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Abstract
A number of techniques have been proposed to reduce

the risk of data loss in hard-drives, from redundant disks
(e.g., RAID systems) to error coding within individual
drives. Disk scrubbing is a background process that reads
disks during idle periods to detect irremediable read er-
rors in infrequently accessed sectors. Timely detection
of such latent sector errors (LSEs) is important to reduce
data loss.

In this paper, we take a clean-slate look at disk scrub-
bing. We present the first formal definition in the liter-
ature of a scrubbing algorithm, and translate recent em-
pirical results on LSE distributions into new scrubbing
principles. We introduce a new simulation model for
LSE incidence in disks that allows us to optimize our
proposed scrubbing techniques and demonstrate the sig-
nificant benefits of intelligent scrubbing to drive reliabil-
ity. We show how optimal scrubbing strategies depend
on disk characteristics (e.g., the BER rate), as well as
disk workloads.

1 Introduction

With the unremitting growth of digital information in the
world, there is an ever increasing reliance on hard drives
for critical data storage. Hard drives serve not only as
primary storage devices, but due to their growing capac-
ity and dropping prices, they are now an attractive build-
ing block for a range of storage systems, including large-
scale secondary systems (e.g., archival or backup sys-
tems). In these environments, their reliability becomes
significant and needs to be quantified, as some of these
systems demand strict and high availability guarantees.

A significant body of research focuses on designing re-
liable storage systems by adding redundant disks. RAID
systems enhance reliability by storing parity blocks in

redundant arrays. Most systems today employ RAID-5
or RAID-6 mechanisms that are resilient to one or two
simultaneous disk failures, respectively. Data loss in
RAID is amplified by latent sector errors (LSEs), sector
errors in drives that are not detected when they occur, but
only when the disk area is accessed in the normal course
of use. In RAID-5, a disk failure coupled with only one
latent error on another disk induces data loss.

To increase the reliability of both single drives and
RAID systems, researchers have studied techniques such
as intra-disk redundancy [5] or disk scrubbing [15].
Intra-disk redundancy applies an erasure code over a sub-
set (segment) of consecutive sectors in the drive and
stores the parity blocks in the same disk. It protects
against a small number of LSEs in each segment, de-
pending on the parameters of the erasure code.

Disk scrubbing is a background process that reads
disk sectors during idle periods, with the goal of detect-
ing latent sector errors in infrequently accessed blocks.
Most existing systems perform sequential disk scrub-
bing, meaning that they access disk sectors by increas-
ing logical block address, and use a scrubbing rate that
is constant or dependent on the amount of disk idle time.
Mi et al. [9], for instance, suggest that disk scrubbing
should be scheduled whenever the disk is idle in order
to maximize scrubbing rates. A notable exception is the
work of Schwarz et al. [15], which considers alternative
scrubbing strategies with varying rates; the goal is to
minimize disk power-on time in large archival systems
whose disks are generally powered off.

In this paper, we define the first formal model for
scrubbing strategies, along with a performance metric for
the single-drive setting. Through a simulation model, we
empirically search the space of scrubbing strategies and
find optimal points in this space. We translate new results
in the literature on the distribution of LSEs in hard drives
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[2] into new scrubbing principles. The main message of
the paper is that by exploiting a richer design space for
scrubbing strategies, we can design better algorithms that
significantly improve current technologies. We have to
note, though, that our results are highly sensitive to some
disk parameters that are not always made public by disk
manufacturers. We hope that this paper will open up a
new line of research that will further refine our results as
more accurate disk failure data becomes available to the
community.

In more detail, our main technical contributions are:

Formal model for scrubbing strategies We give the
first formal model for scrubbing strategies that considers
a number of disk parameters (e.g., disk age, disk model,
disk failure rates), as well as history of disk usage. We
view a scrubbing strategy as a function which, given in-
formation about a drive, outputs the set of sectors to be
scrubbed in the next time interval.

The metrics most commonly used for hard drive re-
liability are MTTF (Mean Time To Failure) for single
drives, and MTTDL (Mean Time To Data Loss) for a
RAID system. For single drive reliability, MTTF mea-
sures the disk lifetime before total failure, and does not
give a measure of its resilience to LSEs. MTTDL is a
systemic measure, and not applicable to the study of er-
rors in a single drive. Thus we define a new metric for
hard drives called MLET (“Mean Latent Error Time”).
MLET captures the percentage of time in which the disk
is susceptible to data loss due to an LSE (and can serve as
a basis for determining MTTDL). We define an optimal
scrubbing strategy for a drive to be one that minimizes
our new MLET metric.

Latent-sector error model Based on the results pre-
sented by Bairavasundaram et al. [2], and known re-
sults about usage-related LSEs [6], we propose a sim-
ple model for LSE development. Our model considers
both age-related and usage-related LSEs, and captures
their spatial and temporal locality. Since we do not have
complete information about LSE distribution from the
academic literature, we derive additional assumptions to
generate a complete LSE model. We show that our model
accurately reflects the field data presented by Bairava-
sundaram et al. We believe that our model is of general
interest in the study of LSEs, as it provides a simplified
and efficient tool for experimentation.

Find optimal strategy through simulation Guided by
new empirical results on LSE distributions in the liter-
ature, we identify new scrubbing principles for single

disks, summarized in Table 1. These principles suggest
several new dimensions in the formulation of scrubbing
strategies (e.g., variable scrubbing rates) and lead us to a
newly enriched design space. Using a simulation based
on our proposed LSE model, we search this design space
for MLET-optimal scrubbing strategies. We find an opti-
mal scrubbing strategy which, compared with straight-
forward sequential scrubbing, improves on the MLET
metric by an order of magnitude.

Organization We review related work in Section 2.
We create a model for the distribution of LSEs using the
study of Bairavasundaram et al. [2] and additional as-
sumptions, and validate this model against the study’s
empirical data in Section 3. We define scrubbing strate-
gies formally, introduce our new design dimensions, and
formulate our search space for scrubbing strategies in
Section 4. We describe our simulation model and present
our results on simulation-optimized scrubbing strategies
in Section 5. We conclude in Section 6.

2 Related Work

Several recently published papers have shifted the stor-
age community’s perspective on disk failures in the real
world. Schroeder and Gibson [14] show that annual disk
failure rates are higher than those published by manu-
facturers, and determine that disks do not exhibit expo-
nential times between failures (as commonly believed).
Instead, time between failures is modeled more accu-
rately by a Weibull distribution. Pinheiro et al. [11] offer
statistics on disk survival rates conditioned on various
SMART parameters. The first study on latent sector er-
rors (LSEs) for field data is that of Bairavasundaram et
al. [2]. They show that LSE rates increase linearly with
disk age, and that LSEs are highly correlated, exhibiting
both spatial and temporal locality.

Disk scrubbing is a well known technique used exten-
sively to detect latent sector errors early. Most existing
systems use a sequential scrubbing strategy in which sec-
tors are read from disk in increasing order of their logical
address. In the academic literature, more sophisticated
scrubbing strategies have been proposed by Schwartz et
al. [15] in the context of large archival storage systems.
In such systems, one goal is to keep the disk powered
down as much as possible, and minimize the number of
power ups. Their opportunistic strategy piggybacks on
normal read accesses—scrubbing when a disk is pow-
ered up for another operation. They also propose a sim-
ple, three-state Markov model that captures disk degra-
dation due to scrubbing. Within this analytic model, they
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Facts about LSE distribution Corresponding proposed scrubbing principles
1. LSE rate is low in the first 60 days of operation 1. Keep scrubbing rate low during the first 60 days of operation
2. After 60 days, LSE rate is higher, but fairly constant before the first 2. After 60 days, increase scrubbing rate and keep it constant before

LSE develops detecting a first LSE
3. LSEs exhibit temporal locality 3. Increase scrubbing rate after LSE detection
4. LSEs exhibit spatial locality 4. Staggered scrubbing (defined in Section 4.2) is superior to sequential

or randomized scrubbing
5. LSEs develop as a function of disk usage 5. Scrubbing is not free: limit scrubbing rate to avoid collateral LSEs

Table 1: Translation of results on LSEs in the literature into scrubbing principles

calculate the optimal scrubbing rate.
To the best of our knowledge, our work provides the

first general formalization of scrubbing strategies for
hard drives and optimizes such strategies over a large
search space. In contrast to Schwartz et al., we are in-
terested in enterprise disks that are powered up most
of the time, and we do not consider the power-up ef-
fect on reliability. Interestingly, we observe the adverse
effect of aggressive scrubbing, much like Schwartz et
al. While in [15], aggressive scrubbing detrimentally in-
creases the number of disk power ups, in our system ag-
gressive scrubbing triggers LSEs by increasing disk us-
age. Through our newly defined MLET metric, we are
able to capture the effect of usage errors for drive relia-
bility. We thus dispute the common belief that scrubbing
is most effective at maximum capacity.

A number of research papers examine the effect of
scrubbing and LSEs on RAID reliability. In his Ph.D.
thesis [8], Kari developed the first Markov model for
RAID reliability that considers LSEs (in addition to to-
tal disk failures). He obtained theoretical equations for
MTTDL (the RAID reliability metric defined by Patter-
son et al. [10]), assuming that the distribution of LSEs
is exponential. More recently, Elerath and Pecht [6] pro-
pose a 5-state simulation model for RAID-5, in which
both the disk failure and LSE distributions are modeled
by a Weibull probability density function.

Baker et al. [3] provide a reliability model for two-
way mirroring in the context of long-term archival stor-
age. In their Markov model, they consider exponentially
distributed LSEs and their spatial and temporal correla-
tion, which they model via an increased rate in their ex-
ponential distribution. They also show that scrubbing at
a constant rate (every two weeks) reduces MTTDL.

Beyond scrubbing, there exist other single-disk tech-
niques to protect against LSEs. Intra-disk redundancy
schemes (IDR) [5] encode additional redundancy within
the disk itself in the form of erasure codes. Dholakia et
al. [5] propose encoding consecutive disk sectors under a
custom-crafted XOR erasure code. Iliadis et al. [7] com-
pare disk scrubbing and IDR with respect to RAID reli-

ability. Mi et al. [9] consider the problem of scheduling
background activities, including scrubbing and IDR, to
increase the MTTDL metric for RAID. They show that
combining scrubbing and IDR greatly improves RAID
reliability.

3 Modeling the Distribution of Latent Sec-
tor Errors

We model the distribution of latent sector errors (LSEs)
using the data presented in the recent NetApp study of
Bairavasundaram et al. [2]. The NetApp study is the only
published academic paper that gives a substantial char-
acterization of LSE development. That said, the paper
does not contain or reference detailed data: The LSE-
development data sets on which the paper is based are
proprietary, and have not been publicly released. Given
these facts, our only choice to derive a meaningful LSE
model was to reverse engineer some of the graphs pre-
sented in the NetApp paper. We make additional as-
sumptions about LSE development as needed to gener-
ate a complete LSE model. We validate our LSE model
against the graphs provided by the NetApp paper, but, of
course, thorough validation of the model requires access
to real data.

3.1 Results from NetApp study
The NetApp study [2] presents results on the LSE dis-
tribution of 1.53 million disks from various models and
manufacturers over a 24-month period. The disks are di-
vided into two classes: nearline and enterprise. In our
work here, though, we restrict our study to enterprise
disks. The main findings of the NetApp study on en-
terprise disks are summarized below:

1. LSEs develop at a fairly constant rate in the first
two years of a drive’s age. An exception are the first
two months; these exhibit a slightly lower LSE rate. The
fraction of disks developing at least one LSE is highly
variable for different disk models, ranging at the end of
the 24-month study from 1% to 4%.
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2. LSEs exhibit spatial locality at the logical address
level, as shown by two graphs in the paper. Figure 5
from the NetApp study shows the probability of another
error within a given radius of an existing LSE. For most
disk models, the probability of another latent error within
10MB of an existing error is 0.5. Figure 6 from the
NetApp study shows the average number of errors within
a given radius of an existing error. While both graphs
provide some information about how LSEs are clustered
together, the NetApp study does not provide full details
about the exact probability distribution function of LSE
locations in disks.

3. LSEs exhibit temporal locality. More than 80% of
errors arrive at an interval of less than an hour from pre-
vious errors. Figure 7 in [2] shows that the inter-arrival
time distribution has very long tails.

4. As shown in Figure 8 of [2], most additional errors
occur in the first month after the first LSE, and the prob-
ability of developing these errors decays exponentially
over time. For instance, the probability of a disk devel-
oping 1, 10, and 50 additional errors in the first month is
0.6, 0.25 and 0.1, respectively.

3.2 Latent sector error model

The NetApp study shows how latent errors develop in
disks as a function of disk age. We call such errors age
errors. Additionally, latent errors develop due to disk
usage or disk wear-out. A hard-drive metric that cap-
tures usage is the byte-error rate (BER). While there is
no consensus in the literature on the interpretation of this
metric [4], we assume that both reads and writes con-
tribute to development of usage errors, albeit with differ-
ent weights. In our disk model, we vary the BER metric
between 10−15 and 10−13 (to capture disks with vari-
ous characteristics), and we define a read/write weight
for each disk, denoted RW Weight (to characterize the
relative contribution of read and write operations to disk
wear-out). We refer to the errors that develop due to disk
wear-out as usage errors.

There is no explicit information in the academic liter-
ature about the exact distribution of usage-related LSEs.
Since it is very likely that during the 24-month NetApp
study at least several usage-related LSEs developed, we
make the assumption that usage-related LSEs follow a
spatial and temporal distribution similar to age errors.

The NetApp study shows that LSEs are clustered both
spatially and temporally. We further categorize age and
usage LSEs into two types of errors. The first type is
that of triggering errors. We define a triggering error to
be either the first age-related error in a drive, or the first

usage-related error that develops after a specified amount
of data has been accessed (counting from the time the
previous usage-related error developed). A triggering er-
ror induces a cluster of additional errors, called triggered
errors. These errors develop in a short interval of time af-
ter the corresponding triggering error, and are clustered
spatially on disk closely to the triggering error.

Before giving full details on our LSE model, let us
start with some intuition on modeling the spatial and
temporal distribution of LSEs.

Modeling spatial distribution on disk As the NetApp
study observes, most LSEs are clustered at radii of
around 10-100MB. We define the centroid of a cluster
to be the median error in the cluster with respect to block
logical addresses. In our simulation model in Section 5,
we need to generate errors in increasing order of occur-
rence time. For convenience in that model, we assume
that the triggering error (i.e., the first error in a cluster)
is also the cluster centroid. Since the NetApp study does
not provide the exact location on disk of error clusters
(but only error relative distance), we assume that the cen-
troid location is uniformly distributed across all disk sec-
tors. We model the triggered errors as being clustered
around the centroid with radii determined from the dis-
tribution given in Figure 5 of [2]. In Section 3.3, we re-
generate the graphs presenting spatial locality of LSEs
in the NetApp study using our LSE model, in order to
validate our simplifying assumptions.

Modeling temporal distribution We model the time
at which a triggering error develops after the data in the
NetApp study. Figure 1 in [2] gives the probability that
a disk develops an age error in its first 24 months in the
field; the results are presented at the granularity of six
months. Combined with the results from Figure 10 in
[2], we infer that the disk error rate is lower in the first
60 days of disk operation, and fairly constant after that.
In our simulation model, we work at the temporal gran-
ularity of one hour. Without finer granularity on how
triggering age errors develop temporally, we assume that
the time a disk develops its first LSE error is uniformly
distributed within the month in which the triggering error
arises.

The time a usage error develops is determined by the
disk BER metric, which we vary between 10−15 and
10−13. We assume that usage error development follows
a normal distribution with mean 1/BER. A usage error
is triggered once the number of bytes accessed (due to
both normal disk workloads and the scrubbing process)
weighted by RW Weight, exceeds on average 1/BER.
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Once the occurrence time of the centroid is deter-
mined, we generate the number of additional errors in
the disk based on the graph from Figure 8 in [2]. Fig-
ure 8 gives the probability of a disk developing up to 50
errors after a first LSE. The NetApp study does not pro-
vide a maximum limit on the number of LSEs in a disk,
but it states that about 80% of disks develop less than 50
errors. We set the maximum number of LSEs in the disk
to 100. The inter-arrival time for each triggered error is
modeled with the distribution from Figure 7 in [2].

To generate the distributions from Figures 1, 5 and 7
in the NetApp paper we used piecewise uniform distri-
butions with points given by those graphs. For Figure 8,
we used curve fitting in Mathematica.

We summarize the assumptions made in generating
our LSE model in Table 2.

1. Age errors form a single cluster on disk.
2. Usage error clusters develop due to both reads and writes,
albeit with different weights.
3. Usage error clusters follow spatial and temporal correlations
similar to those exhibited by age errors.
4. Development of a new triggering usage error follows a normal
distribution with mean 1/BER and small deviation.
5. The triggering error of an error cluster is the cluster centroid.
6. Triggered errors developing closely in time are clustered around
the centroid.
7. Cluster centroids are uniformly distributed on disk.
8. The time a triggering error develops in a month is uniformly
distributed within the month.

Table 2: Assumptions for generating LSE model.

Formally, we define an LSE model as a probability
distribution function PLSE. First, let us define a bit vec-
tor Et over all sectors in the disk, such that Et(s) = 1
if sector s has developed a latent sector error at time
t and Et(s) = 0, otherwise. Taking as input time
t, sector s, the cumulative write and read usage up to
time t in bytes, denoted Wt and Rt, respectively, and
the history of latent error development E1, . . . , Et−1,
PLSE(t, s,Wt, Rt, E1, . . . , Et−1) is the probability that
sector s develops a latent sector error at time t. Let us
denote the space of all LSE models as L.

We give now full details on our LSE model.

1. Modeling triggering age LSE. Using Figures 1
and 10 from [2], we determine the probability that a disk
develops an age error in each month of its first 24 months
in the field. If a disk develops a triggering error in month
0 ≤ m ≤ 23, then the exact occurrence time in hours is
uniformly generated in the month, according to the dis-
tribution U(720 ∗m, 720 ∗ (m+ 1)− 1). (Here U(a, b)
is the uniform distribution on [a, b].)

2. Modeling triggering usage LSE. We fix

the BER metric for a disk to a value in the set
{10−15, 10−14.5, 10−14, 10−13.5, 10−13}. Once
the BER metric is fixed (e.g., 10−14), a us-
age error is developed when Bytes Written +
Bytes Read/RW Weight >= 1/BER. If we use a
fixed value for BER in the above equation, we get a
fixed trigger time of usage errors, which results in a
very restrictive model. We instead randomize usage
error development: we assume that 1/BER is just the
mean of the number of bytes accessed after the disk
develops an usage error, and we assume that usage
error development follows a normal distribution with
mean 1/BER and small variance σ (e.g., 20% of the
mean). We first generate a Gaussian random variable
X ∼ N(1/BER, σ), and then trigger a usage error
once Bytes Written + Bytes Read/RW Weight >= X .
For the read/write weight RW Weight we use values
between 1 and 9.

3. Location of triggering error. Assuming that a disk
develops a triggering error (either age or usage) at time
tc (expressed in hours), we determine its exact location lc
on disk as a uniformly distributed random variable over
all disk sectors.

4. Number of triggered errors. We determine the
number of triggered LSE from Figure 8 in [2]. Using
curve fitting in Mathematica, we determine that the prob-
ability that a disk develops x triggered errors is given (ap-
proximately) by the function f(x) = 1.04x−0.185−0.42.

5. Location of triggered LSEs. We assume that the
triggered LSEs are clustered around the triggering error,
with a relative distance following the piecewise uniform
distribution from Figure 5 in the NetApp study.

6. Time of triggered LSEs. The inter-arrival time for
each LSE from the previous one in the cluster is modeled
with the piecewise uniform distribution from Figure 7 in
the NetApp study.

We list the range of parameters used in our LSE model
in Table 3.

Parameter Range/value Justification
Max number of errors 100 [2]
BER [10−15, 10−13] [6]
RW Weight [1,9] Heuristic assumption
Deviation σ of usage
error development 20% of mean Heuristic assumption

Table 3: Parameter ranges in LSE model.

3.3 Model validation
We perform several experiments to validate our LSE
model. We generate age-related LSEs for 100,000 disks
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Figure 1: Fraction of errors within a given radius of an
existing LSE in our simulation model.
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Figure 2: Average number of errors within a given radius
of an existing LSE in our simulation model.

using our model and based on Figures 1, 5, 7, 8 and 10 of
the NetApp study. While Figures 8 and 10 represent dis-
tributions for all disk models, Figures 1, 5 and 7 give dif-
ferent distributions depending on the disk model. There
are six different enterprise models common to these three
figures (denoted f-2, k-1, k-2, k-3, n-2 and n-3). These
disk models are anonymized in the NetApp paper and we
do not have information about exact disk characteristics.
According to the NetApp study, drives labeled with the
same letter have the same (anonymized) manufacturer,
and a higher number denotes higher drive capacity (e.g.,
k1, k2 and k3 have the same manufacturer and increasing
capacities).

As monthly error rates and inter-arrival time for age
errors in our simulation are generated exactly as in the
NetApp study, we focus on validating our spatial LSE
model. Our main goal is to validate assumptions we
make due to incomplete data in the distribution of LSE
location on disk, as explained above. For that, we re-
generate graphs from Figures 5 and 6 in the NetApp
study after the location of age errors is generated with
our simulation model. Note that the results from Figure
6 are not used in our simulation model at all.

As in Figures 5 and 6 in [2], Figure 1 shows the prob-
ability of a new error arising within a given radius of an
existing error, and Figure 2 shows the average number of
errors within a given radius of an LSE, for the six disk
models described above.

We observe that our simulation model closely reflects
the results from the NetApp study. For disk models that
exhibit high locality (e.g., f-2), the results of the simula-
tion are within 1% of the study results. For models with
a lower degree of locality, our simulation model slightly
over-estimates the two metrics, but our simulation results

differ by 6% on average from the study results.
Due to its simplicity and accuracy, we believe our LSE

model is of general and practical value in the study of
LSEs.

4 Scrubbing Strategies

In this section, we give the first formalization of scrub-
bing strategies in the literature that takes into account in-
formation about the disk model and its history. Most sys-
tems today use a simple constant-rate sequential scrub-
bing strategy. To capture the spatial and temporal lo-
cality of LSE development, we expand the space of
scrubbing strategies across several dimensions. First,
we propose a staggered strategy that traverses disk re-
gions more rapidly than sequential reading. Thanks to
the spatial locality of LSEs, it discovers LSEs faster
than sequential scrubbing. We evaluate the performance
impact of staggering, and determine parameters for
which its overhead—resulting from frequent disk-head
movement—is minimal (2%) compared with sequential
scrubbing. Second, we consider scrubbing strategies that
adaptively change their scrubbing rate according to drive
age and the history of LSE development. Based on
these new ideas, we propose an expanded design space
of scrubbing strategies.

4.1 Formal Definition

Our formalization of scrubbing strategies accounts for
disk model and age, as well as historical factors, includ-
ing disk usage, the number of developed latent errors,
and the scrubbing history.

6



Figure 3: Representation of sequential (left) and staggered (right) scrubbing strategies.

Formally, we define a scrubbing strategy as a function
of the disk age t, cumulative disk write and read usage,
latent error distribution, disk failure distribution, latent
error development history and scrubbing history. This
function outputs the number and addresses of sectors to
be scrubbed in the current time interval t.

Definition 1. A scrubbing strategy for a disk with n sec-
tors is a function S. For inputs disk age t, cumulative
disk write Wt and read usage Rt, latent error distribu-
tion PLSE ∈ L, disk failure distribution PDF in space F ,
latent error development history Lh

t = {E1, . . . , Et−1}
(as defined in Section 3.2), and scrubbing history Sh

t =
{vi, [1, n]vi}i=1,...t−1 (including the number and ad-
dresses of sectors scrubbed at all previous time intervals),
it outputs the number of sectors selected for scrubbing vt,
and their logical block addresses (LBA1, . . . , LBAvt).

For example, assuming that LBAs are between 0 and
n− 1, the sequential strategy with constant-rate r can be
formally defined as S(t,Wt, Rt,PLSE,PDF, L

h
t , S

h
t ) =

{r, (rt+ 1 mod n, . . . , r(t+ 1) mod n)}. Note that the
constant-rate sequential strategy only depends on disk
age, but it does not take into account other disk char-
acteristics or history of error development.

We leave the definition of the disk failure distribution
as general as possible. It can depend on disk age, disk
usage and failure history, similar to the definition of LSE
distribution. We omit the disk failure history from the
scrubbing strategy definition since once a disk fails, it is
replaced with a new one and our model is restarted.

4.2 Staggered scrubbing
Our staggered scrubbing regime—again, aimed at ex-
ploiting the spatial locality of LSEs—is as follows. The
disk is partitioned into m regions, each consisting of r
segments. Staggered scrubbing reads the first segment of

each disk region in turn, ordered by LBA. Then it reads
the second segment in each disk region, and so forth, up
to the rth segment, as depicted in Figure 3. (Once a full
scrubbing pass is complete, it is initiated again with the
first segment.)

Intuitively, staggering is effective because LSEs tend
to arise in clusters: if a given region develops LSEs, there
is a good chance that many of its segments will contain at
least one. Consequently, repeated sampling of a region—
which is what staggering accomplishes over a full scrub-
bing pass—is more effective than full sequential scrub-
bing of a region. To see this more clearly, consider an
extreme case of clustering: suppose that when a region
develops an LSE, all of its segments develop one. In
this case, sampling any one segment suffices to detect
an LSE-affected region; there is no benefit to scrubbing
more than one segment per region. So it is best to sample
one segment per region, move on as quickly as possible,
and return later to check for fresh LSEs, i.e., to stagger.

Staggering does have a drawback, though. It requires
more disk-head movement than sequential scrubbing.
(Sequential scrubbing is clearly optimal in terms of disk-
head movement.) Thankfully, as we show next, for care-
fully chosen parameters, the slowdown due to disk-head
movement in staggered scrubbing is minimal.

We determined through experiments parameters for
the staggered strategy that do not affect performance.
The first question we needed to answer is the optimal
request size when reading from disk sequentially. As
suggested by previous literature [12], read performance
improves with increasing request sizes, as function calls
and interrupts introduce a performance penalty.

We performed a first experiment in which we read
16GB from a 7200 RPM Hitachi drive using request sizes
between 1KB and 64KB. We found that a disk request
size of 16KB is nearly optimal; performance improves
negligibly for larger request sizes. This suggets that re-
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quest sizes in sequential scrubbing strategies should be
at least 16KB.

Second, we want to quantify the performance over-
head for staggered scrubbing versus sequential reading
from disk. We consider staggered scrubbing with regions
of different sizes, ranging from 50MB to 500MB, and
different request sizes, ranging from 32KB to 2MB. We
found out that, while the overhead of staggering for small
request sizes (32KB or 64KB) is large (a factor of 5 to 8),
the overhead becomes minimal when the request size in-
creases to several MB. For instance, for a request size of
1MB or 2MB, the overhead is about 2%.

These experimental findings provide guidance for our
parameter choices in staggered scrubbing. To minimize
the performance impact of staggering, we choose a seg-
ment size of 1MB. For that segment size, our results
show that the staggering overhead is not highly depen-
dent on the region size. We thus choose a region size that
aligns with the radius of most error clusters (128MB).

4.3 Strategies with Adaptive Scrubbing
Rates

To capture temporal locality of latent sector errors, we
introduce scrubbing strategies with scrubbing rates that
change adaptively according to drive history. From the
results in the NetApp study, we know that monthly LSE
rates are fairly constant before the development of the
first LSE in a drive. (Again, an exception is the first 60
days of drive operation, which exhibit slightly lower LSE
rates.) Once a first LSE develops, i.e., a triggering error,
more errors are likely to develop shortly afterward.

We propose to start with a scrubbing rate SR First60
in the first 60 days of disk operation, and change it to
rate SR PreLSE before any LSEs are detected. Once the
disk develops a first LSE, the strategy enters into an ac-
celerated interval (with length Int Acc) and adjusts the
scrubbing rate to SR Acc. At the end of the accelerated
interval, the scrubbing rate is modified to SR PostLSE.
The process is repeated every time a LSE is detected:
the strategy enters an accelerated interval with an ad-
justed scrubbing rate, and then reverts to SR PostLSE.
Disks that never develop an LSE are scrubbed with
rate SR First60 in the first 60 days of operation and
SR PreLSE after that.

4.4 Modeling the Design / Search Space of
Scrubbing Strategies

Combining the ideas of staggering and adaptive scrub-
bing rates, we propose an expanded design space of

scrubbing strategies that we will search for optimal
strategies in the next section of the paper. A strategy in
this design space operates as follows. Before the detec-
tion of the first LSE, the strategy proceeds in a staggered
fashion with scrubbing rates SR First60 in the first 60
days of drive operation and SR PreLSE after that. Once
a first LSE is detected, the strategy enters into an accel-
erated interval and switches to a sequential strategy with
scrubbing rate SR Acc. It scrubs sequentially regions
of the disk centered at the detected error and continues
with regions further away. When the accelerated inter-
val ends, the strategy reverts to staggered scrubbing with
rate SR PostLSE, starting from the first disk sector.

The parameters that characterize our design space are
graphically depicted in Figure 4. A point in our design
space is given by coordinates (SR First60, SR PreLSE,
SR Acc, SR PostLSE, Int Acc).

To convert our design space into a search space, i.e., to
specify the constraints on our search for optimal strate-
gies, we must choose concrete parameter ranges and
granularities. While this is a somewhat heuristic process,
experimental guidance motivates the following choices:

- The staggered strategy uses a region of size 128MB,
and a segment size of 1MB. These choices were ex-
plained in Section 4.2.

- We specify the scrubbing rates in terms of gigabytes
scrubbed per hour. We constrain these rates to an interval
whose maximum value corresponds to a full disk scrub
in one day (which amounts to 20GB/hour for a 500GB
disk). We define the search space for these scrubbing
rates with a granularity of 0.5GB/hour, starting from the
minimum value of 0.5GB/hour.

- The length of interval Int Acc is a parameter with
minimum value 3 hours and maximum value the time it
takes to scrub the full disk sequentially with rate SR Acc.
We search this interval at a granularity of 3 hours.

- The size of the regions scrubbed sequentially in ac-
celerated intervals is 128MB, since this is the clustering
radius of about 80% of LSEs. We scrub the regions of
size 128MB centered at the first error found, and then
continue with the regions further away.

5 Simulation Model and Evaluation

Before describing our simulation model, we specify our
new metric MLET (Mean Latent Error Time). Intu-
itively, for a single disk with a specified latent error
model and scrubbing strategy, MLET measures the av-
erage (over LSE patterns) fraction of the total drive op-
eration time during which the drive has undetected LSEs
and is thus susceptible to data loss.
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Figure 4: Search space of scrubbing strategies given by parameters SR First60, SR PreLSE, SR Acc, SR PostLSE
and Int Acc.

Formally, consider a latent sector error probability dis-
tribution PLSE from space L and a scrubbing strategy S
from space S . For a given pattern of latent-error de-
velopment LSE from PLSE, we define the Latent Error
Time LET(t, LSE,S) as the fraction of the time inter-
vals up to disk age t during which the drive has unde-
tected LSEs. MLET(t, S) is then defined as the mean of
LET(t, LSE,S) over the probability distribution PLSE.

We note that this definition holds for a deterministic
scrubbing strategy S. We could extend the definition
for probabilistic strategies, to average over the scrubbing
strategy distribution S.

5.1 Simulation Model

We have written an event-driven simulation model in
Java that simulates the behavior of a disk for T time in-
tervals, each of length one hour. In our experiments, we
run our simulation for maximum 24 months for 100,000
disks. (The NetApp data span 24 months of disk oper-
ation.) We consider enterprise disk model n-2 and sim-
ulate hard drives with a capacity of 500GB. We model
the disk normal workload using the HP Cello 99 traces,
available from the SNIA IOTTA repository [1]. In our
simulation we are interested only in total number of bytes
read and written per time interval (i.e., hour). We com-
pute the number of bytes accessed for one hard drive in
the original Cello traces. Since these traces are ten years
old, we expect that the utilization level is low compared
to today’s environments. To simulate different utilization
levels we scale the number of bytes accessed by a factor

between 1 and 100. We simulate both sequential strate-
gies with fixed scrubbing rates and staggered strategies
with fixed and adaptive rates.

The events of interest to our simulator are the trigger-
ing of age and usage errors, detection of errors, and the
moments in time when the scrubbing rate changes, i.e.,
the disk age reaches 60 days, an accelerated interval be-
gins, or an accelerated interval ends. Age errors are trig-
gered by the distribution derived from the NetApp paper,
as described in Section 3.2. The simulator keeps track
of the usage rates due to both normal accesses and disk
scrubbing and triggers a usage error once the usage for a
disk exceeds a random variable normally distributed, as
described in Section 3.2.

One important challenge arises in the construction of
an efficient simulator. Recall that in our LSE model, a
triggering LSE is followed by a cascade of other LSEs.
The interval of time between the first error trigger and
the detection of all errors in a cluster is what we call a
critical interval, depicted in Figure 4. It is possible that
while in the critical interval of one cluster of errors, an-
other cluster of errors develops. Accommodating a po-
tentially large number of overlapping and nested criti-
cal intervals would complicate our model and simulation
considerably. For this reason, we make the simplifying
assumption that clusters of usage errors do not overlap.
We do, however, treat the case in which an age error clus-
ter overlaps with an usage error cluster.

In practice, following a LSE detection, a logical-to-
physical remapping of the affected sector takes place. We
do not consider the effect of this remapping in our simu-
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lation model, but this needs to be addressed in an actual
implementation of scrubbing strategies in hard drives.

5.2 Simulation Results

Our goal is to determine optimal scrubbing strategies
in the design space outlined in Section 4.4. Since our
design space for scrubbing strategies proved to be too
large to be searched exhaustively in an efficient manner,
we implemented a more efficient heuristic search algo-
rithm. Based on brief experimentation, we believe that
this heuristic finds strategies close to optimal. For a fixed
BER, read/write weight RW Weight, and disk workload,
the algorithm to determine an approximation to the opti-
mal scrubbing strategy in our design space is the follow-
ing:

- We search exhaustively for the scrub rate λ (between
0.5GB/hour and maximum scrubbing rate) that achieves
the minimum MLET for staggered fixed-rate strategies.

- We vary the rate in the accelerated interval between
λ and the maximum scrub rate (given by a full scrub per
day), and the length of the accelerated interval (between
3 hours and the time it takes to scrub the full disk with
the accelerated scrub rate). We determine thus the scrub
rate λacc and the length of accelerated interval int acc
that minimize MLET.

- We vary the rate in the first 60 days from 0.5GB/hour
to the maximum allowed scrub rate, and determine λ60

that minimizes MLET. Similarly, we vary SR PreLSE
and SR PostLSE to determine λprelse and λpostlse.

- We output the point (λ60, λprelse, λacc, λpostlse,
int acc) as an estimate of the optimal strategy.

In the rest of the paper, we sometimes refer to the out-
put of the previous algorithm as “optimal strategy”.

Optimal strategy dependence on different BER and
read/write weights. First, we show how the optimal
scrubbing strategy depends on the drive BER and the
read/write weight RW Weight. We plot on the left graph
in Figure 5 the optimal MLET for staggered adaptive
strategies and on the right graph in Figure 5 its relative
improvement compared to optimal fixed-rate sequential
strategies. We vary BER between 10−15 and 10−13, and
the read/write weight between 1 (i.e., read and write con-
tribute equally to disk wear-out) and 9 (i.e., contribution
of reads to disk wear-out is 9 times lower than that of
writes).

The left graph in Figure 5 shows how MLET decreases
for more reliable disks (i.e., disks with higher BER): for
instance, for a read/write weight of 1, MLET varies be-
tween 0.031 for a 10−13 BER to 9.69 · 10−5 for a 10−15

BER. As expected, MLET also decreases when the disk
wear-out due to reads is lower (i.e., the read/write weight
increases), as the disk is developing fewer usage errors.

From the right graph in Figure 5, we infer that the stag-
gered adaptive strategy improves MLET relative to the
optimal fixed-rate sequential strategy by at most 30%.
Improvements are larger for disks with higher develop-
ment of usage errors. We expect that this effect will be
amplified when considering RAID-5 or RAID-6 config-
urations with multiple disks. In RAID-5, for instance,
data loss occurs when a drive failure is coupled with a
latent error on any of the other drives. The vulnerability
interval due to latent errors (the time intervals in which
at least one drive has undetected LSEs) consists of all
vulnerability intervals of the drives in the RAID config-
uration. Consequently, a reduction in the MLET metric
for one drive will produce an amplified reduction on the
length of the vulnerability interval for the array (roughly
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Weighted factor for writes
BER 1 3 5 7 9
10−13 fixed-rate 4 0.5 0.5 0.5 1

adaptive (0.5,10,18.5,2.5) (0.5,12.5,14.5,0.5) (0.5,0.5,12.5,0.5) (0.5,0.5,18.5,0.5) (0.5,1,17,1.5)
10−13.5 fixed-rate 0.5 1.5 2.5 4 5

adaptive (0.5,0.5,12.5,0.5) (1,1.5,15.5,1.5) (3,3,14,3) (3.5,3.5,17,3.5) (5,5,18,5)
10−14 fixed-rate 2 6 9.5 12.5 17.5

adaptive (1,2,18,1) (2,6,19.5,5) (10,10,18.5,10) (13,13,19,13) (18,18,19.5,18)
10−14.5 fixed-rate 6.5 19 20 20 20

adaptive (7,7,19,7) (12.5,20,20,20) (17,20,20,20) (17,20,20,20) (17,20,20,20)
10−15 fixed-rate 20 20 20 20 20

adaptive (19,19,19,19) (17,20,20,20) (17,20,20,20) (17,20,20,20) (17,20,20,20)

Table 4: Optimal points for sequential fixed-rate and adaptive staggered strategies for different BERs and weighted
factors for writes. For sequential fixed-rate strategy, the table includes the optimal scrubbing rate. For the adaptive
staggered strategy, the table shows the optimal point (SR First60, SR PreLSE, SR Acc, SR PostLSE).
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scaled by the number of drives in the RAID configura-
tion).

Table 4 gives an interesting insight on the optimal
scrubbing rates used by both fixed-rate sequential and
adaptive staggered strategies. For disks featuring high
development of usage errors (due to high BER, and
low read/write weight), the optimal fixed-rate sequential
strategy is using a fairly low scrubbing rate (since in this
case the scrubbing process itself will contribute to disk
wear-out and LSE development). The optimal staggered
adaptive strategy also uses low scrub rates, except for ac-
celerated intervals, when the scrubbing rate is increased
to almost maximum allowed rate to detect LSEs quickly.
In contrast, for disks developing few usage errors (due to
low BER and high read/write weight), the optimal scrub-
bing strategies (both sequential and staggered adaptive)
use a high scrubbing rate that is close to the maximum
allowed rate.

Improvement of staggered adaptive strategy over
several widely used fixed-rate sequential scrubbing
strategies. We compare next the MLET metric for the
optimal adaptive staggered strategy and various fixed-
rate sequential strategies (i.e., scrub the disk once a
month, once every two weeks, once every week, and
once every two days). These fixed-rate sequential strate-
gies are widely used today in many systems. Graphs
in Figures 6, 7 and 8 show the MLET metric for these
strategies as a function of the simulation interval. The
results demonstrate that by using more intelligent scrub-
bing than the ad-hoc approaches in use today, the MLET
metric can be improved by at least a factor of two and at
most a factor of 20.

An important observation derived from these graphs is
that optimal strategies are highly dependent on disk char-
acteristics. For disks that develop a high number of us-
age errors (Figure 6 with BER 10−13.5 and the read/write
weight 1), the optimal adaptive staggered strategy is clos-
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est to scrubbing the disk once every month (i.e., infre-
quent scrubbing). For disks with medium number of us-
age errors (Figure 7 with BER 10−14 and the read/write
weight 3), the optimal strategy is closer to scrubbing
the disk once every week. In Figure 8, disks that de-
velop low number of usage errors (e.g., BER 10−15 and
the read/write weight 9) have optimal strategies closer to
scrubbing every two days. This clearly demonstrates that
it is infeasible to develop a good “one-size-fit-all” recipe
for disk scrubbing.

Interestingly, Figures 6 and 7 show that the optimal
strategy for time t is not always the optimal strategy for
all previous time intervals. This observation suggests
that we could achieve further optimizations when design-
ing scrubbing strategies by expanding our search space.
In particular, an idea that deserves further exploration is
to periodically adapt the scrubbing strategy over time.
Instead of computing one optimal strategy for the entire
drive operational time, we could instead compute new
optimal strategies for short time intervals (e.g., 3 or 6
months). With this approach, the optimal strategy for
disks that develop a medium number of errors, for in-
stance, is to scrub with a constant rate (once every two
weeks) for the first 15 months, and then switch to an
adaptive staggered strategy.

Benefit of staggered and adaptive strategies. We as-
sess next the benefit of our two main optimizations:
using a staggered approach for scrubbing, and varying
scrubbing rates adaptively. We show in Figure 9 relative
improvements of these two optimizations compared to
the optimal fixed-rate sequential strategy. We plot results
for disks with three different characteristics, classified by

the occurrence of high, medium or low occurrence of us-
age errors, respectively.

We observe that the idea of staggering compared to
sequentially reading the disk produces a steady improve-
ment in MLET by around 10% for all disk characteris-
tics. On the other hand, adaptively changing the scrub-
bing rate has a greater impact on disks that develop a
higher number of usage errors. The relative improvement
in MLET by adaptively changing the scrubbing rate is as
high as 15% for disks with a high number of usage er-
rors, and as low as 2% for most reliable disks. These
results are consistent with our previous observation that
the optimal scrubbing strategy for disks with few usage
errors is scrubbing at the maximum fixed rate.

Interestingly, a paper concurrently and independently
written [13] shows that our experimental results might
underestimate the benefit of the staggering technique.
Schroeder et al. [13] evaluate staggered scrubbing in
comparison with fixed-rate sequential strategies on real
failure data and report that staggered scrubbing can im-
prove mean time of error detection compared to sequen-
tial scrubbing by up to 40%. While Schroeder et al. use a
different metric in comparing different scrubbing strate-
gies, these results confirm the benefit of staggering.

Optimal strategy dependence on disk workloads.
Finally, we assess the impact of different disk workloads
on optimal scrubbing strategies. We consider the work-
loads of one disk from the HP Cello 1999 I/O traces, and
scale them by a factor of 1, 10 and 100. We plot on
the left of Figure 10 the MLET value for optimal stag-
gered adaptive strategy and on the right its relative im-
provement compared to fixed-rate sequential strategies.
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Figure 10: Optimal MLET for staggered adaptive strategies (left) and its relative percentage improvement compared
to optimal fixed rate sequential strategies (right) for different disk characteristics and different workloads.

In both graphs, usage levels are scaled by a factor of 1,
10 and 100, respectively. As in previous experiments, we
consider disks that develop a high, medium and low level
of usage errors.

The left graph in Figure 10 shows that disks develop-
ing high and medium number of usage errors exhibit sen-
sitivity to normal access workloads. In particular, scal-
ing the disk workloads by a factor of 10 has the effect
of increasing the optimal MLET metric by an order of
magnitude for disks developing a high number of usage
errors. Disks that exhibit low number of usage errors are
not sensitive to disk workloads at all.

The right graph in Figure 10 shows the relative im-
provement of the optimal staggered adaptive strategy
compared to the optimal fixed-rate sequential strategy
for different disk usage levels. Disks exhibiting high
and medium development of usage errors benefit mostly
from the staggered adaptive technique. For these types of
disks, the relative improvements of the staggered adap-
tive strategy increase with higher disk utilization. The
exception is the case of disks developing high number of
usage errors under heavy workload (scaled by a factor
of 100). In that case, we conjecture that the number of
usage errors increases greatly, leading to lower relative
improvements of the staggered adaptive strategy than for
lower disk utilization. We observe again that disks de-
veloping a low number of errors are insensitive to disk
workloads: the relative improvement of the staggered
adaptive strategy is around 10%, independent of the disk
workload.

Discussion. We have demonstrated that we can design
more intelligent scrubbing algorithms than those in use

today by taking into account disk characteristics and the
history of error development. We have characterized
the resilience of a single drive to latent sector errors by
defining the new MLET metric. Our results demonstrate
that optimal scrubbing strategies need to be carefully
crafted for different disk characteristics. In particular,
optimal strategies are highly dependent on the BER and
the read/write weight RW Weight of a disk.

For disks that develop a high number of usage er-
rors, scrubbing benefits greatly from adaptively chang-
ing rates. The optimal strategy uses a low scrubbing rate,
that is increased to almost the maximum allowed rate in
the accelerated interval immediately following the detec-
tion of a LSE. For disks that develop a low number of
usage errors, the optimal strategy uses the maximum al-
lowed scrubbing rate that does not interfere with the nor-
mal disk usage. Staggering across disk regions instead of
sequentially reading the disk improves the MLET metric
for all disk models.

Our optimal scrubbing strategies can improve the
MLET metric compared to widely used strategies (e.g.,
scrub the disk sequentially once every week) by an order
of magnitude. We expect that this effect will be ampli-
fied when considering the MTTDL metric for an array of
disks (e.g., RAID-5 or RAID-6 configuration).

A limitation of the current work is the high sensitivity
of the results to disk parameters that are not always made
public by disk manufacturers. We hope that, as more
failure data becomes available, our results can be further
refined by the community.
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6 Conclusions

Our work is a first step in the exploration of more in-
telligent scrubbing strategies for hard drives. It shows
that single drive reliability can be greatly improved by
expanding the design space for scrubbing strategies be-
yond naı̈ve sequential and constant-rate approaches.

Several challenging options for further research arise
in our work. The first is an expansion of our design
and search spaces for scrubbing strategies. Appealing
to search heuristics such as hillclimbing or simulated an-
nealing would enable us to consider a more fine-grained
and sophisticated design space.

Second, we plan to evaluate the performance overhead
of various scrubbing strategies in conjunction with real-
istic disk workloads.

Third, with the emergence of FLASH technology, an
intriguing question is how (and if) our results trans-
late into the FLASH realm. With completely differ-
ent physical characteristics than hard drives, and a com-
plex physical-to-logical translation layer, FLASH would
seem a challenging target for the development of latent
error and scrubbing models.

Finally, we have only studied the effect of scrubbing
on single-drive reliability. Extension of our work to a
systemic analysis in the context of replication systems
like RAID seems an interesting area of future research.
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