluation
•  Related work
•  Conclusion

Kaushik Veeraraghavan 12

•  Cache policy: use spare storage to cache WAV
•  Name & content policy: return WAV if cached, else mp3
•  4-11% battery lifetime gain; lines of policy code: 94

Power management

13 Kaushik Veeraraghavan

Copy-on-write versioning

•  Custom versions view
–  Name policy: returns names of all past versions (1, 2 or more)
–  Content policy: dynamically generates past version

•  Lines of policy code: 55

Kaushik Veeraraghavan 14

$ ls paper

 V

$ ls paper.qufile.yesterday

V3

$ ls paper.qufile.versions

V1 V2 V3

•  Edit policy: save information to an undo log

Resource-aware directory listing

•  Default view: list files viewable given network quality
•  Custom “all’’ view: “currently_unplayable” suffix
•  Lines of policy code: 98

15 Kaushik Veeraraghavan

Application-aware adaptation: Odyssey

•  Name: bar.jpeg to all clients

•  Content: best image served in 1 second

•  Edit: disallows content writes, allows metadata writes
•  Lines of policy code: 82

16 Kaushik Veeraraghavan

bar.jpeg

bar.jpeg

bar.jpeg

Talk outline

•  What are quFiles?
•  Design & Implementation
•  Case studies
•  Evaluation
•  Related work
•  Conclusion

Kaushik Veeraraghavan 17

quFiles are easy to implement and use

Component Name Content Edit Cache Total

Power Management 32 18 8 36 94

Copy-on-write versioning 29 18 8 N/A 55

Security 20 33 8 N/A 61

Resource-aware directory listing 64 26 8 N/A 98

Odyssey 23 27 32 N/A 82

Platform spec. video display 31 30 8 43 112

Kaushik Veeraraghavan 18

•  quFiles are easy to incorporate in a file system
• quFiles add 1,600 lines to BlueFS’s 28,000.

•  Almost all policies (see table) require less than 100 lines.
 - Each case study in a week or two. Some 1-2 days.

Micro-benchmark: Directory listing overhead

•  Worst-case quFile overhead as there’s no activity to amortize cost
–  Only 3% overhead for warm; 0.5 ms overhead per file for cold

19 Kaushik Veeraraghavan

0

50

100

150

200

Ti
m

e
(m

ill
is

ec
on

ds
)

No replication quFile-Odyssey Replication

0

5

10

15

Ti
m

e
(m

ill
is

ec
on

ds
)

No replication quFile-Odyssey Replication

Warm Cold

•  quFiles are 2X-3X better than Replication

Kernel grep

•  grep Linux 2.6.24 source: grep –Rn “foo” linux (9 occurrences)

•  1% overhead for warm; 6% overhead for scenario

Warm Cold

20 Kaushik Veeraraghavan

0

20

40

60

Ti
m

e
(s

ec
on

ds
)

BlueFS quFile quFile versions view

0

1

2

Ti
m

e
(s

ec
on

ds
)

BlueFS quFile quFile versions view

•  Search all versions: grep –Rn “foo” linux.qufile.versions (18 occurrences)

•  2X overhead in warm; 31% in cold case

Related work

•  Semantic File System
–  Only expands name space but not content

•  Adaptation systems: Ninja, Odyssey, Puppeteer, …
–  No application or OS modification, no proxy. Adaptation policies.

•  Partial-replication: Cymbiosis, PRACTI, Perspective
–  Filter-based caching policies can be augmented with context

•  Dynamic resolution of file content: OS X bundles, AFS @sys
–  General abstraction w/o baking resolution policies in FS

•  Materialized views in databases
–  Context-aware generation of views; operate on data without schema

Kaushik Veeraraghavan 21

•  quFiles provide first-class support for context in file systems
–  Multiplex different views onto single logical object
–  Context-aware policies select the best view

•  Context-aware systems can be easily built by simply
providing quFile policies

•  Thank you!

Conclusion

22 Kaushik Veeraraghavan

Kaushik Veeraraghavan 23

Building blocks of quFiles

•  Policies are file system extensions
–  User-level software fault isolation is fine

•  File system change notifications
–  To trigger quFile utilities (automation)

•  File system should support directories

•  Context library
–  Simple to build: ours is ~250 LOC

24 Kaushik Veeraraghavan

Why put quFiles in the file system and
not middleware, library, …

•  Any application that uses the file system now
becomes context-aware
–  Transparency ensures backward compatibility

•  quFiles are a simple abstraction in the FS
–  Hooking into POSIX API is simple
–  readdir, lookup, commit_write, unlink, rename

25 Kaushik Veeraraghavan

Case study applicability

•  Local & Distributed file systems
– Resource management

• E.g.: if battery is low, display low-res video

– Copy-on-write versioning
– Context-aware redaction

•  Distributed file systems
– Resource-aware directory listing
– Application-aware adaptation: Odyssey

Kaushik Veeraraghavan 26

Andrew-style make

•  Make Linux 2.6.24 kernel
–  quFile: version all source files (.c, .h or .S) – 19,844 of 23,062 files

•  Negligible overhead for warm, 1% overhead for cold scenario

Kaushik Veeraraghavan 27

Warm Cold
0

100

200

300

400

500

Ti
m

e
(s

ec
on

ds
)

without quFiles with quFiles

0

100

200

300

400

500

Ti
m

e
(s

ec
on

ds
)

without quFiles with quFiles

