
Intermediate Gateway Service to Aggregate and Cache the I/O Operations into
Distributed Storage Repositories

Mehmet Balman, Ismail Akturk, and Tevfik Kosar
Department of Computer Science, Louisiana State University

{balman, akturk, kosar}@cct.lsu.edu

Today's large-scale scientific applications generate tremendous amount of data. In addition to immense
computational requirements, data management is one of the biggest challenges. Those data intensive applications
usually make use of scratch volumes, which are limited in size, to store output data temporarily in a high
performance computational cluster. A general scenario is to use an intermediate storage area and then transfer
files to a remote storage for post processing and long term archival. Data Grids provide a distributed
environment for indexing and storing large scale scientific data for collaborative science. Staging data in a fast
storage space enables fast I/O access. Data generated by a data intensive application is intended to be uploaded
to a specific data resource which is usually a remote system. On the other hand, we need workflow managers to
organize input data retrieval, job execution, and uploading of output data. This leads to two major problems.
First, there is need to handle data-flow with some external tools; second, client is limited by the storage capacity
of the intermediate staging area.

We have developed a distributed data storage system, PetaShare1, that span multiple institutions across
Louisiana. PetaShare resources among the LONI2 sites are shown in Figure 1. Petashare provides a unified
namespace using iRODS3 services and lightweight client tools for efficient and transparent access. Petashell,
based on Parrot4, provides an interactive shell interface by capturing I/O calls and matching them to
corresponding remote I/O operations. Petafs, a FUSE5 client, allows users to access remote data repositories
mounted as a local filesystem. In order to overcome latency problem, we have optimized Petafs and Petashell
clients by aggregating I/O requests to minimize the number of network messages. We have implemented
prefetching for read operations, and caching for write operations such that we delay I/O operations and upload
data in large size of chunks to eliminate the effect of high latency between the client and the data resource.
Figure 3 presents some test results for advance buffer implementation in PetaShare clients.

By extending this idea to provide a transparent and efficient direct access to data repositories, we also plan to
provide more intelligent FUSE clients especially for HPC applications. There is a tremendous effort to make
efficient data access in cluster file systems. Our focus is to provide a transparent access to remote data
repositories. However, number of compute elements involved in a large scale application is far beyond the ability
a data management service can handle. Besides, multi-core compute elements in which every core is able to
generate I/O calls, makes I/O latency a very crucial problem in today’s high performance research. Thus, we
intend to make client tools accessing remote data storage more intelligently and uploading data transparently
while preserving the performance and efficiency. Instead of sending I/O request directly to the remote data
resource, we plan to use an intermediate gateway service to aggregate and cache I/O operations. This will
provide an asynchronous mechanism and also make I/O accesses efficient since we will not be dealing with high
latency for many many small data chunks sent for I/O calls. Those clients communicate and forward I/O request
to the gateway service. Gateway act as a staging area, but transparent to users. It does caching and aggregation of
I/O requests. We sent data in large chunks and minimize number of calls sent to the remote data repository. This
model works for most cases since HPC applications usually do not necessitate complex I/O patterns. Figure 2
gives a better representation of the intended system architecture.

1 PetaShare: http://www.petashare.org
2 Louisiana Optical Network Initiative: www.loni.org
3 iRODS: http://www.irods.org
4 Parrot: http://www.cse.nd.edu/~ccl/software/parrot
5 FUSE: http://fuse.sourceforge.net/

 Figure1: LONI and PetaShare Sites Figure2: Intermediate Gateway Service

Figure3: There are 4
major remote sites and
the metadata database is
on lsu site. Dsl-turtle is
outside of the LONI
network and it has slow
access to 4 PetaShare
sites. Queenbee is inside
the LONI network and it
has much faster access
to all of those 4 sites.
Results are average
values of 3 to 5
separate runs. We have
used cp command and
collected average
throughput of 3 to 5
separate runs for
copying 1MB, 10MB
and 100MB files. The x-
axis (buffer size) is in
log scale.

