
Adaptive Context Switch for Very Fast Block Device

Jongmin Gim Kwangho Lee Youjip Won
Dept. of Electrical and Computer Engineering

Hanyang University, Korea
{jmkim|kanlee|yjwon}@ece.hanyang.ac.kr

Abstract

Traditional block device (HDD) has large and unpre-
dictable access time, from 1ms to 17ms. This characteris-
tic imposes operating system to perform context switch to
increase CPU utilization when a process requests I/O. In
order to maximize CPU utilization, operating system per-
forms context switch with adequate scheduling mechanism.
Meanwhile, device interrupts to operating system when it is
ready to transfer target data blocks. Before I/O procedure is
progressed, one more context switch from current process
context to device context has to be made which considered
as overhead. In response time’s point of view, this mecha-
nism sacrifices minimum two times of context switch over-
head. Overheads of context switch include loading a new
working set for next process to cache, and flushing TLB. To
measure cache effect in context switch, we utilizelat ctx
in Lmbench. The result shows that required time for ordi-
nary context switch is under 1µs, however, context switch
with 2MB data loading to data cache spends from 180µs
to 330µs in Intel Core 2 Duo E6550 2.33GHz Processor.
Modern block devices based on memory technology (SSD,
flash memory, non-volatile memory and etc) have different
I/O characteristics against hard disk drive. SSD based on
Flash memory requires 9µs ∼ 42µs, and FRAM at most re-
quires 90ns∼ 110ns access time. It shows a possibility that
access time can be shorter than total context switch over-
head, which lowers the efficiency of CPU utilization when
context switch is over.

We concentrate on the point that I/O response time of
fast block device based on memory can be predictable since
it does not require any mechanical moving, e.g., seek, rota-
tional delay. We suggest adaptive context switch scheme de-
termining whether context switch is necessary or not, when
process requests I/O. It performs polling in current process
state, and decides whether to omit device context switch in
order to reduce response time. The decision is made when
overheads are smaller than that of performing switch. To
achieve our goal, we (i) analyze characteristics of I/O de-
vice and context switch process, (ii) design adaptive context
switch model, (iii) develop prediction algorithms which can
select whether performing context switch or not, and (iv)
reduce I/O response time.

The essential part of implementing adaptive context
switch model is building pseudo device that uses memory
and modifies parts of block I/O codes,make request and
blkdev, in Linux kernel 2.6.24.7. We format pseudo device

by EXT2, and put a 100MB dummy file in it. Performance
evaluation is done by the mean time of reading whole file
measured with 1000 times. We do not take account of DMA
since pseudo-device uses only the memory, no other pe-
ripherals. Fig. 1 shows the percentage of the performance
enhancement of adaptive context switch scheme compared
to original context switch model. ”anti” and ”noop” rep-
resent the anticipatory and noop I/O scheduling algorithm
of Linux kernel, respectively. ”random” represents a read-
ing 4KB block-sized data from each first and last posi-
tion of the dummy file, and ”sequential” represents read-
ing 4KB block-sized data sequentially from the beginning
of the dummy file. Adaptive context switch scheme is tested
by noop I/O scheduling, but original model is tested by an-
ticipatory and noop. Most I/O scheduling consider disk ge-
ometry to reduce head moving even though it is not proper
to block device based on memory. Fig. 1 shows that ran-
dom data test gives 2% of improvement where as sequential
improvement of 5.4% when original and adaptive context
switch use noop I/O scheduling algorithm(noop vs noop).
However the enhancement is increased up to 9% when orig-
inal context switch use anticipatory I/O scheduling, whereas
adaptive context switch uses noop(anti vs noop). In another
experiment, we set single process which requests I/O and 9
processes which only use arithmetic operations. The results
of read performance show that response time is reduced up
to 16.7% even though there is only 1 process which uses
device queue. We conclude that cache replacement in con-
text switch can lead serious performance degradation, and
adaptive context switch can offer significant performance
improvement in response time, booting time which includes
loading daemons, and CPU utilization.

0

5

10

15

20

anti vs noop noop vs noop

P
er

fo
rm

an
ce

 E
nh

an
ce

m
en

t(
%

)

IO Scheduling Policy

random
sequential

Figure 1. random and sequential read test

