
December 15, 2005 FAST 2005 WiP

Controlling File System
Write Ordering

Nathan C. Burnett
Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

University of Wisconsin - Madison



December 15, 2005 FAST 2005 WiP

Why control write ordering?

• WAL requires control over write ordering

• How is it done now?
– Application managed storage (raw device)

• Makes management difficult

– Direct I/O
• Slow, not portable

– fsync(), synchronous I/O
• Slow

– write() and hope
• Consistency guarantees are lost



December 15, 2005 FAST 2005 WiP

Approach

• Create interface to express ordering to OS

• What is the right interface?
– Simple

– Portable

– Asynchronous

– Fast



December 15, 2005 FAST 2005 WiP

File System Barriers

• Added barrier() system call

• Writes do not get reordered across barrier
– e.g. write(log, …), barrier(), write(data, …)

• Advantages
– Easy to understand

– Replaces fsync() and sync() for ordering

– Asynchronous and fast

• But it still restrains OS I/O scheduling



December 15, 2005 FAST 2005 WiP

Asynchronous Graphs

• Specify exactly when order matters
– For two write ops, say which one goes first

– Specify no ordering if it doesn’t matter

• Generates graph of order dependencies

• Data will be written in order when needed

• OS is free to reorder other requests



December 15, 2005 FAST 2005 WiP

A Quick Example

• Chain log updates so commit is last log update

• Ordering between data updates unspecified

• All data written after the log commit record

Commit Record

Data Update 2

Data Update 2

Data Update 1

Log updateLog update



December 15, 2005 FAST 2005 WiP

Current Status

• Barriers implemented in FreeBSD 5.4

• Exploring benefits in simple simulation
– Simulates buffer cache and disk

– Disk writes are either seq (fast) or not (slow)

• We can show for a transactional load:
– agraphs requires fewer I/Os

– agraphs requires fewer non-sequential I/Os



December 15, 2005 FAST 2005 WiP

Performance Benefits

• Fewer writes overall
– log writes are generally very small

– fsync and barriers separate small writes

– asynchronous graphs combines them

• Fewer random I/Os
– delay log updates, 1 big I/O not 100 small I/Os



December 15, 2005 FAST 2005 WiP

What’s Next?

• Extend our simulator to include:
– clustered writes

– buffer cleaning daemons (syncd, bufd)

– better disk model

• Implement agraphs in FreeBSD
– Evaluate implementation complexity

– Test performance on real & synth workloads



December 15, 2005 FAST 2005 WiP

The End

• Comments?

• Questions?

• Jobs?

ncb@cs.wisc.edu

http://www.cs.wisc.edu/~ncb/


