
I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance

Ricardo Koller Raju Rangaswami

rkoll001@cs.fiu.edu raju@cs.fiu.edu

School of Computing and Information Sciences, Florida International University

Abstract

Duplication of data in storage systems is becoming in-

creasingly common. We introduce I/O Deduplication, a

storage optimization that utilizes content similarity for

improving I/O performance by eliminating I/O opera-

tions and reducing the mechanical delays during I/O

operations. I/O Deduplication consists of three main

techniques: content-based caching, dynamic replica re-

trieval, and selective duplication. Each of these tech-

niques is motivated by our observations with I/O work-

load traces obtained from actively-used production stor-

age systems, all of which revealed surprisingly high lev-

els of content similarity for both stored and accessed

data. Evaluation of a prototype implementation using

these workloads revealed an overall improvement in disk

I/O performance of 28-47% across these workloads. Fur-

ther breakdown also showed that each of the three tech-

niques contributed significantly to the overall perfor-

mance improvement.

1 Introduction

Duplication of data in primary storage systems is quite

common due to the technological trends that have been

driving storage capacity consolidation. The elimination

of duplicate content at both the file and block levels

for improving storage space utilization is an active area

of research [7, 17, 19, 22, 30, 31, 41]. Indeed, elimi-

nating most duplicate content is inevitable in capacity-

sensitive applications such as archival storage for cost-

effectiveness. On the other hand, there exist systems

with moderate degree of content similarity in their pri-

mary storage such as email servers, virtualized servers,

and NAS devices running file and version control servers.

In case of email servers, mailing lists, circulated at-

tachments and SPAM can lead to duplication. Virtual

machines may run similar software and thus create co-

located duplicate content across their virtual disks. Fi-

nally, file and version control systems servers of collab-

orative groups often store copies of the same documents,

sources and executables. In such systems, if the degree of

content similarity is not overwhelming, eliminating du-

plicate data may not be a primary concern.

Gray and Shenoy have pointed out that given the tech-

nology trends for price-capacity and price-performance

of memory/disk sizes and disk accesses respectively, disk

data must “cool” at the rate of 10X per decade [11]. They

suggest data replication as a means to this end. An in-

stantiation of this suggestion is intrinsic replication of

data created due to consolidation as seen now in many

storage systems, including the ones illustrated earlier.

Here, we refer to intrinsic (or application/user generated)

data replication as opposed to forced (system generated)

redundancy such as in a RAID-1 storage system. In such

systems, capacity constraints are invariably secondary to

I/O performance.

We analyzed on-disk duplication of content and I/O

traces obtained from three varied production systems at

FIU that included a virtualized host running two depart-

ment web-servers, the department email server, and a file

server for our research group. We made three observa-

tions from the analysis of these traces. First, our analysis

revealed significant levels of both disk static similarity

and workload static similarity within each of these sys-

tems. Disk static similarity is an indicator of the amount

of duplicate content in the storage medium, while work-

load static similarity indicates the degree of on-disk du-

plicate content accessed by the I/O workload. We define

these similarity measures formally in § 2. Second, we
discovered a consistent and marked discrepancy between

reuse distances [23] for sector and content in the I/O ac-

cesses on these systems indicating that content is reused

more frequently than sectors. Third, there is significant

overlap in content accessed over successive intervals of

longer time-frames such as days or weeks.

Based on these observations, we explore the premise

that intrinsic content similarity in storage systems and

access to replicated content within I/O workloads can

both be utilized to improve I/O performance. In doing

so, we design and evaluate I/O Deduplication, a stor-

age optimization that utilizes content similarity to either

eliminate I/O operations altogether or optimize the re-

sulting disk head movement within the storage system.

I/O Deduplication comprises three key techniques: (i)

content-based caching that uses the popularity of “data

1

Workload File System Memory Reads [GB] Writes [GB] File System

type size [GB] size [GB] Total Sectors Content Total Sectors Content accessed

web-vm 70 2 3.40 1.27 1.09 11.46 0.86 4.85 2.8%

mail 500 16 62.00 29.24 28.82 482.10 4.18 34.02 6.27%

homes 470 8 5.79 2.40 1.99 148.86 4.33 33.68 1.44%

Table 1: Summary statistics of one week I/O workload traces obtained from three different systems.

content” rather than “data location” of I/O accesses in

making caching decisions, (ii) dynamic replica retrieval

that upon a cache miss for a read operation, dynami-

cally chooses to retrieve a content replica which mini-

mizes disk head movement, and (iii) selective duplica-

tion that dynamically replicates frequently accessed con-

tent in scratch space that is distributed over the entire

storage medium to increase the effectiveness of dynamic

replica retrieval.

We evaluated a Linux implementation of the I/O Dedu-

plication techniques for workloads from the three sys-

tems described earlier. Performance improvements mea-

sured as the reduction in total disk busy time in the range

28-47% were observed across these workloads. We mea-

sured the influence of each technique of I/O Deduplica-

tion separately and found that each technique contributed

substantially to the overall performance improvement

Particularly, content-based caching increased memory

caching effectiveness by at least 10% and by as much as

4X in cache hit rate for read operations. Head-position

aware dynamic replica retrieval directed I/O operations

to alternate locations on-the-fly and additionally reduced

average I/O times by 10-20%. And finally, selective du-

plication created additional replicas of popular content

during periods of low foreground I/O activity to further

improved the effectiveness of dynamic replica retrieval,

leading to a reduction in average I/O times by 23-35%.

We also measured the memory and CPU overheads of

I/O Deduplication and found these to be nominal.

In Section 2, we make the case for I/O deduplication.

We elaborate on a specific design and implementation of

its three techniques in Section 3. We perform a detailed

evaluation of improvements and overhead for three dif-

ferent workloads in Section 4. We discuss related re-

search in Section 5, discuss salient design and deploy-

ment alternatives in Section 6, and finally conclude with

directions for future work.

2 Motivation and Rationale

In this section, we investigate the nature of content sim-

ilarity and access to duplicate content using workloads

from three production systems that are in active, daily

use at the FIU Computer Science department. We col-

lected I/O traces downstream of an active page cache

from each system for a duration of three weeks. These

systems have different I/O workloads that consist of a

virtual machine running two web-servers (web-vm work-

load), an email server (mail workload), and a file server

(homes workload). The web-vm workload is collected

from a virtualized system that hosts two CS depart-

ment web-servers, one hosting the department’s online

course management system and the other hosting the

department’s web-based email access portal; the local

virtual disks which were traced only hosted root parti-

tions containing the OS distribution, while the http data

for these web-servers reside on a network-attached stor-

age. The mail workload serves user INBOXes for the

entire Computer Science department at FIU. Finally, the

homes workload is that of a NFS server that serves the

home directories of our small-sized research group; ac-

tivities represent those of a typical researcher consisting

of software development, testing, and experimentation,

the use of graph-plotting software, and technical docu-

ment preparation.

Key statistics related to these workloads are summa-

rized in Table 1. The mail server is a heavily used system

and generates a highly-intensive I/O workload in com-

parison to the other two. However, some uniform trends

can be observed across these workloads. A fairly small

percentage of the total file system data is accessed dur-

ing the entire week (1.44-6.27% across the workloads),

representing small working sets. Further, these are write-

intensive workloads. While it is therefore important to

optimize write I/O operations, we also note that most

writes are committed to persistent storage in the back-

ground and do not affect user-perceived performance di-

rectly. Optimizing read operations, on the other hand,

has a direct impact on user-perceived performance and

system throughput because this reduces the waiting time

for blocked foreground I/O operations. For read I/O’s,

we observe that in each workload, the unique content

accessed is lesser than the unique locations that are ac-

cessed on the storage device. These observation directly

motivates the three techniques of our approach as we

elaborate next.

2.1 Content-based cache

The systems of interest in our work are those in which

there are patterns of work shared across more than one

mechanism within a single system. A mechanism rep-

resents any active entity, such as a single thread or pro-

cess or an entire virtual machine. Such duplicated mech-

2

 1000

 10000

 100000

 1e+06

 1e+07

Read Write Read+Write

Sector
Content

 1e+06

 1e+07

 1e+08

Read Write Read+Write

N
u

m
b

e
r

o
f
c
a

c
h

e
 h

it
s

Sector
Content

 10000

 100000

 1e+06

 1e+07

Read Write Read+Write

Sector
Content

Figure 1: Page cache hits for the web-vm (top), mail

(middle), and homes (bottom) workloads. A single day

trace was used with an infinite cache assumption.

anisms also lead to intrinsic duplication in content ac-

cessed within the respective mechanisms’ I/O operations.

Duplicate content, however, may be independently man-

aged by each mechanism and stored in distinct locations

on a persistent store. In such systems, traditional storage-

location (sector) addressed caching can lead to content

duplication in the cache, thus reducing the effectiveness

of the cache.

Figure 1 shows that cache hit ratio (for read re-

quests) can be improved substantially by using a content-

addressed cache instead of a sector-addressed one. While

write I/Os leading to content hits could be eliminated for

improved performance, we do not explore it in this pa-

per. A greater number of sector hits with write I/Os are

due to journaling writes by the file system, repeatedly

overwriting locations within a circular journal space.

For further analysis, we define the average sector reuse

distance for a workload as the average number of re-

quests between successive requests to the same sector.

The average content reuse distance is defined similarly

over accesses to the same content. Figure 2 shows that

the average reuse distance for content is smaller than for

sector for each of the three workloads that we studied for

both read and write requests. For such workloads, data

addressed by content can be cache-resident for lesser

time yet be more effective for servicing read requests

than if the same cached data is addressed by location.

Write requests on the other hand do not depend on cache

 1000

 10000

 100000

 1e+06

Read Write Read+Write

Sector
Content

 100000

 1e+06

 1e+07

Read Write Read+Write

A
v
e

ra
g

e
 r

e
u

s
e

 d
is

ta
n

c
e

Sector
Content

 100000

 1e+06

 1e+07

Read Write Read+Write

Sector
Content

Figure 2: Contrasting content and sector reuse dis-

tances for the web-vm (top), mail (middle), and homes

(bottom) workloads.

hits since data is flushed to rather than requested from

the storage system. These observations and those from

Figure 1 motivate content-based caching in I/O Dedupli-

cation.

2.2 Dynamic replica retrieval

Systems with intrinsic duplication of mechanism may

also operate on duplicate data stored in the persistent

stores managed by each mechanism. Such intrinsic con-

tent duplication creates opportunities for optimizing I/O

operations.

We define the disk static similarity as the average num-

ber of copies per filesystem-aligned block of content,

typically of size 4KB, as a formal measure of content

similarity in the storage system. The disk static similar-

ity is calculated as (all − zeros)/(unique − 1), where
all is the total number of blocks, zeroes are the number
of zeroed blocks (never-used), and unique is the num-
ber of blocks with unique content (after eliminating du-
plicates). This static similarity measure includes blocks

that are not currently in use by the file-system; we in-

clude such blocks because they were previously used and

therefore may contain the same content as in-use data

blocks. Table 2 summarizes static similarity values for

each of the three workloads. We notice that there is sub-

stantial duplication of content on the disks used by each

of these workloads. In the case of themailworkload, one

might expect a higher level of content similarity due to

3

Workloads web-vm mail homes

Unique pages (millions) 1.9 27 62

Total pages (millions) 5.2 73 183

Static similarity 2.67 2.64 2.94

Table 2: Disk static similarity. Total pages excludes
zero pages; Unique pages excludes repeated pages in
addition to zero pages.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 100 1000 no limit

W
o
rk

lo
a
d
 s

ta
ti
c
 s

im
ila

ri
ty

Maximum number of copies

web-vm
mail

homes

Figure 3: Workload static similarity. One day traces

were used. The x axis limits the static similarity consid-

eration to blocks which have at most x copies on disk.

mailing-list emails and circulated attachments appearing

in many INBOXes. However, we point out that all emails

within a user’s INBOX are managed as a single large file

by mail server and therefore individual emails are less

likely to be aligned to the filesystem block-size, impact-

ing the disk static similarity measure. Nevertheless, the

level of content similarity in these systems is high.

While the presence of substantial duplicate content on

each of these systems is promising, it is possible that

duplicate content is not accessed frequently in the ac-

tual I/O workload. We measured the average number of

copies in the storage system for all the blocks read within

each of these workloads. We refer to this measure as the

workload static similarity. By considering only the on-

disk duplicate content pertinent to the workload we can

better estimate the impact of optimizations based on con-

tent similarity. To improve the accuracy our measure, we

limit the number of copies of target content. This allows

us to prevent a small set of highly replicated content from

inflating the workload static similarity value. As shown

in Figure 3, the workload static similarity limited to con-

tent not repeated more than 1000 times is 2.5. While
more than one copy of blocks read is present in the stor-

age system on an average, we note that the disk static

similarity values (in Table 2) do overestimate the perfor-

mance improvement potential.

Based on these observations, we can hypothesize that

for each of these workloads, accesses to data that is du-

plicated on the storage device can be optimally redirected

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7

C
o

n
te

n
t

a
c
c
e

s
s
 o

v
e

rl
a

p
 (

%
)

Intervals

web-vm mail homes

Figure 4: Content working-sets for three week traces.

The trace duration is divided into 7 3-day intervals and

read content overlap for each interval with all content

from the previous interval is presented.

to the location that minimizes the mechanical overhead

of disk I/O operations. This motivates dynamic replica

retrieval in our approach.

2.3 Selective Duplication

A third property of workloads is repeated access to the

same content. Here, we refer to accesses to specific con-

tent, which is a different measure than repeated access to

the same block address. To illustrate this difference, ac-

cesses to two copies of the same executable stored within

two virtual disks owned by distinct virtual machines do

not lead to repeated access to the same block, but do re-

sult in repeated access to the same content.

In Figure 4, we illustrate the overlap in content be-

ing accessed across time for each of the workloads using

traces over a longer, three week duration. More specifi-

cally, we divide the three week trace duration into seven,

3-day intervals and measure the overlap in content read

(thus, we exclude writes) within each interval with all

data accessed (both read and written) in the previous in-

terval. The first 3-day interval uses self-similarity and

therefore represents a 100% content overlap. For the re-

maining intervals we observe high levels of overlap in the

content being read within each interval with all data ac-

cessed during the previous interval; average overlaps are

45%, 85%, and 60%, for the mail, web-vm, and homes

workloads respectively.

Based on these observation, we can assume that if

data accessed in the recent past were replicated in loca-

tions dispersed across the disk area, the choice in access

provided by such replicas for future I/O operations can

help reduce disk arm movement and improve I/O perfor-

mance. Complementary findings about diurnal patterns

in I/O workloads with alternating periods of low and high

storage activity [8, 20] suggest that such selective dupli-

cation, if performed opportunistically during night-time,

may result in negligible impact to foreground I/O activ-

ity.

4

3 System Design

I/O Deduplication systematically explores the use of

content similarity within storage systems to reduce the

mechanical delays incurred in I/O operations and/or to

eliminate I/O operations altogether. In this section, we

start with an overview of the system architecture and then

present the various design choices and rationale behind

constructing each of the three mechanisms that consti-

tute I/O Deduplication.

3.1 Architectural Overview

An optimization based on content similarity can be built

at various layers of the storage stack, with varying de-

grees of access and control over storage devices and

the I/O workload. Prior research has argued for build-

ing storage optimizations in the block layer of the stor-

age stack [12]. We choose the block layer for several

reasons. First, the block interface is a generic abstrac-

tion that is available in a variety of environments includ-

ing operating system block device implementations, soft-

ware RAID drivers, hardware RAID controllers, SAN

(e.g., iSCSI) storage devices, and the increasingly popu-

lar storage virtualization solutions (e.g., IBM SVC [16],

EMC Invista [9], NetApp V-Series [28]). Consequently,

optimizations based on the block abstraction can poten-

tially be ported and deployed across these varied plat-

forms. In the rest of the paper, we develop an operating

system block device oriented design and implementation

of I/O Deduplication. Second, the simple semantics of

block layer interface allows easy I/O interception, ma-

nipulation, and redirection. Third, by operating at the

block layer, the optimization becomes independent of the

file system implementation, and can support multiple in-

stances and types of file systems. Fourth, this layer en-

ables simplified control over system devices at the block

device abstraction, allowing an elegantly simple imple-

mentation of selective duplication that we describe later.

Finally, additional I/Os generated by I/O Deduplication

can leverage I/O scheduling services, thereby automati-

cally addressing the complexities of block request merg-

ing and reordering.

Figure 5 presents the architecture of I/O Deduplica-

tion for a block device in relation to the storage stack

within an operating system. We augment the storage

stack’s block layer with additional functionality, which

we term I/O Deduplication layer, to implement the three

major mechanisms: the content-based cache, the dy-

namic replica retriever, and the selective duplicator. The

content-based cache is the first mechanism encountered

by the I/O workload which filters the I/O stream based on

hits in a content-addressed cache. The dynamic replica

retriever subsequently optionally redirects the unfiltered

read I/O requests to alternate locations on the disk to

avail the best access latencies to requests. The selective

Applications

VFS

Page Cache

File System: EXT3, JFS,

· · ·

I/O Deduplication

I/O Scheduler

Device Driver

Selective duplicator

Selective Duplicator Content based cache

Dynamic replica retriever

: New components : Existing Components : Control Flow

Figure 5: I/O Deduplication System Architecture.

duplicator is composed of a kernel sub-component that

tracks content accesses to create a candidate list of con-

tent for replication, and a user-space process that runs

during periods of low disk activity and populates replica

content in scratch space distributed across the entire disk.

Thus, while the kernel components run continuously, the

user-space component runs sporadically. Separating out

the actual replication process into a user-level thread al-

lows greater user/administrator control over the timing

and resource consumption of the replication process, an

I/O resource-intensive operation. Next, we elaborate on

the design of each of the three mechanisms within I/O

Deduplication.

3.2 Content based caching

Building a content based cache at the block layer cre-

ates an additional buffer cache separate from the virtual

file system (VFS) cache. Requests to the VFS cache are

sector-based while those to the I/O Deduplication cache

are both sector- and content-based. The I/O Deduplica-

tion layer only sees the read requests for sector misses

in the VFS cache. We discuss exclusivity across these

caches shortly. In the I/O Deduplication layer, read re-

quests identified by sector locations are queried against a

dual sector- and content-addressed cache for hits before

entering the I/O scheduler queue or being merged with

an existing request by the I/O scheduler. Population of

the content-based cache occurs along both the read and

write paths. In case of a cache miss during a read oper-

ation, the I/O completion handler for the read request is

intercepted and modified to additionally insert the data

read into the content-addressed cache after I/O comple-

tion only if it is not already present in the cache and is

important enough in the LRU list to be cached. A write

request to a sector which had contained duplicate data is

simply removed from the corresponding duplicate sector

list to ensure data consistency for future accesses. The

new data contained within write requests is optionally

5

S
ec
to
r-
to
-H
as
h
F
u
n
ct
io
n

S
ec
to
r

Digest-to-Hash Function

MD5 Digest

e

e

e

e

p

e

e

e

e

e

e

e

p

Legend

p
Page (vc page)

{data, refs count}
e
Entry (vc entry)

{sector, digest, state}

Figure 6: Data structure for the content-based cache.

The cache is addressable by both sector and content-

hash. vc entrys are unique per sector. Solid lines be-
tween vc entrys indicates that they may have the same
content (they may not in case of hash function collisions.)

Dotted lines form a link between a sector (vc entry) and
a given page (vc page.) Note that some vc entrys do not
point to any page – there is no cached content cached for

these. However, this indicates that the linked vc entrys
have the same data on disk. This happens when some of

the pages are evicted from the cache. Additionally, pages

form an LRU list.

inserted into the content-addressed cache (if it is suffi-

ciently important) in the onward path before entering the

request into the I/O scheduler queue to keep the content

cache up-to-date with important data.

The in-memory data structure implementing the

content-based cache supports look-up based on both sec-

tor and content-hash to address read and write requests

respectively. Entries indexed by content-hash values

contain a sector-list (list of sectors in which the content

is replicated) and the corresponding data if it was en-

tered into the cache and not replaced. Cache replacement

only replaces the content field and retains the sector-list

in the in-memory content-cache data structure. For read

requests, a sector-based lookup is first performed to de-

termine if there is a cache hit. For write requests, a

content-hash based look-up is performed to determine

a hit and the sector information from the write request

is added to the sector-list. Figure 6 describes the data

structure used to manage the content-based cache. A

write to a sector that is present in a sector-list indexed

by content-hash is simply removed from the sector list

and inserted into a new list based on the sector’s new

content hash. It is important to also point out that our

design uses a write-through cache to preserve the seman-

tics of the block layer. Next, we discuss some practical

considerations for our design.

Since the content cache is a second-level cache placed

below the file system page cache or, in case of a virtual-

ized environment, within the virtualization mechanism,

typically observed recency patterns in first level caches

are lost at this caching layer. An appropriate replace-

ment algorithm for this cache level is therefore one that

captures frequency as well. We propose using Adaptive

Replacement Cache (ARC) [24] or CLOCK-Pro [18] as

good candidates for a second-level content-based cache

and evaluate our system with ARC and LRU for contrast.

Another concern is that there can be a substantial

amount of duplicated content across the cache levels.

There are two ways to address this. Ideally, the content-

based cache should be integrated into a higher level

cache (e.g., VFS page cache) implementations if possi-

ble. However, this might not be feasible in virtualized

environments where page caches are managed indepen-

dently within individual virtual machines. In such cases,

techniques that help make in-memory cache content

across cache levels exclusive such as cache hints [21],

demotions [38], and promotions [10] may be used. An

alternate approach is to employ memory deduplication

techniques such as those proposed in the VMware ESX

server [36], Difference Engine [13], and Satori [25]. In

these solutions, duplicate pages within and across vir-

tual machines are made to point to the same machine

frame with use of an extra level of indirection such as

the shadow page tables. In memory duplicate content

across multiple levels of caches is indeed an orthogonal

problem and any of the referenced techniques could be

used as a solution directly within I/O Deduplication.

3.3 Dynamic replica retrieval

The design of dynamic replica retrieval is based on the

rationale that better I/O schedules can be constructed

with more options for servicing I/O requests. A storage

system with high disk static similarity (i.e., duplicated

content) creates such options naturally. With dynamic

replica retrieval in such a system, read I/O requests are

optionally indirected to alternate locations before enter-

ing the I/O scheduler queue. Choosing alternate loca-

tions for write requests is complicated due to the need for

ensuring up-to-date block content; while we do not con-

6

sider this possibility further in our work, investigating

alternate mechanisms for optimizing write operations to

utilize content similarity is certainly a promising area of

future work. The content-addressed cache data structure

that we explored earlier supports look-up based on sector

(contained within a read request) and returns a sector-list

that contain replicas of the requested content, thus pro-

viding alternate locations to retrieve the data from.

To help decide if and to where a read I/O request should

be redirected, the dynamic replica retriever continuously

maintains an estimate of the disk head position by mon-

itoring I/O completion events. For estimating head posi-

tion, we use read I/O completion events only and ignore

I/O completion events for write requests since writes

may be reported as complete as soon as they are writ-

ten to the disk cache. Consequently, the head position as

computed by the dynamic replica retriever is an approx-

imation, since background write flushes inside the disk

are not accounted for. To implement the head-position

estimator, the last head position is updated during the ex-

ecution of the I/O completion handler of each read re-

quest. Additionally, the direction of the disk arm man-

aged by the scheduler is also maintained for elevator-

based I/O schedulers.

One complication with redirection of an I/O request be-

fore a possible merge operation (done by the I/O sched-

uler later) is that this optimization can reduce the chances

for merging the request with another request already

awaiting service in the I/O scheduler queue. For each of

the workloads we experimented with, we did indeed ob-

serve reduction in merging negatively affecting perfor-

mance when using redirection purely based on current

head-position estimates. Request merging should gain

priority over any other operation since it eliminates me-

chanical overhead altogether. One means to prioritize

request merging is performing the indirection of requests

below the I/O scheduler which performs merging within

its mechanisms. Although this is an acceptable and cor-

rect solution, it is substantially more complex compared

to implementation at the block layer above the I/O sched-

uler because there are typically multiple dispatch points

for I/O scheduler implementations inside the operating

system. The second option, and the one used in our sys-

tem, is to evaluate whether or not to redirect the I/O re-

quest to a more opportune location, based on the an ac-

tively maintained digest of outstanding requests at the

I/O scheduler – these are requests that have been dis-

patched to the I/O scheduler but not yet reported as com-

pleted by the device. If an outstanding request to a lo-

cation adjacent to the current request exists in the digest,

redirection is avoided to allow for merging.

read(.....)

head

Legend

Exported

Space

Mapped

Space
Scratch
Space

Figure 7: Transparent replica management for selec-

tive duplication. The read request to the solid block in

the exported space can either be retrieved from its origi-

nal location in the mapped space or from any of the repli-

cas in the scratch space that reduce head movement.

3.4 Selective duplication

Figure 4 revealed that the overlap in longer-time frame

working sets can be substantial in workloads, more than

80% in some cases. While such overlapping content are

the perfect choice for content to be cached, such content

was found to be too big to fit in memory.

A complementary optimization to dynamic replica re-

trieval based on this observation is that an increase in the

number of duplicates for popular content on the disk can

create even greater opportunities for optimizing the I/O

schedule. A basic question then is what to duplicate and

when. We implemented selective duplication to run ev-

ery day during periods of low disk activity based on the

observed diurnal patterns in the I/O workloads that we

experimented with. The question of what to duplicate

can be rephrased as what is the content accessed in the

previous days that is likely to be accessed in the future?

Our analysis of the workloads revealed that the content

overlap between the most frequently used content of the

previous days was found to be a good predictor of fu-

ture accesses to content. The selective duplicator kernel

component calculates the list of frequently used content

across multiple days by extending the ARC replacement

algorithm used for the content-addressed cache.

A list of sectors to duplicate is then forwarded to the

user-space replicator process which creates the actual

replicas during periods of low activity. The periodic na-

ture of this process ensures that the most relevant con-

tent is replicated in the scratch space while older repli-

cas of content that have either been overwritten or are no

longer important are discarded. To make the replication

process seamless to file system, we implemented trans-

7

parent replica management that implements the scratch

space used to store replicas transparently. The scratch

space is provisioned by creating additional physical stor-

age volumes/partitions interspersed within the file sys-

tem data. Figure 7 depicts the transparent replica man-

agement wherein the storage is interspersed with five

scratch space volumes interspersed between file system

mapped space. For file system transparency, a single log-

ically contiguous volume is presented to the file system

by the I/O Deduplication extension. The scratch space

is used to create one or more replicas of data in the ex-

ported space. Since the I/O operations issued during the

selective duplication process are themselves routed via

the in-kernel I/O Deduplication components, the addi-

tional content similarity information due to replication is

automatically recorded into the content cache.

3.5 Persistence of metadata

A final issue is the persistence of the in-memory data

structure so that the system can retain intelligence about

content similarity across system restart operations. Per-

sistence is important for retaining the locations of on-

disk intrinsic and artificially created duplicate content so

that this information can be restored and used immedi-

ately upon a system restart event. We note that while

persistence is useful to retain intelligence that is acquired

over a period of time, “continuous persistence” of meta-

data in I/O Deduplication is not necessary to guarantee

the reliability of the system, unlike other systems such as

the eager writing disk array [40] or doubly distorted mir-

roring [29]. In this sense, selective duplication is similar

to the opportunistic replication as performed by FS2 [15]

because it tracks updates to replicated data in memory

and only guarantees that the primary copy of data blocks

are up-to-date at any time. While persistence of the in-

memory data is not implemented in our prototype yet,

guaranteeing such persistence is relatively straightfor-

ward. Before the I/O Deduplication kernel module is

unloaded (occuring at the same time the managed file

system is unmounted), all in-memory data structure en-

tries can be written to a reserved location of the managed

scratch-space. These can then be read back to populate

the in-memory metadata upon a system restart operation

when the kernel module is loaded into the operating sys-

tem.

4 Experimental Evaluation

In this section, we evaluate each mechanism in I/O Dedu-

plication separately first and then evaluate their cumula-

tive performance impact. We also evaluate the CPU and

memory overhead incurred by an I/O Deduplication sys-

tem. We used the block level traces for the three systems

that were described in detail in § 2 for our evaluation.
The traces were replayed as block traces in a similar way

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

web-vm mail homes

H
it
 r

a
ti
o

Sector 4MB
Content 4MB

Sector 200MB
Content 200MB

Figure 8: Per-day page cache hit ratio for content- and

sector- addressed caches for read operations. The to-

tal number of pages read are 0.18, 2.3, and 0.23 million

respectively for the web-vm, mail and homes workloads.

The numbers in the legend next to each type of address-

ing represent the cache size.

as done by blktrace [2]. Blktrace could not be used as-

is since it does not record content information; we used

a custom Linux kernel module to record content-hashes

for each block read/written in addition to other attributes

of each I/O request. Additionally, the blktrace tool btre-

play was modified to include traces in our format and

replay them using provided content. Replay was per-

formed at a maximum acceleration of 100x with care

being taken in each case to ensure that block access pat-

terns were not modified as a result of the speedup. Mea-

surements for actual disk I/O times were obtained with

per-request block-level I/O tracing using blktrace and the

results reported by it. Finally, all trace playback exper-

iments were performed on a single Intel(R) Pentium(R)

4 CPU 2.00GHz machine with 1 GB of memory and a

Western Digital disk WD5000AAKB-00YSA0 running

Ubuntu Linux 8.04 with kernel 2.6.20.

4.1 Content based cache

In our first experiment, we evaluated the effectiveness

of a content-addressed cache against a sector-addressed

one. The primary difference in implementation between

the two is that for the sector-addressed cache, the same

content for two distinct sectors will be stored twice. We

fixed the cache size in both variants to one of two differ-

ent sizes, 1000 pages (4MB) and 50000 pages (200MB).

We replayed two weeks of the traces for each of the three

workloads; the first week warmed up the cache and mea-

surements were taken during the second week. Figure 8

shows the average per-day cache hit counts for read I/O

operations during the second week when using an adap-

tive replacement cache (ARC) in two modes, content and

sector addressed.

This experiment shows that there is a large increase in

per-day cache hit counts for the web and the home work-

8

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

H
it
 r

a
ti
o

Cache size (MBytes)

ARC - Read
LRU - Read

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

H
it
 r

a
ti
o

Cache size (MBytes)

ARC - Read/Write
LRU - Read/Write

Figure 9: Comparison of ARC and LRU content based

caches for pages read only (top) and pages read/write

operations (bottom). A single day trace (0.18 million

page reads and 2.09 million page read/writes) of the web

workload was used as the workload.

loads when a content-addressed cache is used (relative to

a sector-addressed cache). The first observation is that

improvement trends are consistent across the two cache

sizes. Both caches implementations benefit substantially

from a larger cache size except for the mail workload,

indicating that mail is not a cache-friendly workload val-

idated by its substantially larger working set and work-

load I/O intensity (as observed in Section 2). The web-

vm workload shows the biggest increase with an almost

10X increase in cache hits with a cache of 200MB com-

pared to the home workload which has an increase of 4X.

The mail workload has the least improvement of approx-

imately 10%.

We performed additional experiments to compare an

LRU implementation with the ARC cache implementa-

tion (used in the previous experiments) using a single

day trace of the web-vm workload. Figure 9 provides a

performance comparison of both replacement algorithms

when used for a content-addressed cache. For small and

large cache sizes, we observe that ARC is either as good

or more effective than LRU with ARC’s improvement

over LRU increasing substantially for write operations

at small to moderate cache sizes. More generally, this

experiment suggests that the performance improvements

for a content-addressed cache are sensitive to the cache

replacement mechanism which should be chosen with

care.

 0

 0.005

 0.01

 0.015

 0.02

web-vm mail homes

P
e
r-

re
q
u
e
s
t

d
is

k
 I

/O
 t

im
e
 (

s
e
c
)

Figure 10: Improvement in disk read I/O times with

dynamic replica retrieval. Box and whisker plots de-

picting median and quartile values of the per-request

disk I/O times are shown. For each workload, the val-

ues to the left represent the vanilla system and that on

the right is with dynamic replica retrieval.

4.2 Dynamic replica retrieval

To evaluate the effectiveness of dynamic replica retrieval,

we replayed a one week trace for each workload with

and without using I/O Deduplication. When using I/O

Deduplication, prior to replaying the trace workload, in-

formation about duplicates was loaded into the kernel

module’s data structures, as would have been accumu-

lated by I/O Deduplication over the lifetime of all data on

the disk. Content-based caching and selective duplica-

tion were turned-off. In each case, we measured the per-

request disk I/O time per request. A lower per-request

disk I/O time informs us of a more efficient storage sys-

tem.

Figure 10 shows the results of this experiment. For all

the workloads there is a decrease in median per-request

disk I/O time of at least 10% and up to 20% for the homes

workload. These findings indicate that there is room for

optimizing I/O operations simply by using pre-existing

duplicate content on the storage system.

4.3 Selective duplication

Given the improvements offered by dynamic replica re-

trieval, we now evaluate the impact of selective duplica-

tion, a mechanism whose goal is to further increase the

opportunities for dynamic replica retrieval. The work-

loads and metric used for this experiment were the same

as the ones in the previous experiment.

To perform selective duplication, for each workload,

ten copies of the predicted popular content were created

on scratch space distributed across the entire disk drive.

The set of popular data blocks to replicate is determined

by the kernel module during the day and exported to user

space after a time threshold is reached. A user space pro-

gram logs the information about the popular content that

are candidates for selective duplication and creates the

copies on disk based on the information gathered during

periods of little or no disk activity. As in the previous

9

 0

 0.005

 0.01

 0.015

 0.02

web-vm mail homes

P
e
r-

re
q
u
e
s
t

d
is

k
 I

/O
 t

im
e
 (

s
e
c
)

Figure 11: Improvement in disk read I/O times with

selective duplication and dynamic replica retrieval

optimizations. Other details are the same as Figure 10.

experiment, prior to replaying the trace workload, all the

information about duplicates on disk was loaded into the

kernel module’s data structures.

Figure 11 (when compared with the numbers in Fig-

ure 10) shows how selective duplication improves upon

the previous results using pure dynamic replica retrieval.

Figure 4 showed that the web workload had more than

80% in content reuse overlap and the effect of duplicat-

ing this information can be observed immediately. Over-

all, the reduction in per-request disk I/O time was im-

proved substantially for the web-vm and homes work-

loads, and to a lesser extent for the homes workload us-

ing this additional technique when compared to using dy-

namic replica retrieval alone. Overall reductions in me-

dian disk I/O times when compared to the vanilla sys-

tem were 33% for the web workload, 35% for the homes

workload, and 23% for mail.

4.4 Putting it all together

We now examine the impact of using all the three mech-

anisms of I/O Deduplication at once for each workload.

We use a sector-addressed cache for the baseline vanilla

system and a content-addressed one for I/O Deduplica-

tion. We set the cache size to 200 MB in both cases.

Since sector- or content-based caching is the first mech-

anism encountered by the I/O request stream, the results

of the caching mechanism remain unaffected because of

the other two, and the cache hit counts remain as with

the independent measurements reported in Section 4.1.

However, cache hits do modify the request stream pre-

sented to the remaining two optimizations. While there is

a reduction in the improvements to per-request disk read

I/O times with all three mechanisms (not shown) when

compared to using the combination of dynamic replica

retrieval and selective duplication alone, the total num-

ber of I/O requests is different in each case. Thus the

average disk I/O time is not a robust metric to measure

relative performance improvement. The total disk read

I/O time for a given I/O workload, on the other hand, pro-

vides an accurate comparative evaluation by taking into

account both the reduced number of I/O read operations

Workload Vanilla (sec) I/O dedup (sec) Improvement

web-vm 3098.61 1641.90 47%

mail 4877.49 3467.30 28%

home 1904.63 1160.40 39%

Table 3: Reduction in total disk read I/O times.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50000 100000

L
o
o
k
u
p
 C

P
U

 C
y
c
le

s

Number of unique pages

sector 2
5

sector 2
25

content 2
5

content 2
25

Figure 12: Overhead of content and sector lookup

operations with increasing size of the content-based

cache.

due to content-based caching and the improvements in

disk latencies of the latter two optimizations, and effec-

tively measures the true increase in disk I/O efficiency.

When comparing total disk read I/O time for these

three workloads, substantial reductions were observed

when compared to a vanilla system as shown on Table 3.

These uniformly large improvements (28-47% across the

three workloads) are a clear indication of the effective-

ness of I/O Deduplication in improving I/O performance

for a range of different storage workloads.

4.5 Evaluating Overhead

While the gains due to I/O Deduplication are promis-

ing, it incurs resource overhead. Specifically, the im-

plementation uses content- and sector- addressed hash-

tables to simplify lookup and insert operations into the

content based cache. We evaluate the CPU overhead for

insert/lookup operations and memory overhead required

for managing hash-table metadata in I/O Deduplication.

4.5.1 CPU Overhead

To evaluate the overhead of I/O Deduplication, we mea-

sured the average number of CPU cycles required for

lookup/insert operations as we vary the number of unique

pages (i.e., size) in the content-based cache (i.e., cache

size) for a day of the web workload. Figure 13 de-
picts these overheads for two cache configurations, one

configured with 225 buckets in the hash tables and the

other with 25 buckets. Read operations perform a sector

lookup and additionally content lookup in case of a miss

10

 100

 1000

 10000

 100000

 1e+06

 1e+07

2
5

2
10

2
15

2
20

2
25

2
30

L
o
o
k
u
p
 C

P
U

 C
y
c
le

s

Hash-table Buckets

sector content

Figure 13: Overhead of sector and content lookup op-

erations with increasing hash-table bucket entries.

for insertion. Write operations always perform a sector

and content lookup due to our write-through cache de-

sign. Content lookups need to first compute the hash

for the page contents which takes around 100000 CPU
cycles for MD5. With few buckets (25) lookup times

approach O(N) where N is the size of the hash-table.
However, given enough hash-table buckets (225), lookup

times are O(1).

Next, we examined the sensitivity to the hash-table

bucket entries. As the number of buckets are increased,

the lookup times decrease as expected due to reduction

in collisions, but beyond 220 buckets, there is an in-

crease. We attribute this to L2 cache and TLB misses due

to memory fragmentation, under-scoring that hash-table

bucket sizes should be configured with care. In the sweet

spot of bucket entries, the lookup overhead for both sec-

tor and content reduces to 1K CPU cycles or less than

1µs for our 2GHz machine. Note that the content lookup
operation includes a hash computation which inflates its

cycles requirement by at least 100000.

4.6 Memory Overhead

The management of I/O Deduplication’s content-based

cache introduces memory overhead for managing meta-

data for the content-based cache. Specifically, the mem-

ory overhead is dictated by the size of the cache mea-

sured in pages (P), the degree of Workload static simi-
larity (WSS), and the configured number of buckets in
the hash tables (HTB) which also determine the lookup
time as we saw earlier. In our current unoptimized im-

plementation, the memory overhead in bytes (assuming

4 bytes pointers and 4096 bytes pages) :

mem(P, WSS, HTB) = 13 ∗ P + 36 ∗ P ∗ WSS + 8 ∗ HTB (1)

These overheads include 13 bytes per-page to store the

metadata for a a specific page content (vc page), 36 bytes

per page per duplicated entry (vc entry), and 8 bytes per

hash-table entry for the corresponding linked list. For a

1GB content cache (256K pages), a static similarity of 4,
and a hash-table of size 1 million entries, the metadata

overhead is ∼48MB or approximately 4.6%.

5 Related Work

In this section, we examine research literature related

to workload-based I/O performance optimization and re-

search related to the use of content similarity in mem-

ory and storage systems. While there is substantial work

done along both these directions, they are for the most

part explored as orthogonal techniques in the literature,

with the latter primarily being used for optimizing stor-

age capacity utilization using data deduplication.

5.1 I/O performance optimization

Workload-based I/O performance optimization has a

long history. The first class of optimizations is based

on creating optimized layouts for storage system data.

The early works of Wong [37], Vongsathorn et al. [35],

and Ruemmler and Wilkes [32], which argued for shuf-

fling on-disk data based on data access frequency. Later,

Akyurek and Salem [1] argued for copying over shuffling

of data with the observation that original layouts are of-

ten useful and data popularity and access patterns can

be temporary. More recently, ALIS [14] and BORG [3]

have employed a dedicated, reorganized area on the disk

to improve both locality and sequentiality of I/O access.

The second class of work is based on replicating data

and creating opportunities for reducing disk head move-

ment by increasing the number of choices for retriev-

ing data. These include the large body of work on mir-

roring systems [4]. The work on doubly distorted mir-

rors [33] creates multiple replicas on master and slave

disks to increase both write performance (using initial

write-anywhere and background updating of original lo-

cations) and read performance by dispatching read re-

quests to the nearest free arm. Zhang et al.’s work

on eager writing [40] extended this approach to mir-

rored/striped RAID configurations primarily for database

OLTP workload (which are characterized by little local-

ity or sequentiality). Yu et al. [39] propose an alternate

approach for trading disk capacity for performance in a

RAID system, by storing several rotational replicas of

each block and using a rotational latency sensitive disk

scheduler. FS2 [15] proposed replication in file system

free-space based on block-access frequency and the use

of such selective duplication of content to optimize head

movement during subsequent retrieval of replicated data.

Quite obviously, selective duplication is motivated by the

above works, but is different in two respects: (i) it targets

identifying replication candidates based on content pop-

ularity, rather than block address popularity, and (ii) du-

plication is performed in pre-configured dedicated space

transparently to the file system and/or other managers of

the storage system. To the best of our knowledge the

only work to use content-based optimization of I/O is the

work of Tolia et al. [34], where the authors use content

hashes to perform dynamic replica retrieval choosing be-

11

tween multiple hosts in an extrinsically-duplicated dis-

tributed storage system. Our work, on the other hand,

uses intrinsic duplication within a single storage system.

5.2 Data deduplication

Content similarity in both memory and archival storage

have been investigated in the literature. Memory dedu-

plication has been explored before in the VMware ESX

server [36], Difference Engine [13], and Satori [25],

each aiming to eliminate duplicate in-memory content

both within and across virtual machines sharing a phys-

ical host. Of these, Satori has apparent similarities to

our work because it identifies candidates for in-memory

deduplication as data is read from storage. Satori runs

in two modes: content-based sharing and copy-on-write

disk sharing. For content-based sharing, Satori uses

content-hashes to track page contents in memory read

from disk. Since its goal is not I/O performance opti-

mization, it does not track duplicate sectors on disk and

therefore does not eliminate duplicated I/Os that would

read the same content from multiple locations. In copy-

on-write disk sharing, the disk is already configured to be

copy-on-write enabling the sharing of multiple VM disk

images on storage. In this mode, duplicated I/Os due to

multiple VMs retrieving the same sectors on the shared

physical disk would be eliminated in the same way as

a regular sector-addressed cache would do. In contrast,

our work targets I/O performance optimization by either

eliminating I/Os if it were to retrieve duplicate content

irrespective of where it may reside on storage or reduc-

ing head movement otherwise Thus, the contributions of

Satori are complementary to our work and can be used

simultaneously.

Data deduplication in archival storage has also gained

importance in both the research and industry communi-

ties. Current research on data deduplication uses sev-

eral techniques to optimize the I/O overheads incurred

due to data duplication. Venti [30] proposed by Quin-

lan and Dorward was the first to propose the use of a

content-addressed storage for performing data dedupli-

cation in an archival system. The authors suggested the

use of an in-memory content-addressed index of data to

speed up lookups for duplicate content. Similar content-

addressed caches were used in data backup solutions

such as Peabody [26] and Foundation [31]. Content-

based caching in I/O Deduplication is inspired by these

works. Recent work by Zhu and his colleagues [41] sug-

gests new approaches to alleviate the disk bottleneck via

the use of Bloom filters [5] and by further accounting

for locality in the content stream. The Foundation work

suggests additional optimizations using batched retrieval

and flushing of index entries and a log-based approach

to writing data and index entries to utilize temporal lo-

cality [31]. The work on sparse indexing [22] suggests

improvements to Zhu et al.’s general approach by ex-

ploiting locality in the chunk index lookup operations to

further mitigate the disk I/O bottleneck. I/O Dedupli-

cation addresses a orthogonal problem, that of improv-

ing I/O performance for foreground I/O workload based

on the use of duplicates, rather than their elimination.

Nevertheless, the above approaches do suggest interest-

ing techniques to optimize the management of a content-

addressed index and cache in main-memory that is com-

plementary to and can be used directly within I/O Dedu-

plication.

6 Discussion

Several aspects of I/O Deduplication from design, im-

plementation, and deployment standpoints warrant fur-

ther discussion. Some of these also suggest avenues for

future work.

Multi-disk deployment. In previous sections, we de-

signed and evaluated a single disk implementation of

I/O Deduplication. Multi-disk storage deployments in

the form of RAID or more complex NAS appliances are

common in enterprise data centers. One might ques-

tion both the utility and effectiveness of the single disk

head movement optimizations central to I/O Deduplica-

tion in such systems. We believe that head movement op-

timizations based on content similarity is viable and can

enable complementary optimizations by minimizing the

unavoidable mechanical delays in any disk-based stor-

age system. The dynamic replica retrieval and selective

duplication sub-techniques require further consideration

for multi-disk systems. First, these optimizations must

be implemented where information about individual disk

head positions is available. Such information is available

inside the driver for software RAID, in the RAID con-

troller for hardware RAID, and inside the firmware/OS

or internal hardware controllers for NAS appliances. Di-

gest information about the outstanding requests and I/O

completion events at each disk can then be utilized as in

the single disk design. While the optimal location within

each disk for each I/O request can be thus compiled, the

complementary issue of load balancing across multiple

disks must also be addressed. Apart from the well-known

queue depth based techniques for load-balancing, alter-

nate solutions such as simultaneous dispatching to mul-

tiple disks combined with just-in-time I/O cancellation

can also be envisioned where applicable.

Hash collisions. Our design and implementation of I/O

Deduplication makes the assumption that MD5 (128 bits)

is collision free. Specifically, this assumption is made

when the content-hash entry for a new page being writ-

ten is registered. A similar assumption, for SHA-1 is

made for deduplication in archival storage [30] and low-

bandwidth network file transfers [27]. While this as-

12

sumption may be reasonable in several settings, deliv-

ering absolute correctness guarantees requires that this

assumption be removed. Systems like Foundation [31]

additionally include the provision to perform a byte-wise

comparison following a hit in the content cache by read-

ing the target location which potentially contains the du-

plicate data. This, of course, requires an additional I/O

operation. The use of a specific hash function or the

method of determining duplicate content is not decisive

in our design, and these alternatives can be employed if

found necessary within the target deployment scenario.

Variable-sized chunks. Our implementation of I/O

Deduplication uses fixed size blocks as the basic data unit

for determining content similarity. This choice was mo-

tivated by our goal of simplified deployment on a vari-

ety of block storage systems. Using variable size chunks

as units has been demonstrated to be more effective for

similarity detection for mostly similar content and simi-

lar content at different offsets within a file [6, 27]. This

capability is especially important for archival storage

where a single backup file is composed of multiple data

files stored at different offsets and possibly with partial

modifications. We believe that for online storage sys-

tems, this may be of lesser concern, except for very spe-

cific applications (e.g., a mail server where entire user

INBOXes or folders are managed as a single file). Nev-

ertheless, the use of variable sized chunks for I/O dedu-

plication provides an interesting avenue of future work.

7 Conclusions and Future work

System and storage consolidation trends are driving in-

creased duplication of data within storage systems. Past

efforts have been primarily directed towards the elimina-

tion of such duplication for improving storage capacity

utilization. With I/O Deduplication, we take a contrary

view that intrinsic duplication in a class of systems which

are not capacity-bound can be effectively utilized to im-

prove I/O performance – the traditional Achilles’ heel

for storage systems. Three techniques contained within

I/O Deduplication work together to either optimize I/O

operations or eliminate them altogether. An in-depth

evaluation of these mechanisms revealed that together

they reduced average disk I/O times by 28-47%, a large

improvement all of which can directly impact the over-

all application-level performance of disk I/O bound sys-

tems. The content-based caching mechanism increased

memory caching effectiveness by increasing cache hit

rates by 10% to 4x for read operations when compared

to traditional sector-based caching. Head-position aware

dynamic replica retrieval directed I/O operations to al-

ternate locations on-the-fly and additionally reduced I/O

times by 10-20%. And, selective duplication created ad-

ditional replicas of popular content during periods of low

foreground I/O activity and further improved the effec-

tiveness of dynamic replica retrieval by 23-35%.

I/O Deduplication opens up several directions for fu-

ture work. One avenue for future work is to explore

content-based optimizations for write I/O operations. A

possible future direction is to optionally coalesce or even

eliminate altogether write I/O operations for content that

are already duplicated elsewhere on the disk, or alter-

natively direct such writes to alternate locations in the

scratch space. While the first option might seem similar

to data deduplication at a high-level, we suggest a pri-

mary focus on the performance implications of such opti-

mizations rather than capacity improvements. Any opti-

mization for writes affects the read-side optimizations of

I/O Deduplication and a careful analysis and evaluation

of the trade-off points in this design space is important.

Acknowledgments

We thank the anonymous reviewers and our shepherd

Ajay Gulati for excellent feedback which improved this

paper substantially. We thank Eric Johnson for his help

with production server traces at FIU. This work was

supported by the NSF grants CNS-0747038 and IIS-

0534530 and by DoE grant DE-FG02-06ER25739.

References

[1] Sedat Akyurek and Kenneth Salem. Adaptive Block Re-

arrangement. Computer Systems, 13(2):89–121, 1995.

[2] Jens Axboe. blktrace user guide, February 2007.

[3] Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam

Burnett, Jason Liptak, Raju Rangaswami, and Vage-

lis Hristidis. BORG: Block-reORGanization for Self-

optimizing Storage Systems. In Proc. of the USENIX File

and Storage Technologies, February 2009.

[4] Dina Bitton and Jim Gray. Disk Shadowing. In Proc. of

the International Conference on Very Large Data Bases,

1988.

[5] Burton H. Bloom. Space/time trade-offs in hash cod-

ing with allowable errors. Communications of the ACM,

13(7):422–426, 1970.

[6] Sergey Brin, James Davis, and Hector Garcia-Molina.

Copy Detection Mechanisms for Digital Documents. In

Proc. of ACM SIGMOD, May 1995.

[7] Austin Clements, Irfan Ahmad, Murali Vilayannur, and

Jinyuan Li. Decentralized deduplication in san cluster

file systems. In Proc. of the USENIX Annual Technical

Conference, June 2009.

[8] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo

Seltzer. Passive NFS Tracing of Email and Research

Workloads. In Proc. of the USENIX Conference on File

and Storage Technologies, March 2003.

[9] EMC Corporation. EMC Invista.

http://www.emc.com/products/software/invista/invista.jsp.

[10] Binny S. Gill. On multi-level exclusive caching: offline

optimality and why promotions are better than demotions.

13

In Proc. of the USENIX File and Storage Technologies,

Feburary 2008.

[11] Jim Gray and Prashant Shenoy. Rules of Thumb in Data

Engineering. Proc. of the IEEE International Conference

on Data Engineering, February 2000.

[12] Jorge Guerra, Luis Useche, Medha Bhadkamkar, Ricardo

Koller, and Raju Rangaswami. The Case for Active

Block Layer Extensions. ACM Operating Systems Re-

view, 42(6), October 2008.

[13] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan

Savage, Alex C. Snoeren, George Varghese, Geoffrey

Voelker, and Amin Vahdat. Difference Engine: Harness-

ing Memory Redundancy in Virtual Machines. Proc. of

the USENIX OSDI, December 2008.

[14] Windsor W. Hsu, Alan Jay Smith, and Honesty C.

Young. The Automatic Improvement of Locality in Stor-

age Systems. ACM Transactions on Computer Systems,

23(4):424–473, Nov 2005.

[15] Hai Huang, Wanda Hung, and Kang G. Shin. FS2: Dy-

namic Data Replication In Free Disk Space For Improv-

ing Disk Performance And Energy Consumption. In Proc.

of the ACM SOSP, October 2005.

[16] IBM Corporation. IBM System Stor-

age SAN Volume Controller. http://www-

03.ibm.com/systems/storage/software/virtualization/svc/.

[17] N. Jain, M. Dahlin, and R. Tewari. TAPER: Tiered Ap-

proach for Eliminating Redundancy in Replica Synchro-

nization. In Proc. of the USENIX Conference on File And

Storage Systems, 2005.

[18] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-pro:

An effective improvement of the clock replacement. In

Proc. of the USENIX Annual Technical Conference, April

2005.

[19] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey.

Redundancy Elimination Within Large Collections of

Files. Proc. of the USENIX Annual Technical Conference,

2004.

[20] Andrew Leung, Shankar Pasupathy, Garth Goodson, and

Ethan Miller. Measurement and Analysis of Large-Scale

Network File System Workloads. Proc. of the USENIX

Annual Technical Conference, June 2008.

[21] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer

Sachedina, and Shaobo Gao. Second-tier cache manage-

ment using write hints. In Proc. of the USENIX File and

Storage Technologies, 2005.

[22] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat,

Vinay Deolalikar, Greg Trezise, and Peter Camble.

Sparse indexing: large scale, inline deduplication using

sampling and locality. In Proc. of the USENIX File and

Storage Technologies, February 2009.

[23] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.

Evaluation techniques for storage hierarchies. IBM Sys-

tems Journal, 9(2):78–117, 1970.

[24] Nimrod Megiddo and D. S. Modha. Arc: A self-tuning,

low overhead replacement cache. In Proc. of USENIX

File and Storage Technologies, 2003.

[25] G. Milos, D. G. Murray, S. Hand, and M. Fetterman.

Satori: Enlightened Page Sharing. In Proc. of the Usenix

Annual Technical Conference, June 2009.

[26] Charles B. Morrey III and Dirk Grunwald. Peabody: The

Time Travelling Disk. In Proc. of the IEEE/NASA MSST,

2003.

[27] Athicha Muthitacharoen, Benjie Chen, and David

Mazières. A low-bandwidth network file system. In Proc.

of the ACM SOSP, October 2001.

[28] Network Appliance, Inc. NetApp V-Series

of Heterogeneous Storage Environments.

http://media.netapp.com/documents/v-series.pdf.

[29] Cyril U. Orji and Jon A. Solworth. Doubly distorted mir-

rors. In Proceedings of the ACM SIGMOD, 1993.

[30] S. Quinlan and S. Dorward. Venti: A New Approach to

Archival Storage. Proc. of the USENIX File And Storage

Technologies, January 2002.

[31] Sean Rhea, Russ Cox, and Alex Pesterev. Fast, Inexpen-

sive Content-Addressed Storage in Foundation. Proc. of

USENIX Annual Technical Conference, June 2008.

[32] C. Ruemmler and J. Wilkes. Disk Shuffling. Technical

Report HPL-CSP-91-30, Hewlett-Packard Laboratories,

October 1991.

[33] Jon A. Solworth and Cyril U. Orji. Distorted Mirrors.

Proc. of PDIS, 1991.

[34] Niraj Tolia, Michael Kozuch, Mahadev Satyanarayanan,

Brad Karp, and Thomas Bressoud. Opportunistic use of

content addressable storage for distributed file systems.

Proc. of the USENIX Annual Technical Conference, 2003.

[35] Paul Vongsathorn and Scott D. Carson. A System for

Adaptive Disk Rearrangement. Softw. Pract. Exper.,

20(3):225–242, 1990.

[36] Carl A. Waldspurger. Memory Resource Management in

VMware ESX Server. Proc. of USENIX OSDI, 2002.

[37] C. K. Wong. Minimizing Expected Head Movement

in One-Dimensional and Two-Dimensional Mass Stor-

age Systems. ACM Computing Surveys, 12(2):167–178,

1980.

[38] Theodore M. Wong and John Wilkes. My Cache or

Yours? Making Storage More Exclusive. In Proc. of the

USENIX Annual Technical Conference, 2002.

[39] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishna-

murthy, and T. E. Anderson. Trading Capacity for Perfor-

mance in a Disk Array. Proc. of USENIX OSDI, 2000.

[40] C. Zhang, X. Yu, A. Krishnamurthy, and R. Y. Wang.

Configuring and Scheduling an Eager-Writing Disk Ar-

ray for a Transaction Processing Workload. In Proc. of

USENIX File and Storage Technologies, January 2002.

[41] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the

Disk Bottleneck in the Data Domain Deduplication File

System. Proc. of the USENIX File And Storage Technolo-

gies, February 2008.

14

