
On the Consistability of Storage Systems

Amitanand Aiyer∗ Eric Anderson Xiaozhou Li Mehul Shah Jay J. Wylie

anand@cs.utexas.edu, {eric.anderson4, xiaozhou.li, mehul.shah, jay.wylie}@hp.com
Hewlett-Packard Laboratories

Modern Internet-scale storage systems typically pro-

vide different consistency guarantees under different op-

erating conditions (i.e., failure scenarios). Under the fault-

free condition, the system may provide strong guarantees

such as atomic consistency. However, under failure con-

ditions (e.g., network partitioning), the system often sac-

rifices consistency in exchange for higher availability. For

example, under network partitioning, the system may only

provide eventual consistency. After all, by Brewer’s fa-

mous theorem, if one has to live with network partition-

ing, then one has to sacrifice either consistency or avail-

ability. The current practice is to only describe the weak-

est consistency provided by a storage system, although for

a considerable amount of time, the system may operate

under good conditions and provide stronger consistency.

This makes the specification imprecise and focuses exclu-

sively on the worst-case. Such specifications make it hard

to compare two systems in detail.

To address this problem, we have introduced the con-

cept of consistability [2]. Inspired by and analogous to the

notion of performability, consistability tries to capture the

fact that a storage system provides different kinds of con-

sistency under different operating conditions. At a high

level, the consistability of a system describes what kinds

of consistency are achieved by the system under each op-

erating condition. If one can come up with the portion

of time each operating condition occurs (by measuring,

modeling, or estimating), then one can calculate how of-

ten a system achieves a certain consistency. For exam-

ple, suppose a system provides atomic consistency under

fault-free conditions, which is estimated to be around 80%

of the time, and provides regular consistency under all

faulty conditions, which is estimated to be around 20%

of the time. Then the system provides atomic consistency

80% of the time, but regular consistency 100% of the time.

(It remains an open problem how to detect the transitions

between different consistencies and how to reason about

the system’s behavior during a transition.) Consistability

makes the specification of a system more precise and fa-

∗student

cilitates the comprehensive comparison of systems. For

example, to compare two systems, a user can assign im-

portance to each consistency level and determine which

system achieves the more important levels more often.

We are using consistability to understand the design

trade-offs in the development of a scalable key-value stor-

age system. This system provides a simple get-put inter-

face, is designed to scale across multiple data centers, and

is able to sustain various kinds of failure scenarios such as

disk failures, data center failures, and network partition-

ing. For each failure scenario, we investigate what kinds

of consistency are achievable. For example, for disk fail-

ures and data center failures, we expect that regular con-

sistency (i.e., a get returns a value most recently put into

the system) is achievable. However, for network parti-

tioning, we believe that the strongest consistency achiev-

able is k-regularity: a get returns a value that associates

with one of the last k puts [1]. Unfortunately, k may be

unbounded because the network can remain partitioned

for a long time. In other words, we may only be able

to achieve ∞-regularity under network partitioning. We
are currently verifying our get-put protocol achieves cer-

tain consistency levels for various failure scenarios using

Lamport’s TLC model checker. We are also investigat-

ing how slight variations of the protocol considerably af-

fect the consistencies achieved under some specific failure

scenario.

References

[1] Amitanand Aiyer, Lorenzo Alvisi, and Rida A. Bazzi.

On the availability of non-strict quorum systems. In

Proc. 19th DISC, pages 48–62, September 2005.

[2] Amitanand Aiyer, Eric Anderson, Xiaozhou Li,

Mehul Shah, and Jay J. Wylie. Consistability: De-

scribing usually consistent systems. In HotDep 08,

December 2008.


