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Abstract
In enterprise data centers power usage is a problem im-
pacting server density and the total cost of ownership.
Storage uses a significant fraction of the power budget
and there are no widely deployed power-saving solutions
for enterprise storage systems. The traditional view is
that enterprise workloads make spinning disks down in-
effective because idle periods are too short. We ana-
lyzed block-level traces from 36 volumes in an enter-
prise data center for one week and concluded that signif-
icant idle periods exist, and that they can be further in-
creased by modifying the read/write patterns using write
off-loading. Write off-loading allows write requests on
spun-down disks to be temporarily redirected to persis-
tent storage elsewhere in the data center.

The key challenge is doing this transparently and ef-
ficiently at the block level, without sacrificing consis-
tency or failure resilience. We describe our write off-
loading design and implementation that achieves these
goals. We evaluate it by replaying portions of our traces
on a rack-based testbed. Results show that just spinning
disks down when idle saves 28–36% of energy, and write
off-loading further increases the savings to 45–60%.

1 Introduction

Power consumption is a major problem for enterprise
data centers, impacting the density of servers and the to-
tal cost of ownership. This is causing changes in data
center configuration and management. Some compo-
nents already support power management features: for
example, server CPUs can use low-power states and dy-
namic clock and voltage scaling to reduce power con-
sumption significantly during idle periods. Enterprise
storage subsystems do not have such advanced power
management and consume a significant amount of power
in the data center [32]. An enterprise grade disk such as
the Seagate Cheetah 15K.4 consumes 12 W even when

idle [26], whereas a dual-core Intel Xeon processor con-
sumes 24 W when idle [14]. Thus, an idle machine with
one dual-core processor and two disks already spends as
much power on disks as processors. For comparison, the
13 core servers in our building’s data center have a total
of 179 disks, more than 13 disks per machine on average.

Saving power in storage systems is difficult. Simply
buying fewer disks is usually not an option, since this
would reduce peak performance and/or capacity. The al-
ternative is to spin down disks when they are not in use.
The traditional view is that idle periods in server work-
loads are too short for this to be effective [5, 13, 32]. In
this paper we present an analysis of block-level traces of
storage volumes in an enterprise data center, which only
partially supports this view. The traces are gathered from
servers providing typical enterprise services, such as file
servers, web servers, web caches, etc.

Previous work has suggested that main-memory
caches are effective at absorbing reads but not writes [4].
Thus we would expect at the storage level to see peri-
ods where all the traffic is write traffic. Our analysis
shows that this is indeed true, and that the request stream
is write-dominated for a substantial fraction of time.

This analysis motivated a technique that we call write
off-loading, which allows blocks written to one volume
to be redirected to other storage elsewhere in the data
center. During periods which are write-dominated, the
disks are spun down and the writes are redirected, caus-
ing some of the volume’s blocks to be off-loaded. Blocks
are off-loaded temporarily, for a few minutes up to a few
hours, and are reclaimed lazily in the background after
the home volume’s disks are spun up.

Write off-loading modifies the per-volume access pat-
terns, creating idle periods during which all the volume’s
disks can be spun down. For our traces this causes vol-
umes to be idle for 79% of the time on average. The
cost of doing this is that when a read occurs for a non-
off-loaded block, it incurs a significant latency while the
disks spin up. However, our results show that this is rare.
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Write off-loading is implemented at the block level
and is transparent to file systems and applications run-
ning on the servers. Blocks can be off-loaded from any
volume to any available persistent storage in the data cen-
ter, either on the same machine or on a different one. The
storage could be based on disks, NVRAM, or solid-state
memory such as flash. Our current hardware does not
have flash or other solid-state devices and hence we used
a small partition at the end of each existing volume to
host blocks off-loaded from other volumes.

Write off-loading is also applicable to a variety of stor-
age architectures. Our trace analysis and evaluation are
based on a Direct Attached Storage (DAS) model, where
each server is attached directly to a set of disks, typically
configured as one or more RAID arrays. DAS is typi-
cal for small data centers such as those serving a single
office building. However, write off-loading can also be
applied to network attached storage (NAS) and storage
area networks (SANs).

A major challenge when off-loading writes is to en-
sure consistency. Each write request to any volume can
be off-loaded to one of several other locations depending
on a number of criteria, including the power state and
the current load on the destination. This per-operation
load balancing improves performance, but it means that
successive writes of the same logical block could be off-
loaded to different destinations. It is imperative that the
consistency of the original volume is maintained even in
the presence of failures. We achieve this by persisting
sufficient metadata with each off-loaded write to recon-
struct the latest version of each block after a failure.

This paper makes two main contributions. First, we
show that contrary to conventional wisdom and current
practice, idle periods in enterprise workloads can be ex-
ploited by spinning disks down, for power savings of 28–
36%. Second, we present write off-loading as a generic
and practical approach that allows further reduction of
power consumption in storage systems and also elimi-
nates the spin-up penalty for write requests. In our trace-
based evaluation on a rack-mounted testbed, write off-
loading enabled energy savings of 45–60%. The perfor-
mance of all write requests, and 99% of read requests,
was equivalent to that when not spinning disks down.

The rest of the paper is organized as follows. Sec-
tion 2 presents an analysis of block-level traces from an
enterprise data center, which motivates write off-loading.
Section 3 describes the design and implementation of the
write off-loading infrastructure. Section 4 presents an
evaluation of write off-loading on a rack-based hardware
testbed. Section 5 discusses related work, and Sections 6
and 7 conclude the paper.

Server Function #volumes
usr User home directories 3
proj Project directories 5
prn Print server 2
hm Hardware monitoring 2
rsrch Research projects 3
prxy Firewall/web proxy 2
src1 Source control 3
src2 Source control 3
stg Web staging 2
ts Terminal server 1
web Web/SQL server 4
mds Media server 2
wdev Test web server 4

Table 1: Data center servers traced (13 servers, 36 vol-
umes, 179 disks)

2 Volume Access Patterns

The traditional view is that spinning disks down does
not work well for server workloads [5, 13, 32]. Guru-
murthi et al. [13] show that for disk traffic patterns gen-
erated by the TPC-C and TPC-H benchmarks, spinning
down disks is ineffectual: the periods of idleness are
too short. Zhu et al. [32] also use the cello block-level
volume traces [22] collected from a single file/compute
server at HP Labs. These are not necessarily represen-
tative of all server workloads in enterprise data centers.
Many enterprise servers are less I/O intensive than TPC
benchmarks, which are specifically designed to stress the
system under test. Enterprise workloads also show sig-
nificant variation in usage over time, for example due to
diurnal patterns.

In order to understand better the I/O patterns generated
by standard data center servers, we instrumented the core
servers in our building’s data center to generate per vol-
ume block-level traces for one week. Table 1 describes
the servers that we traced: most of these are typical of
any enterprise data center. In total, we traced 36 volumes
containing 179 disks on 13 servers.

The data center is air-conditioned and the servers are
high-end rack-mounted machines. The default config-
uration is for each server to have two internal physical
disks configured as a RAID-1 array, which is used as the
boot volume. Each server is additionally configured with
one or more RAID-5 arrays as data volumes: the stor-
age for these is provided using rack-mounted co-located
DAS. All the servers run the Windows Server 2003 SP2
operating system. Data on the volumes is stored through
the NTFS file system and accessed by clients through a
variety of interfaces including CIFS and HTTP.

We believe that the servers, data volumes, and their
access patterns are representative of a large number of
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(a) Mean request rate (b) Peak request rate

Figure 1: Mean and peak request rates per volume over 7 days
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Figure 2: CDF of active time per volume

small to medium size enterprise data centers. Although
access patterns for system volumes may be dependent on,
for example, the server’s operating system, we believe
that for data volumes these differences will be small.

The traces are gathered per-volume below the file sys-
tem cache and capture all block-level reads and writes
performed on the 36 volumes traced. The traced pe-
riod was 168 hours (1 week) starting from 5PM GMT
on the 22nd February 2007. The traces are collected us-
ing Event Tracing For Windows (ETW) [17], and each
event describes an I/O request seen by a Windows disk
device (i.e., volume), including a timestamp, the disk
number, the start logical block number, the number of
blocks transferred, and the type (read or write). ETW has
very low overhead, and the traces were written to a sepa-
rate server not included in the trace: hence we do not be-
lieve that the tracing activity perturbed the traced access
patterns. The total number of requests traced was 434
million, of which 70% were reads; the total size of the
traces was 29 GB. A total of 8.5 TB was read and 2.3 TB
written by the traced volumes during the trace period.

Figure 1(a) shows the average read and write request
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Figure 3: Number of active volumes over time

rate over the entire week for each of the volumes. There
is significant variation across volumes, with volumes for
the file servers, the source version control servers, and
the web proxy all having significant read load. However,
many of the volumes such as the research projects server
and the test web server have low read and write load. Fig-
ure 1(b) shows the peak read and write rates, measured at
a 60-second granularity for the 36 volumes. Peak loads
are generally much higher than the mean load, indicating
that while volumes may be provisioned for a high peak
load, most of the bandwidth is unused most of the time.

Overall, the workload is read-dominated: the ratio of
read to write requests is 2.37. However, 19 of the 36 vol-
umes have read/write ratios below 1.0; for these volumes
the overall read-write ratio is only 0.18. Further analysis
shows that for most of the volumes, the read workload is
bursty. Hence, intuitively, removing the writes from the
workload could potentially yield significant idle periods.

Figure 2 confirms this intuition. It shows a cumula-
tive distribution function across volumes of the number
of volumes versus the percentage of time that the volume
is active over the course of a week. We show the distribu-
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Mean Median 99th pctile Max
Read/ 21.7 22 27 31
write (60%) (61%) (75%) (86%)
Read- 7.6 7 15 22
only (21%) (19%) (42%) (61%)

Table 2: Number of concurrently active volumes: num-
bers in parentheses show the number of active volumes
as a percentage of the total number of volumes (36)

tion both for the original trace (read/write) as well as the
trace with the writes removed. In both cases we consider
the volume to be idle (i.e., not active) when 60 seconds
have elapsed since the last request.

Figure 2 shows that even without removing the writes,
there is significant idle time for the volumes. As ex-
pected, the write workload has a large impact on the
length of the idle periods. When the write load is re-
moved, the mean amount of time a volume is active is
only 21%. By contrast, the volume active time in the
read/write case is 60% on average. Similarly, the median
amount of time a volume is active drops from 80% to
14% when the write load is removed.

Finally, we measure the potential benefit in reduc-
ing the peak power consumption of the data center stor-
age by examining the temporal relationship between vol-
umes. Figure 3 shows the number of volumes active over
time through the week. We see that removing the writes
from the trace significantly reduces the number of con-
currently active volumes.

Table 2 shows the mean, median, 99th percentile, and
maximum number of volumes concurrently active dur-
ing the week. These results indicate that simply spinning
down when idle can reduce the peak power of the storage
subsystem, and that creating longer idle periods by off-
loading writes can reduce it even further. Note that the
set of active volumes changes over time, and a rarely-
active volume might still store a large amount of data or
experience a high peak load. Thus we cannot simply save
energy by using fewer disks per volume, since we must
still provision the volumes for capacity and peak load.

This analysis indicates that there are significant po-
tential power savings in spinning down enterprise data
center disks when idle. Further, it shows that efficiently
redirecting writes creates even longer periods of idleness
leading to substantially higher power savings. This mo-
tivated the design of our write off-loading mechanisms.

3 Write Off-Loading

The goal of write off-loading is to utilize periods of
write-dominated load to spin disks down and off-load
write requests, reverting to normal operation during peri-

ods of read-dominated load. When writes are being off-
loaded the aim is to achieve comparable write response
times and throughput to using the local volume.

Each volume supporting off-loading has a dedicated
manager. The manager is entirely responsible for the
volume, which we refer to as its home volume: it decides
when to spin the physical disks up or down, and also
when and where to off-load writes. Off-loaded blocks
are only temporarily off-loaded and the manager is also
responsible for reclaiming blocks previously off-loaded.
To achieve all these tasks, the manager needs to intercept
all read and write requests to its home volume.

When a manager decides to off-load a block, it selects
one or more loggers to store it temporarily. Each log-
ger instance requires a small area of persistent storage,
which is used exclusively to store off-loaded blocks and
metadata until they are reclaimed by a manager or no
longer required. The persistent storage could be a disk,
NVRAM or solid-state memory such as flash, depend-
ing on what is available on each server; the logger’s data
layout should be optimized for the particular type of stor-
age. Our current implementation uses only disk-based
loggers.

The set of loggers that a manager uses is configurable.
It is important that the loggers used by a manager of-
fer the same or better failure properties as the home vol-
ume. It is also possible to configure the manager so that it
will only off-load blocks to loggers residing on the same
server as itself, in the same rack, or across the entire data
center. We have evaluated write off-loading at both a
server and rack granularity. Current off-the-shelf giga-
bit networking makes the rack granularity feasible, with
low network overhead and good performance. Server-
granularity off-loading is feasible at any network speed
since off-load traffic does not go over the network.

In the rest of this paper, we refer to a volume as being
active if its disks are spinning and I/O operations are be-
ing performed on it. If the disks are spinning but no I/O
operations are being performed, we refer to the volume
as being idle: in this state the disk spindles continue to
use energy even though they are doing no work. Finally,
if the volume’s disks are spun down, we refer to the vol-
ume as being in the standby state. We assume that all the
disks belonging to a volume are always in the same state,
since all the power management strategies considered in
this paper operate on entire volumes at a time.

When we refer to a manager or logger component be-
ing in standby, we mean that the volume used by that
component has transitioned to the standby state. When a
manager goes into standby, it will force loggers sharing
the same physical disks to go into the standby state. The
manager will then off-load writes to loggers that are not
in the standby state. Note that loggers using solid-state
memory or NVRAM would never enter the standby state.
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3.1 Detailed Design

Loggers. Conceptually the logger’s role is simple: it
temporarily stores blocks. Loggers support the follow-
ing remote operations: write, read, invalidate, and re-
claim. A write consists of persisting the provided blocks
and metadata. The metadata consists of the source man-
ager identity, a range of logical block numbers (LBNs),
and a version number. A read returns the latest stored
versions of the requested blocks. An invalidate request
specifies a set of blocks and versions that are no longer
required. To ensure consistency, the invalidate request
explicitly includes version information, and the logger
marks the corresponding versions as invalid. The logger
can then lazily garbage collect the space used to store the
invalidated data and metadata. A reclaim request is like
a read, except that no block range is specified: the log-
ger can return any valid block range it is holding for the
requesting manager. Invalidates and reclaims are non-
latency-critical operations; reads and writes are latency-
critical but reads are expected to be rare. Hence loggers
are optimized for the performance of writes.

Our current implementation uses a log-based on-disk
layout. This means that writes have good locality; both
data and metadata are written with a single I/O to the cur-
rent head of the log. Log compaction and other mainte-
nance tasks are done in the background with low priority.
Metadata about the valid blocks stored for each manager,
their versions, and their location in the log are cached in
main memory for fast access.

Each logger uses a small partition at the end of an ex-
isting volume to persist data and metadata. This avoids
the need to dedicate additional storage for off-loading.
The remainder of the volume functions as before, and
could have an associated manager to enable off-loading.
In general a volume might host zero or more managers
and zero or more loggers, on distinct partitions but on
the same set of physical disks. In our evaluation we run
with a typical configuration for a data volume: one man-
ager and one logger with the latter using a small partition
at the end.

Managers. The manager controls the off-loading of
blocks, deciding when to off-load blocks and when to
reclaim them. It is also responsible for ensuring consis-
tency and performing failure recovery. To achieve this,
each manager maintains persistently the identities of a
set of loggers with which it interacts, referred to as the
logger view. It also maintains two in-memory data struc-
tures, as shown in Figure 4. The redirect cache stores,
for each block off-loaded, the block’s LBN, the identity
of the logger storing the current data for the block and
the corresponding version number. Version numbers are
unique monotonically increasing 64-bit quantities, which
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Figure 4: Manager data structures.

ensure that the manager can identify the last written ver-
sion of any block during failure recovery. The garbage
cache stores the location of old versions of blocks. In the
background, the manager sends invalidation requests for
these versions; when these are committed by the logger
they are removed from the garbage cache.

The manager intercepts all read and write requests sent
to the home volume. For a read request, it first checks
the redirect cache for existing logged versions. If none
is found, the read is serviced locally from the home vol-
ume, causing it to transition from standby to active if nec-
essary. Otherwise the request is dispatched to the logger
identified as having the latest version of the block. Multi-
block reads are split as required, to fetch data from the
home volume and/or one or more loggers.

For a write request, the manager off-loads the write to
a logger if the home volume is in standby. It also off-
loads the write if there are currently logged versions of
any of the blocks, to ensure that the new version is per-
sistently recorded as the latest version. Writes that are
not off-loaded are sent directly to the home volume.

To off-load a write, the manager probes the loggers
in its logger view: this is currently done using subnet
broadcast for efficiency. Each logger replies with a set of
metrics including the power state of the logger’s volume,
its queue length, the amount of available space, etc. The
manager ranks the loggers using these metrics and selects
one to off-load the write to. When the write is committed
and acknowledged by the logger, the manager updates
its redirect cache with the latest version and moves any
older versions to the garbage cache.

When the home volume is idle, the manager reclaims
off-loaded blocks from loggers in the background and
writes them to the home volume. After the reclaimed
blocks are written to disk, the manager sends invalida-
tion requests to the appropriate loggers. To ensure cor-
rect failure recovery, the latest version of a block is inval-
idated only after all older versions have been invalidated.
The background reclaim and invalidation ensure that all
blocks will eventually be restored to the home volume
and that logger space will eventually be freed.

Finally, the manager controls state transitions to and
from standby for the home volume. The manager mon-
itors the elapsed time since the last read and the last
write; if both of these have passed a certain threshold,
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it spins the volume down and off-loads all subsequent
writes. The volume spins up again when there is a read
on a non-off-loaded block, or when the number of off-
loaded blocks reaches a limit (to avoid off-loading very
large amounts of data). Before putting the volume into
standby, the manager first ensures that there is at least
one logger in its logger view that is using a set of disks
different from its own and that is not currently in standby.
This ensures that any future writes to the home volume
can be off-loaded by the manager without waiting for
disks to spin up. If there are no such loggers, then the
manager does not spin down, but periodically probes its
logger set for any change in their status.

This design is optimized for the common case: dur-
ing periods of intense activity, the home volumes will be
in the active state, and all I/Os will be local, except for
a small number of requests on blocks that are currently
off-loaded. During periods of low, write-dominated load,
we expect that the home volume will be in standby and
writes will be successfully off-loaded to a logger.

Uncommon cases are handled through fall-back strate-
gies. For example, if the manager cannot find any avail-
able loggers, it spins up the home volume in the back-
ground, and retries the request until a logger is found
or the home volume is spun up. If a volume needs to
be taken off-line (say for maintenance) then the manager
spins it up, as well as all volumes that it depends on or
that depend on it. It then forces blocks to be reclaimed
until the volume has all its own blocks and none of any
other’s, i.e., its state is restored as if no off-loading had
occurred.

Write off-loading can mask the performance impact of
spinning up disks for write requests. For read requests on
spun-down disks we cannot mask the spin-up delay. For
some applications this large delay (10–15 seconds) will
be unacceptable even if rare: write off-loading should not
be enabled on the volumes that these applications use.

3.2 Failure Resilience

Enterprise storage is expected to provide consistency and
durability despite transient failures such as reboots as
well as single-disk permanent failures. At the volume
level, the failure resilience with off-loading is the same
as that without. However, off-loading can create failure
dependencies between managers and loggers. With off-
loading at the rack or data center level, a manager on ma-
chine A could off-load blocks to a logger on machine B:
if machine B suffers a failure, then the off-loaded blocks
would become unavailable on machine A until machine
B was brought on-line again.

This problem can be solved by off-loading each block
to multiple independent loggers. With k-way logging, a
manager can tolerate up to k − 1 failures in its logger

Figure 5: Consistency across loggers example

view. Given the high availability and reliability of enter-
prise servers, we do not think k-way logging would be
required in most cases.

Write off-loading guarantees both consistency and
durability across failures. We achieve durability by ac-
knowledging writes only when both data and metadata
have been reliably persisted, i.e., we do not employ
write-back caching of any form. Consistency is achieved
by using versioned metadata to mark the latest version
of a block. When a read is performed for a range of
blocks, it is quite possible that the required blocks are
distributed over multiple loggers as well as the home vol-
ume, as shown in Figure 5. The manager uses the version
information to ensure that the applications using the vol-
ume see a consistent view of the stored data. We also add
a checksum to the metadata to ensure that partial writes
are correctly detected on failure recovery.

If one or more machines reboot due to, say, a power
failure, all the loggers recover concurrently by scanning
their persistent logs to reconstruct their soft state. Each
manager can be brought on-line when all the loggers
in its logger view are on-line. A manager recovers its
soft state (the redirect cache and garbage cache) by re-
questing information about all blocks stored for it from
each logger in its logger view. To optimize the common
case of a clean shutdown/reboot of a server, the manager
writes the soft state to a small metadata partition during
shutdown; this allows managers to restart after a clean
shutdown without any network communication.

It is important that a manager’s logger view be re-
stricted to loggers which have the same or higher fail-
ure resilience as the home volume. Otherwise, when
blocks are off-loaded, they will not have the same fail-
ure resilience as non-off-loaded blocks. If the storage
uses standard solutions such as RAID-1 or RAID-5 for
all volumes, then this property will be ensured, and off-
loading will provide the same resilience to single disk
failures as standard RAID solutions.

When a logger experiences a single-disk failure, it
pushes all off-loaded blocks to other loggers or the ap-
propriate manager, which should typically take seconds
to minutes. This reduces the risk of losing off-loaded
blocks due to multiple disk failures; the risk can be fur-
ther reduced if desired by using k-way logging.
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4 Evaluation

Section 2 presented a trace-driven analysis showing the
potential benefits of write off-loading. This analysis
was based on block-level traces of enterprise data center
workloads. In this section we evaluate write off-loading
using a real testbed and these workload traces.

4.1 Experimental Setup

The experiments were all run using a testbed consisting
of four standard HP servers, each with a dual-core Intel
Xeon processor and an HP SmartArray 6400 controller
connected to a rack-mounted disk enclosure with a SCSI
backplane. All the servers were running Windows Server
2003 SP2. For the purposes of trace replay, data volumes
were accessed as raw block devices rather than as file
systems, since our traces are at the block level.

The disk enclosures were populated with 56 Seagate
Cheetah 15,000 RPM disks: 28 of size 36 GB and 28 of
size 146 GB. The servers were connected via a switched
1 Gbps Ethernet. The device driver for the SmartArray
6400 does not support physical spin-down and spin-up of
the disks, highlighting the fact that disk spin-down is not
standard practice in enterprise storage systems today. We
did not have access to the driver source code and hence
were forced to emulate the power state of each volume
in a software layer. This layer delays requests on a spun-
down volume until the volume is spun up; it also models
the power consumed by each volume based on the num-
ber and type of disks and the emulated spin state.

The parameters for emulating the power state of the
disks used in the testbed are shown in Table 3. These pa-
rameters were derived manually from the voltage/current
profiles given in the Seagate Cheetah 15K.4 SCSI prod-
uct manual [26] (Section 6, Figures 4 and 5). The steady-
state power consumption when spun up is based on the
current draw of both the 12 V input line (which powers
the motor) and the 5 V line (which powers the electron-
ics); the power consumption when spun down is based
on the 5 V current only. The energy cost of spinning
up is defined as the difference between the total energy
used while the disk was spinning up, and that used if the
disk were idle and spinning for that duration. We do not
model the energy cost of doing I/O over and above that
of keeping the disk electronics powered and the platter
spinning; in general, this is difficult to model for an arbi-
trary workload and is also relatively small.

To drive the experiments we used real-time replay of
the data center traces that we analyzed in Section 2. Us-
ing all the trace data would have required one week per
experimental run. To make this tractable, each trace was
split into seven one-day (24-hour) traces. These traces
were statically analyzed to find the “least idle” and the

Time to spin up (36 GB disk) 10 s
Time to spin up (146 GB disk) 15 s
Energy cost of spinning up 20 J
Power when spun up 12 W
Power when spun down 2.6 W

Table 3: Energy parameters for Seagate Cheetah 15K.4

Rack Server Function #volumes
1 usr User files 3

mds Media server 2
prn Print server 2
hm H/w monitoring 2

2 src2 Source control 3
proj Project files 5
wdev Test web server 4

3 rsrch Research projects 3
prxy Firewall/web proxy 1
src1 Source control 2
stg Web staging 2
ts Terminal server 1
web Web/SQL server 4

Table 4: Servers grouped by rack

“most idle” days. Averaged across all volumes, the least
idle day provides the smallest potential amount of idle
time for write off-loading, whereas the most idle day pro-
vides the largest. The least idle day ran from midnight on
Monday 26th February 2007 to midnight on the following
day; it had 35 million requests with 73% reads. The most
idle day ran from midnight on Sunday 25th February to
midnight on the following day; it had 21 million requests
with 70% reads. These two days represent the worst and
the best case for energy savings using write off-loading,
and hence our evaluation is based on them.

To emulate the traced data center volumes, sets of vol-
umes were mapped on to the testbed. The entire testbed’s
disk capacity is much smaller than the original traced
servers. Therefore the traced servers were divided into
three sets or “racks” (Table 4). Experiments were run for
each rack independently; all the volumes in a single rack
were simultaneously emulated on the testbed. two of the
36 volumes (prxy/1 and src1/0) could not be accommo-
dated on the testbed with enough disks to sustain the of-
fered load, so they were omitted. Due to the physical
limitations of the testbed, the mapping does not keep vol-
umes from the same original server on the same testbed
server, or vice versa. However, our results show that the
peak network load imposed by write off-loading is less
than 7% of the network capacity: hence remapping does
not significantly affect the system’s performance. Each
volume was mapped to a RAID-1 or RAID-5 array with
sufficient capacity to replay the volume trace.
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Figure 6: CDF of energy consumed as a percentage of baseline

A per-server trace replay component was used to re-
play the traces and gather performance metrics. The start
of trace replay was synchronized across all servers. Each
trace event was then converted to an I/O request sent to
the corresponding emulated volume at the time specified
by the timestamp: i.e., the traces were replayed “open-
loop” in real time. This is necessary because the block-
level traces do not capture higher-level dependencies be-
tween requests. However, requests which accessed over-
lapping block ranges were serialized, under the assump-
tion that such requests would not be issued concurrently.

When configured for write off-loading each emulated
volume was assigned both a manager and a logger. The
logger used a 4 GB partition at the end of the volume;
on hardware with flash or other solid-state devices the
logger would run on the solid-state component instead.
All manager and logger components on each server were
linked together into a single user-level process along with
the trace replay component. This component opened
each server volume as a raw Windows block device; trace
I/Os were then converted into read and write requests on
these devices. Communication between managers and
loggers is in-process if on the same physical server; oth-
erwise we use UDP for broadcast and TCP for unicast.

In the experiments we evaluated four configurations:
• baseline: Volumes are never spun down. This gives

no energy savings and no performance overhead.
• vanilla: Volumes spin down when idle, and spin up

again on the next request, whether read or write.
• machine-level off-load: Write off-loading is enabled

but managers can only off-load writes to loggers
running on the same server: here the “server” is the
original traced server, not the testbed replay server.

• rack-level off-load: Managers can off-load writes to
any logger in the rack.

The configurations which place volumes in standby
require an idle period before initiating standby. In the

vanilla configuration we use an idle period of 60 seconds.
For the two off-load configurations, a volume is placed in
standby after 60 seconds of no reads and 10 seconds of
no writes. Each off-load manager also limits the amount
of off-loaded data to 1 GB: on reaching this limit, the
manager spins up the volume in the background.

In the remainder of this section we present the sum-
marized results of our experimental runs. Each result
is presented both for the “most idle” day and the “least
idle” day, and for each of the four configurations. For
a given day and configuration, results are aggregated
across racks; although the experiments were run sequen-
tially, this emulates all three racks running concurrently
with off-loading (if enabled) happening at the rack or ma-
chine level depending on the configuration.

4.2 Energy Savings
Figures 6(a) and 6(b) show the CDFs of energy con-
sumed per volume for the least idle day and most idle
day, respectively. Obviously, in the baseline case, all
disks would always be spun up, and volumes would al-
ways be at their maximum power level. Hence we nor-
malize the power consumption of each volume in the
other three configurations by the corresponding baseline
value. All three configurations on both days save signifi-
cant amounts of energy compared to the baseline, as seen
by the number of volumes that use 50% or lower energy
compared to baseline. Figure 7 summarizes these results
showing the mean and peak power consumption across
all volumes, again as a percentage of the baseline value.

For the least idle day, of the three non-baseline config-
urations, the vanilla configuration consumes the most en-
ergy: 72% of baseline. This is because it does not utilize
write off-loading to lengthen the idle periods. Machine-
level off-loading is able to do this, and hence uses less en-
ergy: 64% of the baseline. However, the energy savings
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Figure 7: Total power consumption as percentage of baseline

are limited by the need to keep one volume spinning per
machine to absorb the off-loaded writes. This means that
at all times at least 13 of 34 volumes were kept spinning.
Rack-level off-loading uses the least energy of all (55%
of baseline) since it does not suffer from the limitations
of the other two approaches. With rack-level off-loading,
potentially a single spun-up volume could absorb the off-
loads for the entire rack.

For the most idle day, all three non-baseline con-
figurations improve their energy savings by exploiting
the increased amount of idleness. As on the least idle
day, vanilla uses significantly less energy (64%) than
baseline; machine-level off-load does better (51%) than
vanilla; and rack-level off-load does even better (40%).

The peak power results in Figure 7 show that vanilla
reduces peak power to 87–89% of the baseline; machine-
level off-load to 83–84%, and rack-level off-load to 80%.
Unlike the mean power usage these results show that
there is not a significant difference between the most and
least idle days. This is because the power usage varies
considerably over the time scale of minutes, as shown in
Figure 3, and hence even on a day with a low mean power
usage, the peak could be quite high. However, there is
still a significant difference between the off-loading and
non-off-loading configurations.

4.3 Performance Impact
We now evaluate the performance impact of spinning
disks down, both with and without off-loading. We mea-
sured the response time of each read and write request
in each configuration, on each of the test days. Fig-
ure 8 shows the response time distributions for reads and
writes, for the two days, aggregated over all volumes.
Since most requests have the same response time in all
configurations, we put the y-axis on a log scale to high-
light the differences between the configurations. The x-
axis is also on a log scale, since response times vary from

tens of milliseconds in the common case to over 15 sec-
onds in the worst case. For example, the baseline curve
in Figure 8(a) shows that 0.01 (1%) of the read requests
in the baseline configuration on the least idle day had a
response time of more than 100 ms.

We see that for the majority of requests, the perfor-
mance was identical in all configurations. For a small
fraction of the requests, we see a long tail in some cases,
going out to over 10 seconds. This tail represents re-
quests that needed to wait for a disk to spin up. In the
vanilla configuration both reads and writes are impacted
by this effect. For the machine-level and rack-level off-
load only reads are affected: for write requests they track
baseline performance up to and beyond the 0.0001 point,
i.e., for 99.99% or more of the requests. For a very small
number of requests (fewer than 0.01%) on the least idle
day, the machine-level off-load does worse than the base-
line or rack-level off-load; this is because in the case of
a heavy burst of write requests, the machine-level off-
load cannot spread the load across loggers on multiple
servers, whereas the rack-level off-load can do this.

These results confirm our expectation that spinning
disks down causes a large penalty for a small number of
requests. This penalty occurs for both reads and writes if
we do not off-load writes, and only for reads if we do. It
is worth noting that both the length and thickness of this
tail are increased by an artifact of our experimental setup.
Since we replay the traces open-loop, all requests that ar-
rive while a disk is spinning up will be queued, and si-
multaneously released to the disk when it spins up. Since
the spin-up period is relatively long (10–15 seconds), a
large number of requests could arrive during this period,
which cause an additional large queuing delay even after
the disk is spun up. For example, the tail for the vanilla
configuration in Figure 8(c) goes out to 56 seconds: this
is due to a single episode in which 5,000 requests were
queued while waiting for a volume to spin up, and 22 of
these requests suffered extremely high delays as a result.
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Figure 8: Response time distributions: the x-axis shows response times on a log scale, and the y-axis shows the
fraction (also on a log scale) of requests with response times higher than some value

In reality, many of the requests in a single such burst
would have been issued by the application in a closed
loop, i.e., serialized one after another. Hence, delaying
the first request would have prevented additional requests
from being issued, avoiding the large queues and queu-
ing delay. Further, if the request burst was created by
a non-interactive application, for example a backup, then
an initial delay of 10–15 seconds is acceptable. For inter-
active applications, of course, this first-byte delay will be
visible to the user; if a volume supports interactive appli-
cations that cannot tolerate this delay even infrequently,
then write off-loading or indeed any kind of spin-down
should not be enabled for that volume.

We now present some summary statistics on the re-
sponse time distributions. Figure 9(a) shows the me-
dian response time; as expected, there is no penalty for
spinning disks down or off-loading. Figure 9(b) shows
the mean response time. Here we see the effect of the
skewed response time distribution, i.e., the long thin tail,
which causes a small number of requests to increase the
mean significantly. For reads, all the non-baseline con-
figurations have a high mean response time. The off-

load configurations do worse than vanilla, because they
spin down more often (and save more energy): hence a
burst of read requests is more likely to hit a spun-down
volume in these cases. For the same reason the rack-
level off-load has a higher mean response time than the
machine-level off-load.

In the case of writes, the mean is high for vanilla,
but the off-load configurations do slightly better than the
baseline case, with the rack-level off-load having the best
performance of all. This is because logger writes have
good locality, since they use a log structure, even if the
original access pattern does not have good locality. Fur-
ther, during bursts of high write load, rack-level off-load
is able to load-balance across multiple loggers on multi-
ple servers, and hence delivers the best performance.

Figure 10 shows the percentage of requests incurring a
spin-up delay in each case. Obviously, the baseline con-
figuration has no spin-up delays, and the off-load con-
figurations do not have spin-up delays on write requests.
Reads for rack-level/machine-level off-load, and all re-
quests for vanilla, have significant (up to 1.2%) numbers
of spin-up delays, which skews the mean response time
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Figure 9: Median and mean response times

Figure 10: Percentage of requests incurring spin-up de-
lays

for these cases. However, as remarked previously, some
of this effect is an artifact of open-loop replay.

Figure 11(a) shows the 95th percentile response times
respectively for the different cases. There are only minor
differences between the different configurations, since
much fewer than 5% of requests see spin-up delays in
any configurations. Finally, Figure 11(b) shows the max-
imum response time for each case. For reads, the non-
baseline configurations have similar worst-case perfor-
mance to each other, although worse than the baseline:
this is due to spin-up delays. For writes, all configu-
rations have similar performance on the most idle day.
On the least idle day, there is a large penalty for vanilla
due to a combination of spin-up delay and queuing delay
for a large write burst as previously discussed. Machine-
level off-load also has a significant though lower penalty,
due to the lack of load balancing on a heavy write burst.
Rack-level off-load is able to load-balance such bursts
and hence has a much better worst-case performance.

In summary, all configurations have comparable per-
formance to the baseline case for a majority of requests;
however, reads in the off-load configurations and both
reads and writes in the vanilla configuration have a long

thin tail, which is unavoidable. Finally, rack-level off-
load consistently outperforms machine-level off-load on
both energy savings and write performance, but has
worse read performance and adds network traffic to the
system. Administrators can configure the logger views
on a per-manager basis to provide the appropriate trade-
off between these metrics.

4.4 Network Usage
We also measured the network overheads of rack-level
off-loading across both test days combined. These are
summarized in Table 5. Note that the bandwidth usage
is based on communications between managers and log-
gers that belong to different servers in the original trace.
In other words, this measures the network overheads if
write off-loading had been run on the original traced
servers rather than the testbed servers. Thus there are
no network overheads for machine-level off-load and of
course none for the baseline or vanilla configurations.

The average bandwidth usage is low compared to the
bandwidth available in a typical data center. The peak
bandwidth usage can easily be supported by gigabit net-
works, which are widespread in enterprise data centers.
The mean RPC round-trip latency is the amount of ad-
ditional latency incurred by requests due to manager-
logger communication.

The last two entries in Table 5 show that a substan-
tial fraction of write requests were off-loaded, but only
a very small fraction of reads were remote. A remote
read is one that required the manager to interact with a
logger because some or all of the requested blocks had
been off-loaded. This is the expected behavior: due to
main-memory buffer caches, very few recently-written
blocks are read back from the storage layer. In other
words, most off-loaded blocks will be overwritten or re-
claimed before they are read again. The small fraction
of remote reads also justifies our decision to optimize
the loggers for write rather than read requests. Machine-
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Figure 11: 95th percentile and maximum (worst-case) response times

Total network transfers over 2 days 46.5 GB
Average network bandwidth usage 2.31 Mbps
Peak bandwidth usage over 60 s 68.8 Mbps
Mean RPC round-trip latency 2.6 ms
Fraction of writes off-loaded 27%
Fraction of remote reads 3.8%

Table 5: Network overheads for rack-level off-loading

level off-loading gives similar results to rack-level off-
loading, with 8.3% of writes off-loaded but only 0.78%
of reads being remote.

5 Related Work

There has been considerable research in power manage-
ment for laptop and mobile device storage [9, 18, 30] and
also on high-level power management for data centers as
a whole [6]. We focus on related work in power manage-
ment for enterprise storage systems.

The closest related work is Massive Arrays of Idle
Disks (MAID) [7] which has been proposed for replac-
ing tape libraries as tertiary storage environments for
very large-scale storage. MAIDs are storage components
composed of 1,000s of disks holding hundreds of ter-
abytes of storage. A subset of the disks are kept spin-
ning, acting as a cache, while the rest are spun down. For
standard RAID-based enterprise primary storage, this re-
quires a minimum of two additional disks per volume.
For non-archival storage this is an unacceptable overhead
in terms of both energy and cost. In contrast, write off-
loading does not require additional dedicated disks per
volume or new hardware: we can opportunistically use
any unused storage in the data center to store blocks.

Power-aware cache management [33] optimizes cache
replacement for idle times rather than miss ratios, and
shows power savings for OLTP, cello [22], and synthetic
traces. This is orthogonal to our approach: any increase

in the inter-read time will result in increased energy sav-
ings with write off-loading. However, we observe that
the enterprise workloads that we traced already have
large inter-read times that we exploit using write off-
loading.

DRPM [12] and Hibernator [32] are recently proposed
approaches to save energy by using multi-speed disks
(standard enterprise disks spin at a fixed rate of 10,000
or 15,000 rpm). They propose using lower spin speeds
when load is low, which decreases power consumption
while increasing access latency. However, multi-speed
disks are not widely deployed today in the enterprise,
and we do not believe their use is likely to become
widespread in the near future.

Several approaches [16, 28, 29] have proposed power
management schemes for RAID arrays at the RAID con-
troller level or lower, which are orthogonal to write off-
loading which works above the block device level. In
particular, PARAID [28] uses different numbers of disks
in the array for different load levels, and provides good
power savings for read-mostly workloads. Hence it is
complementary to write off-loading, which can convert a
mixed workload to a read-only one.

Popular Data Concentration (PDC) [19] migrates data
between disks to concentrate hot data on a few disks, al-
lowing the remainder to spin down. This could be done
within the disks on a volume: in this case it would be
transparent and orthogonal to volume-level off-loading.
PDC could potentially be done across volumes as well:
however, this is not practical for most enterprise solu-
tions since volumes will no longer be isolated from each
other for performance, cannot be tuned individually, and
acquire long-term data dependencies on each other.

Serverless file systems, such as xFS [1], attempt to
distribute block storage and management across multiple
networked machines, and use co-operative caching [8] to
improve performance. By contrast, write off-loading is
designed to save energy rather than reduce latency or in-
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crease throughput. It also works at the block level, and
rather than storing data remotely for days or weeks, a rel-
atively small number of blocks are temporarily hosted on
remote machines.

The log structure used to store off-loaded data and
meta data is similar to those used in log-structured file
systems [11, 21, 27]. However, log-structured file sys-
tems store all written data for the long term, whereas our
logs store only off-loaded data, and temporarily.

Finally, various approaches to storage workload trac-
ing and trace replay have been proposed in the research
literature [2, 10, 15, 31]. We decided to use ETW
for tracing since it is already supported on our traced
servers, and it provides the functionality we needed (trac-
ing block-level I/O requests) with low overhead.

6 Discussion

Hardware trends. Recently, there has been consider-
able interest in solid-state drives (SSD) for mobile de-
vices and laptops [23, 24]. These drives currently vary in
size from 4–32 GB, and use less power than disks. While
SSD-based storage is likely to become widely used in
laptops over the next 2–3 years, it is unlikely to replace
disks in the enterprise in the foreseeable future due to the
high per-GB costs and performance characteristics.

However, it is likely that solid-state memory (flash)
will become common, either in hybrid drives or as
a small generic block-level storage device on mother-
boards. Hybrid drives include a small amount of flash
within the disk. This allows the drive to spin the physical
disk down and use the flash as a persistent buffer cache.
This is very similar to the idea of using battery-backed
NVRAM as a buffer cache to reduce disk traffic [3].

Thus, if and when enterprise storage becomes fully
SSD-based, write off-loading will offer few advantages.
However, for the next decade or so we expect that server
systems will continue to have disk-based systems, in-
creasingly augmented with solid-state memory: by run-
ning loggers on the solid-state devices and using them for
write off-loading, the power savings of write off-loading
can be further increased.

Traditionally, spinning a disk up and down is viewed
as increasing the stress on the drive and reducing the
mean time to failure (MTTF). For the state-of-the-art en-
terprise class Seagate Cheetah 15K.4 SCSI drives, the
MTTF calculations assume 200 power cycles per year.
Recent research has re-examined some of the assump-
tions about factors that impact disk lifetime [20, 25] but
has not examined the effect of spinning disks down: we
see it as an open question what impact spinning up and
down will have on enterprise disks.

Configuration and management. Write off-loading
requires some level of administrator configuration and
management. For example, an administrator might wish
to disable write off-loading for some period of time on
some set of disks, say a RAID array, hosting both man-
agers and loggers. When this is desired, all data on log-
gers hosted on those disks must be reclaimed by their
home volumes. Similarly, all data off-loaded by man-
agers on those disks must be reclaimed and invalidated
on the loggers that were storing them. This would be the
procedure, for example, for decommissioning a volume
that currently has write off-loading enabled.

System boot volumes typically should not have an off-
load manager enabled (although they can certainly sup-
port a logger). This avoids off-loading blocks that are
required for the system to boot.

7 Conclusion

In this paper we propose a technique called write off-
loading to save energy in enterprise storage. It allows
blocks written to one volume to be temporarily redirected
to persistent storage elsewhere in an enterprise data cen-
ter. This alters the I/O access pattern to the volume,
generating significant idle periods during which the vol-
ume’s disks can be spun down, thereby saving energy.

We analyzed the potential savings using real-world
traces gathered for a week from the 13 servers in our
building’s data center. Our analysis shows that sim-
ply spinning disks down when idle saves significant en-
ergy. Further, write off-loading enables potentially much
larger savings by creating longer idle periods. To vali-
date the analysis we implemented write off-loading and
measured its performance on a hardware testbed. The
evaluation confirms the analysis results: just spinning
disks down when idle reduces their energy consumption
by 28–36%, and write off-loading increases the savings
to 45–60%.

We believe that write off-loading is a viable technique
for saving energy in enterprise storage. In order to use
write off-loading, a system administrator needs to man-
age the trade-off between energy and performance. We
are designing tools to help administrators decide how to
save the most energy with the least performance impact.
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