Taming Workload Bursts in Data Centers

Lanyue Lu (Student) and Peter Varman*

The increasing complexity of managing stored data and
the economic benefits of consolidation are driving storage
systems towards a service-oriented paradigm, in which per-
sonal and corporate clients purchase storage space and band-
width to store and retrieve their data. In this scenario, trade-
offs with regard to QoS performance guarantees, pricing,
and resource provisioning for hosting data centers assume
increasing importance. A fundamental challenge in data
center operations is the need to deal effectively with high-
variance bursty workloads arising in the network and storage
server traffic. Although only a small portion of the workload,
the bursts have a disproportionate effect on the performance
of the entire workload. This tail wagging the dog situation
results in the server being forced to make unduly conserva-
tive estimates of resource requirements, resulting in excess
resource commitments with associated monetary and energy
consumption costs, and unnecessary throttling of the number
of the clients admitted into the system.

In this abstract, we present a novel workload shaping
framework to improve client performance and slim resource
provisioning. In our approach we modify the characteristics
of the arriving workload so that its behavior is dominated by
the majority well-behaved portion of the request stream; the
portions of the workload comprising the tail are identified
and isolated so that their effects are localized. This results in
more predictable behavior, and significantly lower resource
requirements. The performance SLA consequently is spec-
ified by a distribution of response times rather than a single
worst-case measure. For instance, rather than specifying a
single upper bound r on the response time for all requests, a
client may relax the requirements and instead require that
99% of the requests meet the bound r and the remaining
requests meet a more relaxed latency 7. An n-tier SLA is
represented by the set of n pairs of frequency and response
times: {(f;, )|l <i<n0< fioi<fi<l,f,=10} A
3-tier response time distribution {(0.9,20ms), (0.99,50ms),
(1.0,500ms)} indicates that no more than 10% of the re-
quests can exceed 20ms latency, no more than 1% should ex-
ceed S0ms, while all requests must be served within a 500ms
response time.

The workload shaping procedure consists of two comple-
mentary operations: decomposition and recombination. In
the decomposition phase, the workload of a single applica-
tion (or client) is partitioned into several classes with dif-
ferent performance guarantees. The requests belonging to
the different classes are directed to separate queues (primary
and secondary). In the recombination phase the requests of
the separated classes are multiplexed in a suitable manner to
satisfy the individual performance constraints. We provide
an optimal decomposition algorithm, which can efficiently
identify a maximal-sized set of requests that can meet the
deadline, given the workload, capacity and response time
bound. For the recombination, we provide a slack-based al-

*Rice University, email:{112,pjv}@rice.edu

gorithm which schedules the requests from different queues
in a response time sensitive manner for QoS guarantees.

Current Progress: We have implemented our workload
shaping framework in DiskSim as a new I/O scheduler, and
evaluated it using several block level storage traces: Web-
Search, OLTP, TPC-D and OpenMail. The results show sev-
eral advantages of our framework: (i) it reduces the storage
server resource requirements (capacity and power) signifi-
cantly while affecting QoS guarantees minimally; (ii) it re-
sults in better response time distribution than the unshaped
workload; (iii) it provides much more accurate resource
planning for single and multiple clients compared to simple
worst-case resource requirements aggregation. We are cur-
rently implementing this framework as a new I/O scheduler
in the Linux kernel. In applying this high level idea there are
several directions for improvements that are currently under
investigation.

Data Locality: Disk throughput highly depends on the
spatial locality in the workload. During decomposition, a
stream of sequential requests may be separated into differ-
ent queues destroying locality in the original request stream.
To avoid throughput degradation in the recombination pro-
cess, the scheduling must be sensitive to the underlying data
locality. Therefore, we not only schedule the requests across
different queues to meet response time bounds, but also try
to improve the system throughput by re-ordering the requests
in the individual queues using seek-distance minimization
schedulers like SSTF.

Adaptive Decomposition: The presence of locality in
the request stream can be leveraged to improve the decom-
position performance. A static decomposition scheme dis-
tributes requests to different queues using random access
service time estimates. Request streams with high locality
will finish faster than estimated, and the decomposition com-
ponent should dynamically adjust its partitioning decision
to leverage the free disk bandwidth. An adaptive algorithm
will choose between scheduling requests from a secondary
queue, or continue giving service to the primary queue, to
achieve performance tuned to the current access pattern.

Multiple Clients: In a shared storage environment, each
client or application may have different QoS requirements.
An open question is: Where should our workload shaping
framework reside? There are two options: local or global.
The first choice means that we maintain separate request
queues for each client during the decomposition process.
The aggregate storage bandwidth is then multiplexed among
the clients based on their reservations or requirements. The
second option means that we maintain shared queues for all
the clients during the decomposition process. The scheduler
records the number of requests from each client and uses a
global strategy to decide how to decompose the workload
when new requests arrive. Also, it re-orders the requests in
a fair-queueing manner that guarantees the response time re-
quirements of all the clients.



