Efficient Disk Space Management for Virtual Machines

Abhishek Gupta (student), Norman C. Hutchinson
Department of Computer Science
University of British Columbia
{agupta, norm} @cs.ubc.ca

Abstract

There has been tremendous interest in virtualization infrastructure lately. Virtual Ma-
chines are finding use in scenarios ranging from kernel development to economic honey-
farm deployment. As we go about evolving the technology to fit our current application
needs, there remain a variety of challenges to be overcome. One key challenge lies in
efficient utilization of secondary storage systems.

From a file-system perspective, several interesting problems are exposed upon the
instantiation of a new Virtual Machine (VM). Instantiating a new VM entails guaranteeing
the availability of at least one fixed size disk partition. Further, several of these VMs,
when instantiated first, require identical software images on their allocated disk space.
Currently these problems are addressed by using block level storage abstractions which
provide copy-on-write mechanisms for sharing of data. LVM, the Linux volume manager
and Parallax are well acknowledged as current state-of-the art in this space. Each of
these artifacts utilize variants of copy-on-write schemes for providing block level sharing
between logical volumes and have their own peculiar shortcomings.

Our reservation with LVM is mainly with its aggressive copy-on-write implementation.
Before a disk block is replaced from an original volume, LVM writes it to all existing snap-
shots. Naturally, providing support for these writes would overtly tax systems running
scores of virtual machines relying on LVM snapshots as their back-end devices. As for
Parallax, our primary concern is that its design mandates an expensive traversal through
the entire height of a radix tree for single block access. Buffer-cache mechanisms might
alleviate this problem to some extent but supporting benchmarks are still to be estab-
lished. Another subtle problem with these designs is that although they provide excellent
sharing of blocks between VMs, they fail to maintain the proximity of disk blocks on the
physical disk. The benefits of this tradeoff between sharing and ease of classic read-ahead
accesses warrants further investigation.

These problems are further escalated with the availability of fork in popular VM
technology. The Potemkin team has well articulated the copy-on-write semantics for
forking virtual machines; however, the use of a ram disk instead of an actual device is not
a durable solution. To this extent LVM provides limited support as it does not allow the
creation of recursive snapshots, whereas, Parallax provides an appealing solution, though
at the cost of increased disk fragmentation, which further complicates block reclamation
and linear accessibility.

It should be noted that naive block level sharing is not a complete solution in the
context of forking VMs. It is likely that child VMs will have restricted access to the
resources of their parent VMs, thus, necessiating the implementation of mechanisms to
provide fine-grained protection over shared objects. To this extent, copy-on-write block
level sharing is an obvious protection against malicious writes to the file-system, however,
it fails to prevent malicious reads.

As of now we are evaluating the applicability of LVM and Parallax in the context of
VMs. We have implemented a Parallax-like radix tree target in LVM and are benchmark-
ing it along with the standard LVM linear target to empirically establish their limitations.
Orthogonally, we are assessing if block level sharing is actually the correct solution for
VMs. We feel that there is a need to re-evaluate the current state of the art in block
level sharing and evolve it to support fine grained snapshots while maintaining efficiency
in data access. Through our work-in-progress presentation we would like to share some
experiences from our implementation and discuss other potential solutions.



