
TOCTTOU Vulnerabilities in UNIX-Style File Systems: An Anatomical Study

Jinpeng Wei and Calton Pu
Georgia Institute of Technology

{weijp,calton}@cc.gatech.edu

ABSTRACT
Due to their non-deterministic nature, Time of Check
To Time of Use (TOCTTOU) vulnerabilities in Unix-
style file systems (e.g., Linux) are difficult to find and
prevent. We describe a comprehensive model of
TOCTTOU vulnerabilities, enumerating 224 file sys-
tem call pairs that may lead to successful TOCTTOU
attacks. Based on this model, we built kernel monitor-
ing tools that confirmed known vulnerabilities and dis-
covered new ones (in often-used system utilities such
as rpm, vi, and emacs). We evaluated the probability of
successfully exploiting these newly discovered vulner-
abilities and analyzed in detail the system events dur-
ing such attacks. Our performance evaluation shows
that the dynamic monitoring of system calls introduces
non-negligible overhead in microbenchmark of those
file system calls, but their impact on application
benchmarks such as Andrew and PostMark is only a
few percent.

Categories and Subject Descriptors
D.4.3: File Systems Management – Access methods;
D.4.5: Reliability –verification; D.4.6: Security and
Protection – Access controls.

General Terms
Reliability, Experimentation, Security.

Keywords
Race detection

1 Introduction
TOCTTOU (Time Of Check To Time Of Use) is a well
known security problem [1] in file systems with weak
synchronization semantics (e.g., Unix file system). A
TOCTTOU vulnerability requires two steps [2]. First, a
vulnerable program checks for a file status. Second, the
program operates on the file assuming the original file
status remained invariant during execution. For exam-
ple, sendmail may check for a specific attribute of a
mailbox (e.g., it is not a symbolic link) in step one and
then append new messages (as root) in step two. Be-
cause the two steps are not executed atomically, a local
attacker (mailbox owner) can exploit the window of
vulnerability between the two steps by deleting his/her

mailbox and replacing it with a symbolic link to
/etc/passwd. If the replacement is completed within the
window and the new messages happen to be syntacti-
cally correct /etc/passwd entries with root access, then
sendmail may unintentionally give unauthorized root
access to a normal user (the attacker).

TOCTTOU vulnerabilities are a very significant
problem. For example, between 2000 and 2004, we
found 20 CERT [14] advisories on TOCTTOU vulner-
abilities. They cover a wide range of applications from
system management tools (e.g., /bin/sh, shar, tripwire)
to user level applications (e.g., gpm, Netscape
browser). A similar list compiled from BUGTRAQ
[16] mailing list is shown in Table 1. The CERT advi-
sories affected many operating systems, including:
Caldera, Conectiva, Debian, FreeBSD, HP-UX, Immu-
nix, MandrakeSoft, RedHat, Sun Solaris, and SuSE. In
11 of the CERT advisories, the attacker was able to
gain unauthorized root access. TOCTTOU vulnerabili-
ties are widespread and cause serious consequences.

Table 1: Reported TOCTTOU Vulnerabilities
Domain Application Name

Enterprise
applications

Apache, bzip2, gzip, getmail, Imp-
webmail, procmail, openldap,
openSSL, Kerberos, OpenOffice,
StarOffice, CUPS, SAP, samba

Administrative
tools

at, diskcheck, GNU fileutils, log-
watch, patchadd

Device
managers

Esound, glint, pppd, Xinetd

Development
tools

make, perl, Rational ClearCase,
KDE, BitKeeper, Cscope

At the same time, TOCTTOU vulnerabilities are
also a very challenging research problem due to their
non-deterministic nature. They are very hard to detect
because the occurrence of a TOCTTOU vulnerability
requires a pair of certain system calls along the execu-
tion path of an application combined with appropriate
environmental conditions. So they are more elusive
than say, a buffer overflow bug which is only a single
point of failure. TOCTTOU vulnerabilities are also
hard to exploit, because they are essentially race condi-
tion errors so whether an attack can succeed relies on
whether the attacking code is executed within the usu-
ally narrow window of vulnerability (on the order of

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 155

FAST ’05: 4th USENIX Conference on File and Storage Technologies

milliseconds as shown in section 4.2). Furthermore,
normal static program analysis tools for detecting race
conditions cannot be applied directly, since the attack
programs are usually unavailable until the vulnerabili-
ties are discovered.

The first contribution of this paper is a model-based
approach to detecting TOCTTOU attacks in Unix-style
operating systems. During the 10 years since the first
systematic study of TOCTTOU problem by Bishop
[2][3], only partial solutions have been proposed for
some instances of the problem [5][6][13]. In this paper,
we develop a model and list a comprehensive enumera-
tion of TOCTTOU vulnerabilities for the Linux virtual
file system. To the best of our knowledge, this is the
most complete study of TOCTTOU problem so far.

The second contribution of the paper is a systematic
search for potential TOCTTOU vulnerabilities in Linux
system utility programs. We implemented model-based
software tools that are able to detect previously re-
ported TOCTTOU vulnerabilities as well as finding
some unknown ones (e.g., in the rpm software distribu-
tion program, the vi/vim and emacs editors). We con-
ducted a detailed experimental study of successfully
exploiting these vulnerabilities and analyze the signifi-
cant events during a TOCTTOU attack against the na-
tive binaries of rpm and vi. By repeating the
experiments, we also evaluated the probability of these
events happening, as well as the success rate of these
non-deterministic TOCTTOU attacks. These analyses
provide a quantitatively better understanding of
TOCTTOU attacks.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the CUU model of TOCTTOU vul-
nerabilities. Section 3 describes a framework that
detects TOCTTOU vulnerabilities through monitoring
of TOCTTOU pairs. Section 4 presents a detailed
analysis of events during the attacks on rpm and vi, in-
cluding a study of attack success probability. Section 5
discusses the accuracy of the detection software tools
and shows the measured overhead incurred by the
tools. Section 6 summarizes related work and Section
7 concludes the paper.

2 The CUU Model of TOCTTOU
2.1 Broad Definition of TOCTTOU
A necessary condition for a TOCTTOU vulnerability to
happen is a pair of system calls (referred to as
“TOCTTOU pair” in this paper) operating on the same
disk object using a file pathname. The first system call
(referred to as “CU-call”) establishes some precondi-
tions about the file (e.g., the file exists, the current user
has write privilege to the file, etc). The second system
call (referred to as “Use-call”) operates on the file,
based on those preconditions. In our model, the pre-

conditions about the file can be established either ex-
plicitly (e.g., access or stat) or implicitly (e.g., open or
creat). Therefore, the TOCTTOU name is more re-
strictive than our model. Our model includes the origi-
nal check-use system call pairs [2][3], plus use-use
pairs. For example, a program may attempt to delete a
file (instead of checking whether a file exists) before
creating it. Consequently, the pair <delete, create> is
also considered a (broadly defined) TOCTTOU pair.

2.2 An Enumeration of TOCTTOU pairs
in Linux

We apply this model (called CUU) to the concrete
situation of analyzing TOCTTOU problems in Linux.
To get a complete list of TOCTTOU pairs, we first find
the complete CUSet (the set of CU-calls) and UseSet
(the set of Use-Calls). We select these two sets of ker-
nel calls from the functional specification of Linux file
system. We started from file system calls that require a
pathname as input, and then filtered out those that are
unlikely to be leveraged in a TOCTTOU attack. For
example, swapon does not follow symbolic links so it
is not included in the UseSet (Here we assume that all
TOCTTOU attacks based on swapon are symbolic link
kind attack). Finally we got the following CUSet and
UseSet:
x CUSet = { access, stat, open, creat, mknod, link,

symlink, mkdir, unlink, rmdir, rename, execve,
chmod, chown, truncate, utime, chdir, chroot,
pivot_root, mount }

x UseSet = { creat, mknod, mkdir, rename, link,
symlink, open, execve, chdir, chroot, pivot_root,
mount, chmod, chown, truncate, utime }

Although some system calls may appear unlikely can-
didates, they have been included after careful analysis.
For example, mknod is in UseSet because it is able to
create a new regular file, a function that is rarely
known.

This classification of CUSet and UseSet is not
structured enough for a complete analysis because
some CU-calls and Use-calls are semantically unre-
lated. For example, <creat, chdir> is not a meaningful
pair because creat creates a regular file while chdir
expects a directory as argument. So we need to subdi-
vide CUSet and UseSet so that a TOCTTOU pair at
least applies to the same kind of storage objects (e.g.
regular file, directory, or link). Thus we define the fol-
lowing sets.

Definition 1: CreationSet contains system calls that
create new objects in the file system. It can be further
divided into three subsets depending on the kind of ob-
jects that the system call creates:
CreationSet = FileCreationSet � LinkCreationSet �
DirCreationSet, where

USENIX Association156

FileCreationSet = {creat, open, mknod, rename}
LinkCreationSet = {link, symlink, rename}
DirCreationSet = {mkdir, rename}

Definition 2: RemoveSet contains system calls that
remove objects from the file system. It can be further
divided into three corresponding subsets:
RemoveSet = FileRemoveSet � LinkRemoveSet �
DirRemoveSet, where
FileRemoveSet = {unlink, rename}
LinkRemoveSet = {unlink, rename}
DirRemoveSet = {rmdir, rename}

Definition 3: NormalUseSet contains system calls
which work on existing storage objects and do not re-
move them. We subdivide them into two sets:
NormalUseSet = FileNormalUseSet � DirNormalUse-
Set, where
FileNormalUseSet = {chmod, chown, truncate,
utime, open, execve}
DirNormalUseSet = {chmod, chown, utime, mount,
chdir, chroot, pivot_root}

Definition 4: CheckSet contains the system calls
that establish preconditions about a file pathname ex-
plicitly.
CheckSet = {stat, access}

Using the above definitions, we divide the CUSet
and UseSet into subsets:
CUSet = CheckSet � CreationSet � RemoveSet �

NormalUseSet
UseSet = CreationSet � NormalUseSet

Based on the precondition established by the CU-
call, we can divide the TOCTTOU pairs into two
groups: Group 1 creates a new object and Group 2 op-
erates on an existing object. We say that TOCTTOU
vulnerabilities are not due to bad programming prac-
tices, since in Group 1 the CU-call establishes the pre-
condition that the file pathname does not exist and in
Group 2 the CU-call establishes the precondition that
the file pathname exists.

Group 1 preconditions can be established either ex-
plicitly by CU-calls in the CheckSet, or implicitly by
CU-calls in the RemoveSet. These are followed by
Use-calls in a CreationSet of the corresponding type,
e.g., the creation of a directory is only paired with a
system call on a directory.

Group 1 = (CheckSet u CreationSet) �(FileRemoveSet
u FileCreationSet) � (LinkRemoveSet u LinkCrea-
tionSet) � (DirRemoveSet u DirCreationSet).

Group 2 preconditions can be established by CU-
calls in the CheckSet, or by CU-calls in the CreationSet
(a file/directory/link exists after it is created), or by
CU-calls in the NormalUseSet. These are followed by
corresponding Use-calls. The link-related calls are
paired with both FileNormalUseSet and DirNor-
malUseSet because a link can point to either a regular
file or a directory.

Group 2 = (CheckSet u NormalUseSet) � (FileCrea-
tionSet u FileNormalUseSet) � (DirCreationSet u
DirNormalUseSet) � (LinkCreationSet u FileNor-
malUseSet) � (LinkCreationSet u DirNormalUseSet)
� (FileNormalUseSet u FileNormalUseSet) � (Dir-
NormalUseSet u DirNormalUseSet).

Intuitively, Group 1 � Group 2 completes the set of
TOCTTOU pairs. A formal proof of the completeness
of CUU is out of the scope of this paper and is ad-
dressed in another paper [20].

In summary, Table 2 shows these TOCTTOU pairs
along two dimensions: the use of a storage object and
whether the check was an explicit check or an implicit
check. A total of 224 pairs have been identified using
this table.

Table 2: Classification of TOCTTOU Pairs

Use Explicit check Implicit check
Create a
regular file

CheckSet u
FileCreationSet

FileRemoveSet u
FileCreationSet

Create a di-
rectory

CheckSet u
DirCreationSet

DirRemoveSet u
DirCreationSet

Create a link CheckSet u
LinkCreationSet

LinkRemoveSet u
LinkCreationSet

Read/Write/
Execute or
Change the
attribute of a
regular file

CheckSet u
FileNormalUse-
Set

(FileCreationSet u
FileNormalUseSet)�
(LinkCreationSet u
FileNormalUseSet)�
(FileNormalUseSet u
FileNormalUseSet)

Access or
change the
attribute of a
directory

CheckSet u
DirNormalUse-
Set

(DirCreationSet u
DirNormalUseSet)�
(LinkCreationSet u
DirNormalUseSet)�
(DirNormalUseSet u
DirNormalUseSet)

2.3 Known TOCTTOU Examples
We applied our model to known TOCTTOU vulner-
abilities and show the results in Table 3.

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 157

FAST ’05: 4th USENIX Conference on File and Storage Technologies

Table 3: Real world applications known to
have TOCTTOU vulnerability

Applications TOCTTOU
pair

Classification

BitKeeper, Cscope
15.5, CUPS, getmail
4.2.0, glint, Kerbe-
ros 4, openldap,
OpenOffice 1.0.1,
patchadd, procmail,
samba, Xinetd

<stat,
open>

CheckSet u File-
CreationSet

Rational ClearCase,
pppd

<stat,
chmod>

CheckSet u
FileNormalUseSet

logwatch 2.1.1 <stat,
mkdir>

CheckSet u Dir-
CreationSet

bzip2-1.0.1, gzip,
SAP

<open,
chmod>

Mac OS X 10.4 –
launchd

<open,
chown>

Apache 1.3.26,
make

<open,
open>

FileCreationSet u
FileNormalUseSet

StarOffice 5.2 <mkdir,
chmod>

DirCreationSet u
DirNormalUseSet

3 Model-Based TOCTTOU Detection
3.1 Components of Practical Attacks
An actual TOCTTOU vulnerability consists of a victim
program containing a TOCTTOU pair (described in
Section 2) and an attacker program trying to take ad-
vantage of the potential race condition introduced by
the TOCTTOU pair. The attacker program attempts to
access or modify the file being manipulated by the vic-
tim through shared access during the vulnerability win-
dow between the CU-call and Use-call. For example,
by adding a line to an unintentionally shared script file
in the rpm attack (Section 4.2), the attacker can trick
the victim into executing unintended code at a higher
privilege level (root). In general, we say that a
TOCTTOU attack is profitable if the victim is running
at a higher level of privilege. In Unix-style OSs, this
means the victim running as root and the attacker as
normal user.

An important observation is that even though the
victim is running at a higher level of privilege, the at-
tacker must have sufficient privileges to operate on the
shared file attributes, e.g., creation or deletion. This
observation narrows the scope of potential TOCTTOU
vulnerabilities. Table 4 shows a list of directories
owned by root in Linux. Since normal users cannot
change the attributes or content of files in these directo-
ries, these files are safe.

Table 4: Directories Immune to TOCTTOU
/bin
/boot
/dev
/etc
/lib
/misc
/mnt
/opt

/root
/proc
/sbin
/usr/bin
/usr/etc
/usr/include
/usr/lib

/usr/dict
/usr/kerberos
/usr/libexec
/usr/sbin
/usr/src
/usr/X11R6
/var/cache

/var/db
/var/empty
/var/ftp
/var/lock
/var/log
/var/lib
/var/run

3.2 CUU Model-Based Detection Tools
Based on the CUU model, we designed a software
framework and implemented software tools to detect
actual TOCTTOU vulnerabilities in Linux. Figure 1
shows the four components of our detection framework,
based on dynamic monitoring of system calls made by
sensitive applications (e.g., those that execute with root
privileges). The first component of our framework is a
set of plug-in Sensor code in the kernel, placed in sys-
tem calls listed in the CUSet and UseSet (Section 2.2).
These Sensors record the system call name and its ar-
guments, particularly file name (full path for unique
identification purposes). For some system calls, other
related arguments are also recorded to assist in later
analysis, e.g., the mode value of chmod(path, mode).
Some environmental variables are also recorded, in-
cluding process id, name of the application, user id,
group id, effective user id, and effective group id. This
information will be used in the analysis to determine if
a TOCTTOU pair can be exploited. We do not use
standard Linux trace facilities such as strace for two
reasons: First, strace does not output full pathname for
files referred to using relative pathnames; Second,
strace does not give enough environmental information
such as effective user id.

The Sensors component also carries out a prelimi-
nary filtering of their log. Specifically, they identify the
system calls on files under the system directories listed
in Table 4 and filter them out, since those files are im-
mune to TOCTTOU attacks. After this filter, remain-
ing potentially vulnerable system calls are recorded in
a circular FIFO ring buffer by printk.

The second component of our framework is the
Collector, which periodically empties the ring buffer
(before it fills up). The current implementation of the
Collector is a Linux daemon that transforms the log
records into an XML format and writes the output to a
log file for both online and offline analysis.

The third component of our framework is the Ana-
lyzer, which looks for TOCTTOU pairs (listed in Table
2) that refer to the same file pathname. For offline
analysis, this correlation is currently done using XSLT
(eXtensible Stylesheet Language Transformations)

USENIX Association158

templates. This analysis proceeds in several rounds as
follows.

Round 1: First, the Analyzer sorts the log records
by file name, grouping its operation records such as the
names and locations (sequence numbers) of system
calls.

Round 2: Second, system calls on each file are
paired to facilitate the matching of TOCTTOU pairs.

Round 3: Third, system call pairs are compared to
the list in Table 2. When a TOCTTOU pair is found, an
XSLT template is generated to extract the correspond-
ing log records from the original log file.

Round 4: Fourth, the log records related to
TOCTTOU pairs found are extracted into a new file for
further inspection.

Figure 1: Framework for TOCTTOU Detec-
tion

The fourth component of our framework is the In-
spector, which identifies the actual TOCTTOU vulner-
ability in the program being monitored. The Inspector
links the TOCTTOU pair with associated environ-
mental information, including file pathname, related
arguments, process id, program name, user id, group id,
effective user id, and effective group id. The Inspector
decides whether an actual exploitation can occur.

For each TOCTTOU pair, the Inspector does the
following steps:
x Check the arguments of the calls to see if these

calls can be profitable to an attacker. For example,

if the Use-Call is chmod, then a value of 0666 for
the mode argument falls into this category because
this chmod can be used to make /etc/passwd
world-writable. On the other hand, a mode value of
0600 is not profitable because it will not give the
attacker any permission on a file that he/she does
not own. In this case the TOCTTOU pair in ques-
tion is not a TOCTTOU vulnerability.

x Check the file pathname. For the chmod example,
if the file is stored under a directory writable by an
ordinary user, like his/her home directory, then
continue to the next step; otherwise the
TOCTTOU pair is not a TOCTTOU vulnerability.

x Check the effective user id. Continuing with the
chmod example, if the effective user id is 0 (root),
then report this TOCTTOU pair as a vulnerability;
otherwise, the TOCTTOU pair is not a vulnerabil-
ity.

It should be noted that the steps described above give
only an outline of the Inspection process based on one
attack scenario for one particular TOCTTOU pair. For
different TOCTTOU pair and different attack scenario,
the details of these checks can be different. For exam-
ple, the same TOCTTOU pair as the above with a mode
value of 0644 and the same other conditions is also
considered a vulnerability because it can be exploited
to make /etc/shadow readable by an attacker. Thus the
Inspector requires a template (or signature) for each
kind of attack scenario. Table 5 shows the set of tem-
plates used by the current implementation of the In-
spector. For brevity, this table does not show the file
pathname and effective user id which are checked in
every template. This set may be expanded as new at-
tack scenarios are found.

Table 5: Templates used in the Inspector
Use-Call Arguments to

check
Sample attack scenarios

chmod mode Gain unauthorized ac-
cess rights to /etc/passwd

chown owner, group Change the ownership of
/etc/passwd

chroot Access information un-
der a restricted directory

execve Run arbitrary code
open mode, flag Mislead privileged pro-

grams to do things for
the attacker, or steal sen-
sitive information

truncate length Erase the content of
/etc/passwd

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 159

FAST ’05: 4th USENIX Conference on File and Storage Technologies

4 Analysis of Real TOCTTOU Attacks
4.1 Experimental Setup
We applied our detection framework and tools to find
previously unreported TOCTTOU vulnerabilities in
Linux. Although the CUU model describes all the
TOCTTOU pairs in Linux file systems, it is impractical
to test all the execution paths of all the system software
(or even a single program of any complexity). Our in-
tent is to learn as much as possible about real
TOCTTOU vulnerabilities through a detailed analysis.
The experiments show that significant weaknesses can
be found relatively easily using our framework and
tools.

From the discussion in Section 3.1, we focus our at-
tention on system software programs that use file sys-
tem (outside the directories listed in Table 4) as a root.
Each program chosen is downloaded, installed, config-
ured, and deployed. Furthermore, we also build a test-
ing environment which includes the design and
generation of a representative workload for each appli-
cation, plus the analysis of TOCTTOU pairs observed.
Although this is a laborious process that requires high
expertise, one could imagine incorporating such testing
environments into the software release of system pro-
grams, facilitating future evaluations and experiments.

Our tools were implemented on Red Hat 9 Linux
(kernel 2.4.20) to find TOCTTOU vulnerabilities in
about 130 commonly used utility programs. The script-
based experiments consist of about 400 lines of shell
script for 70 programs in /bin and /sbin. This script
takes about 270 seconds to gather approximately 310K
bytes of system call and event information. The other
60 programs were run manually using an interactive
interface. From this sample of Linux system utilities,
we found 5 potential TOCTTOU vulnerabilities (see
Table 6).

The experiments were run on an Intel P4 (2.26GHz)
laptop with 256M memory. The Collector produces an
event log at the rate of 650 bytes/sec when the system
is idle (only background tasks such as daemons are
running), 11KB/sec during the peak time a large appli-
cation such as OpenOffice is started, and 2KB/sec on
average. The Analyzer processes the log at the speed of
4KB/sec.

From the list in Table 6, we wrote simple attack
programs that confirmed the TOCTTOU vulnerabilities
in rpm, emacs and vi. We discuss the attack on rpm
and vi in detail (Sections 4.2 and 4.3, respectively), and
outline the others in Section 4.4.

4.2 rpm 4.2 Temp File Vulnerability
rpm is a popular software management tool for install-

Table 6: Potential TOCTTOU Vulnerabilities
Application TOCTTOU errors Possible exploit

vi <open, chown> Changing the
owner of
/etc/passwd to
an ordinary user

rpm <open, open> Running arbi-
trary command

emacs <open,chmod> Making
/etc/shadow
readable by an
ordinary user

gedit <rename, chown> Changing the
owner of
/etc/passwd to
an ordinary user

esd
(Enlight-

ened Sound
Daemon)

<mkdir, chmod> Gaining full ac-
cess to another
user’s home di-
rectory

ing, uninstalling, verifying, querying, and updating
software packages in Linux. When rpm installs or re-
moves a software package, it creates a temporary script
file in directories such as /var/tmp or /var/local/tmp.
This shell script is used to install or remove help
documentation of the software package. Since the ac-
cess mode of this file is set to 666 (world-writable), an
attacker can insert arbitrary commands into this script.
Given the privileges required for installing software
(usually root), this is a significant vulnerability. The
TOCTTOU pair involved is <open, open>: the first
open creates the script file for writing the script; and
the second open is called in a child process to read and
execute the script.

Table 7: Baseline vulnerability of rpm

4.2.1 Baseline Analysis of rpm
In our evaluation of the TOCTTOU vulnerability in
rpm, we start by measuring the total running time of
rpm (denoted by t) and the window of vulnerability
(the time interval between the two opens, denoted by
v). We ran rpm (as root) 100 times, alternatively in-
stalling and uninstalling a package named sharutils-
4.2.1-14.i386.rpm, and measured t and v for each invo-
cation. From Table 7 we can see that the window of
vulnerability is relatively narrow (less than 5%), since
the two opens are separated only by a few millisec-
onds.

Install (rpm –i) Uninstall (rpm –e) Package
Operation Average Stdev Average Stdev
t (Psec) 125,188 9,930 110,571 10,961
v (Psec) 5,053 20 4,218 102

v/t 4.1% --- 3.8% ---

USENIX Association160

4.2.2 An Experiment to Exploit rpm
The second part of our evaluation is to measure the ef-
fectiveness of an attack trying to exploit this apparently
small window of vulnerability. This experiment runs a
user-level attack process in a loop. It constantly checks
for the existence of a file name with the prefix
“/var/tmp/rpm-tmp”. A victim process (rpm run by
root) installs a software package and creates a script
file of that name. Note that rpm inserts a random suf-
fix as protection against direct guessing, but a directory
listing command bypasses the need to guess the full
pathname. If a file name of the expected prefix ap-
pears, the attacker appends the command “chown at-
tacker:attacker /etc/passwd” to it. If the append
happens during the window of vulnerability, then the
child process of rpm will execute the script and the in-
serted command line, making the attacker the owner of
/etc/passwd. When rpm finishes, the test program
checks whether the attacker has become the owner of
/etc/passwd.

Due to the non-deterministic nature of these ex-
periments, we ran the experiment 100 times in a batch.
After running several batches, we found a surprisingly
high average number of 85 successful attacks per
batch, considering the apparently narrow window of
vulnerability shown in Table 7.

4.2.3 Event Analysis of rpm Exploit
To fully understand what happened during the
TOCTTOU attack, we analyze the important system
events during the experiment. Figure 2 shows the
events in a successful exploit of rpm. In Figure 2, the
dark (upper) line shows the events of the rpm process,
and the lower line shows the events of the attacker
process. The attacker process stays in a loop looking
for file names of interest. When the rpm process cre-
ates the file (just before the 200 msec clock tick), the
attacker detects it and appends the chown line to the
temporary script and goes back to the loop.

The two timelines show that even though the CPU
consumption during the window of vulnerability is
relatively small, the rpm process causes interrupts that
lengthen the window, represented by dotted upper line.
Specifically, there are at least two scheduling actions
within the rpm vulnerability window: rpm creates a
new process to execute bash, which creates another
new process to execute an external executable file
(/sbin/install-info). Each process creation causes rpm
to yield CPU to the scheduler. Figure 2 shows that the
attacker process is scheduled as a result and the attack
succeeds. Consequently, the two scheduling actions
created by rpm make the attack more likely to succeed
because rpm yields the CPU in the window of vulner-
ability.

Figure 2: Event Analysis of rpm Exploit

0 50 100 150 200 250 300 350

Time (milliseconds)

rpm starts

ls –l … ls –l … ls –l ; grep

rpm creates
rpm-tmp.49755;

vulnerability
begins

bash reads
rpm-tmp.49755

install-
info

bash reads
rpm-tmp.49755

bash
ends

rpm
ends

ls; grep;
grep

ls; grep;
grep

append to rpm-
tmp.49755

rpm rpm vulnerability window attacker attack

chown

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 161

FAST ’05: 4th USENIX Conference on File and Storage Technologies

In our experiments, we also found another reason
more attacks succeed than indicated by the short win-
dow of vulnerability. Specifically, we observed that in
some cases the appending to the script file by the at-
tacker happened after the second open of rpm (outside
the window), but the attack still succeeds. In these
cases, we believe that append started after bash opened
the script file (the second open of rpm), but it finished
before bash reached the end of the script. Since bash
interprets the script line by line, there is a good chance
of executing the newly appended line. These two ex-
planations (CPU yielding and slow interpretation of the
script) help explain the lengthening of the window of
vulnerability and the high attack success rate of 85%.

4.3 vi 6.1 Vulnerability
The Unix “visual editor” vi is a widely used text editor
in many UNIX-style environments. For example, Red
Hat Linux distribution includes vi 6.1. Using our tools,
we found potential TOCTTOU vulnerabilities in vi 6.1.
Specifically, if vi is run by root to edit a file owned by
a normal user, then the normal user may become the
owner of sensitive files such as /etc/passwd.

The problem can be summarized as follows. When
vi saves the file being edited, it first renames the origi-
nal file as a backup, then creates a new file with the
original name. The new file is closed after all the con-
tent in the edit buffer is written. If vi is running as root,
the initial owner and group of this new file is root, so vi
needs to change the owner and group of the new file to
its original owner and group. This forms an <open,
chown> window of vulnerability every time vi saves
the file. During this window, if the file name can be
changed to a link to /etc/passwd, then vi can be tricked
into changing the ownership of /etc/passwd to the nor-
mal user.
4.3.1 Baseline Analysis of vi
Using the same method of the rpm study, we measured
the percentage of time when vi is running in its vulner-
ability window as it saves the file being edited. In vi,
this depends on the edited file size. In our experi-
ments, we bypass the user typing time to avoid the
variations caused by human participation.

We define the save window t as the time vi spends
in processing one “save” command, and the vulnerabil-
ity window v during which TOCTTOU attack may
happen. We measured 60 consecutive “saves” of the
file for t, and timestamp the open and chown system
calls for v. Since the “save” time of a file depends on
the file size, we did a set of experiments on different
file sizes. Figure 4 shows the time required for a
“save” command for files of sizes from 100KB to
10MB. We found a per file fixed cost that takes about
14msec for the small (100KB) file and an incremental
cost of 9msec/MB (for files of size up to 10MB).

Since chown happens after the file is completed,
the window of vulnerability v follows approximately
the same incremental growth of 9msec/MB (see Figure
4). Figure 3 shows the window of vulnerability to be
relatively long compared to the total “save” time. It
gradually grows to about 80% of the “save” total
elapsed time for 10MB files. This experiment tells us
that vi is more vulnerable when the file being edited is
larger. For a small file (100KB size) the window of
vulnerability is still about 5% of the “save” time.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 1 2 3 4 5 6 7 8 9 10

File size in MB

Figure 3: Window of Vulnerability Divided by
Total Save Time, as a Function of File Size

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11

File size in MB

M
ili

se
co

nd
s

Vi vulnerability window size
Vi save window size

Figure 4: Vulnerability and Save Window Sizes
of vi

4.3.2 An Experiment to Exploit vi
Unlike a batch program such as rpm, which is easily
run from a script, vi is designed for interactive use by
humans. To eliminate the influence of human “think
time” in the experiments, we wrote another program to
interact with vi by sending it commands that simulate
human typing. This reduces the run-time and the win-
dow of vulnerability to minimum. The experiment
runs a vi (as root) editing a file owned by the attacker
in the attacker’s home directory. The editing consists
of either appending or deleting a line from the file and
the experiment ends with vi exiting.

USENIX Association162

The attack consists of a tight loop constantly check-
ing (by stat-ing) whether the owner of the file has be-
come root, which signifies the start of the window of
vulnerability. Once this happens, the attacker replaces
the file with a symbolic link to /etc/passwd (as shown
in Figure 7). When vi exits, it should change the own-
ership of /etc/passwd to the attacker. The attacker pro-
gram checks for this ownership change. If vi finishes
and /etc/passwd is still owned by root, the attack fails.

Contrary to the surprisingly high probability of suc-
cess in the rpm case, we found a relatively low prob-
ability of success in the vi case (see Figure 5 and
Figure 6), despite a relatively wide window of vulner-
ability. This leads to a more careful analysis of the
system events during the attack.
4.3.3 Event Analysis of vi Exploit
Although the window of vulnerability may be wide, an
attack will succeed only when:
1. vi has called open to create the new file,
2. vi has not called chown,
3. vi relinquishes CPU, voluntarily or involuntarily,

and the attacker is scheduled to run, and
4. the attacker process finishes the file redirection

during this run.
The first two conditions have been studied in the

baseline experiment. The fourth condition depends on
the implementation of the attacker program. For ex-
ample, if the attacker program is written in C instead of
shell script, it will be less likely to be interrupted.

The third condition is the least predictable. In our
experiments, we have found several reasons for vi to
relinquish CPU. First, vi may suspend itself to wait for
I/O. This is likely since the window of vulnerability
includes the writing of the content of the file, which
may result in disk operations. Second, vi may use up its
CPU slice. Third, vi may be preempted by higher prior-
ity processes such as ntpd, kswapd, and bdflush kernel
threads. Even after vi relinquishes CPU, the second
part of the condition (that the attacker process is sched-
uled to run) still depends on other processes not being
ready to run.

This analysis illustrates the highly non-
deterministic nature of a TOCTTOU attack. To
achieve a statistically meaningful evaluation, we repeat
the experiments and compute the probability of attack
success. To make the experimental results reproduci-
ble, we eliminated all the confounding factors that we
have identified. For example, in each round of experi-
ments, we ran vi at least 50 times, each time on a dif-
ferent file, to minimize file caching effects. We also
observed memory allocation problems after large files

have been used. To relieve memory pressure, we
added a 2-second delay between successive vi invoca-
tions.

Figure 5 shows the success rate for file sizes rang-
ing from 100KB to 1MB averaged over 500 rounds.
We see that for small files, there is a rough correlation
between the size of window of vulnerability and suc-
cess rate. Although not strictly linear, the larger the
file being edited, the larger is the probability of suc-
cessfully attacking vi.

Figure 6 shows the results for file sizes ranging
from 2MB to 4MB, with a stepping size of 20KB, av-
eraged over 100 rounds. Unlike the dominantly in-
creasing success rate for small file sizes, we found
apparently random fluctuations on success rates be-
tween file sizes of 2MB and 3MB, probably due to race
conditions. For example, files of size 2MB have suc-
cess rate of 4%, which is lower than the 8% success
rate of file size 500KB in Figure 5. The growing suc-
cess trend resumes after files become larger than 3MB.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

100 200 300 400 500 600 700 800 900 1000

File size in KB

Baseline vulnerability

500 rounds attack success rate

Figure 5: Success Rate of Attacking vi (small
files)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

File size in MB

100 rounds attack success rate, 5 neighbors average

Baseline vulnerability

100 rounds attack success rate

 Figure 6: Success Rates of Attacking vi (large
files)

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 163

FAST ’05: 4th USENIX Conference on File and Storage Technologies

Figure 7: Event Analysis of the vi Exploit

4.4 Other Vulnerabilities
In our experiments, we identified 5 TOCTTOU pairs
(see Table 6) and confirmed 3 of them through direct
attacks (rpm, vi, and emacs). Due to its similarity to the
vi experiments (Section 4.3), the analysis of the attack
of emacs is omitted here.

We also tried to attack gedit, the fourth vulnerabil-
ity discovered, but we found a very low probability of
successful attack. Like vi, gedit becomes vulnerable
when it saves the file being edited. Unlike vi, gedit
writes to a temporary scratch file, then renames the
scratch file to the original file name, and calls chown.
Thus the window of vulnerability is between the re-
name and the directly following chown, a very short
time that reduces the probability of successful attack.
A full analysis of gedit experiments is beyond the scope
of this paper.

The fifth vulnerability is the Enlightened Sound
Daemon (esd), which creates a directory /tmp/.esd then
changes the access mode of this directory to 777, giv-
ing full permissions (read/write/execute) to all users.
Besides, this directory is under /tmp, a place where any
user can create files or directories. So a possible attack
is to create a symbolic link /tmp/.esd before the mkdir
call of esd and let the link point to some directories
owned by the running user (such as his/her home direc-
tory). If esd does not check whether its mkdir call suc-
ceeds, then it will change the access mode of the
running user’s home directory to 777. Then an attacker
has full access to the running user’s home directory.
We postponed our experiments on esd since this

TOCTTOU vulnerability has been reported in
BUGTRAQ [17].

Overall, we consider the CUU model-based detec-
tion framework to be a success. With a modest number
of experiments, we confirmed known TOCTTOU vul-
nerabilities and found several previously unreported
ones. However, this offline analysis only covers the
execution paths exercised by the workloads, so it can-
not guarantee the absence of TOCTTOU vulnerabilities
when none is reported.

In this paper, our research focuses on the scheduling
aspects of TOCTTOU attacks in uniprocessor environ-
ments. Multiprocessors, hyper-threaded uniprocessors,
or multi-core processors are beyond the scope of this
paper and subject of ongoing research.

5 Evaluation of Detection Method
5.1 Discussion of False Negatives
As mentioned in Section 4.1, our tools are not designed
for exhaustive testing. While we attempted to generate
representative workloads for the 130 programs tested,
we cannot guarantee coverage of all execution paths.
The coverage problem may be alleviated by improve-
ments in the testing technology and documentation.

More fundamentally, the CUU-Model covers pairs
of file system calls, assuming that a precondition is es-
tablished by the CU-call before the Use-call relies on it.
In programs where preconditions are not explicitly es-
tablished (a bad programming practice), e.g., a program
creates a temporary file under a known name without
first stat-ing the existence of the file, exploits may

0 20 40 60 80 100 120

stat; …

write write; close chown

stat
unlink;
symlink

write; …
create

empty file

stat stat; …

vi vi vulnerability window attacker attack

Time (miliseconds)

USENIX Association164

happen outside the CUU model. The problem of com-
plex interactions among more than a pair of system
calls is an open research question. (Currently, there are
no known examples of such complex vulnerabilities.)

5.2 Discussion of False Positives
Tool-based detection of vulnerabilities typically does
not achieve 100% precision. The framework described
in Section 3 is no exception. There are some technical
sources of false positives:
1. Incomplete knowledge of search space: The list of

immune directories (Table 4) is not complete be-
cause of the dynamic changes to system state (e.g.
newly created root-owned directories under
/usr/local), which leads to false positives.

2. Artifacts of test environment: If the test cases
themselves uses /tmp or the home directory of an
ordinary user, our tools have to report related
TOCTTOU pairs, which are false positives. For
example, the initial test case for cpio uses a tempo-
rary directory /tmp/cpio, so the tools reported a
<stat, chdir> on this directory.

3. Coincidental events: Because our tools do system-
wide monitoring, they capture file system calls
made by every process. Sometimes two unrelated
processes happen to make system calls on the same
file that appear to be a TOCTTOU pair.

4. Incomplete knowledge of application domain: Not
every TOCTTOU pair is profitably exploitable.
For example, the application rpm invoked by “--
addsign” option contains a <stat, open> pair,
which can open any file in the system for reading,
such as /etc/shadow. However, rpm can not proc-
ess /etc/shadow because it is not in the format rec-
ognizable by rpm. So it is unlikely that this pair
can be exploited to undermine a system.

By improving the kernel filter (source 1), re-designing
test cases (source 2), and reducing concurrent activities
(source 3), we reduced the false positive of our tools;
for example, in one experiment testing 33 Linux pro-
grams under /bin, the false positive rate fell from 75%
to 27%. However, source 4 is hard to remove due to
the differences among application domains.

5.3 Overhead Measurements
To evaluate the overhead of our detection framework,
we ran a variant of the Andrew benchmark [9]. The
benchmark consists of five stages. First, it uses mkdir
to recursively create 110 directories. Second it copies
744 files with a total size of 12MB. Third, it stats 1715
files and directories. Fourth, it greps (scan through)
these files and directories, reading a total amount of
26M bytes. Fifth, it does a compilation of around 150
source files. For every stage, the total running time is
calculated and recorded. We run this benchmark for 20
rounds and get the average. To mitigate the interference

from other processes during the run, we start Red Hat
in single-user mode (without X window system and
daemon processes such as apmd, crond, cardmgr, sys-
logd, gpm, cups and sendmail). To get an estimation of
the overhead of our system, we run this experiment on
a Linux box without modifications to get the baseline
results, and then a Linux box with our monitoring tools
(without the Analyzer and the Inspector which are used
offline). For the latter case, we ran the experiment un-
der two different directories to see the influence of file
pathname to the overhead. The total running time of
these five stages for the experiments is shown in Figure
8 and Table 8.

The results show a relatively higher overhead for
mkdir, copy and stat when the benchmark is run under
an ordinary user’s home directory (denoted Vulnerable
Dir in Figure 8 and Table 8). But when the benchmark
is run under /root (denoted Immune Dir in Figure 8 and
Table 8), the overhead becomes much lower (dropping
from 144% to 14% for stat). This difference shows that
printks in the kernel and the Collector daemon process
contribute significantly to the overhead, because the
filter in kernel suppresses most log messages caused by
the benchmark when it runs in a directory immune to
TOCTTOU (Table 4), therefore the printks and Col-
lector have much less work to do. The other source of
overhead comes from the Sensor (including the filter
and a query of the internal /proc file system data struc-
ture to map a process id to the complete command line
to assist the Inspector). However, the overhead of our
detection tools is amortized by application workload, as
shown for compilation.

PostMark benchmark [11] is designed to create a
large pool of continually changing files and to measure
the transaction rates for a workload approximating a
large Internet electronic mail server. Since mail server
software such as sendmail had well known TOCTTOU
problems, PostMark seems to be another representative
workload to evaluate the performance overhead of our
software tools.

When PostMark benchmark is running, it first tests
the speed of creating new files, and the files have vari-
able lengths that are configurable. Then it tests the
speed of transactions. Each transaction has a pair of
smaller transactions, which are either read/append or
create/delete.

On the original Linux kernel the running time of
this benchmark is 30 seconds. On our modified kernel,
with all the same parameter settings, the running time is
30.35 seconds when the experiment is run under /root
(an immune directory), and 35 seconds when the ex-
periment is run under a vulnerable directory. So the
overhead is 1.17% and 16.7% for these two cases, re-
spectively. This result also shows that the printks and
the Collector contribute significantly to the overhead.

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 165

FAST ’05: 4th USENIX Conference on File and Storage Technologies

Table 8: Andrew Benchmark Results (msec)
Modified Linux
Immune Dir

Modified Linux
Vulnerable Dir

Functions Original
Linux

Time Overhead Time Overhead
mkdir 2.8

r0.06
3.0

r0.10 7.1%
4.1

r0.05 46%
copy 59.2

r0.49
64.8
r2.2 9.5%

80.8
r0.46 36%

stat 61.1
r0.55

69.4
r0.41 14%

149.3
r3.5 144%

grep 543.1
r2.4

576.2
r5.9 6.1%

645.3
r3.7 19%

compile 20,668
r66

20,959
r90 1.4%

21,311
r195 3.1%

6 Related Work
The impression that TOCTTOU vulnerabilities are due
to bad programming practices is probably created by
the patches and solutions suggested in advisories and
reports on TOCTTOU exploits from US-CERT [14],
CIAC [15] and BUGTRAQ [16]. For example, many
of the reported problems link temporary files to another
file to be manipulated. Examples of TOCTTOU pairs
are <stat, mkdir> and <stat, open>. Typical solutions
suggested for patching these problems include:
x Using random number to obfuscate file names.
x Replacing mktemp() with mkstemp().
x Using a strict umask to protect temporary directo-

ries.
x Dropping privileges to those of an explicitly con-

figured user.
x Setting proper file/directory permissions.
x Checking the return code of function calls.

Although these suggestions are useful, they cannot
detect nor prevent these exploits. CUU model provides
a systematic approach to detection and prevention (out-
side the scope of this paper).

In recent years, static analysis of source code has
been used to find bugs in systems software. Significant
examples include: Bishop and Dilger’s prototype
analysis tool that used pattern matching to look for
TOCTTOU pairs [2][3]; Meta-compilation [7] using
compiler-extensions to check conformance to system
specific rules; RacerX [8] decoupling compilation from
rule-checking plus inter-procedural analysis; MOPS [4]
using model checking to verify program security prop-
erties. These static analysis tools are limited in the de-
tection of real TOCTTOU problems due to difficulties
with dynamic states (e.g., file names, ownership, and
access rights) and unavailability of attacker programs
for race condition checking.

Dynamic monitoring and analysis have been used to
gain insights into a system's behavior in many different

Figure 8: Andrew Benchmark Results
settings, such as file access prediction in mobile com-
puting [18][19]. In the particular area of software secu-
rity, dynamic monitors observe application execution to
find software bugs. These tools can be further classified
into dynamic online analysis tools and post mortem
analysis tools. Eraser [12] is an online analysis tool
that uses lockset analysis to find race conditions (un-
synchronized access to shared variables) in a multi-
threaded program. Calvin et al [10] proposed a post
mortem analysis tool for security vulnerabilities (in-
cluding TOCTTOU) related to privileged programs
(setuid programs). However, this tool can only detect
the result of exploiting a TOCTTOU vulnerability but
cannot locate the error.

In the area of general mechanisms to defend against
TOCTTOU attacks, solutions have been proposed for
specific TOCTTOU pairs. For example, Dean and Hu
[6] add multiple <access, open> pairs (called strength-
ening rounds) to reduce the probability of successful
attack against the TOCTTOU pair <access, open>.
RaceGuard [5] prevents the temporary file creation race
condition in UNIX systems, specifically, the <stat,
open> TOCTTOU pair. Tsyrklevich and Yee [13] de-
scribed a protection mechanism (called pseudo-
transaction) to prevent race conditions between speci-
fied system call pairs. Although the pseudo-transaction
mechanism is sufficiently general, their specification of
TOCTTOU pairs was based on heuristics. The CUU
model is a generalization of previous work watching
for specific TOCTTOU pairs. Our work also comple-
ments mechanisms such as pseudo-transactions by pro-
viding a complete model (with 224 identified
TOCTTOU pairs) to monitor all potentially dangerous
interactions.

7 Conclusion
According to CERT [14] advisories and BUGTRAQ
[16] reports, TOCTTOU problems are both numerous

USENIX Association166

and serious. We describe the CUU model and frame-
work to detect TOCTTOU vulnerabilities. The model
consists of 224 pairs of dangerous file system calls (the
TOCTTOU pairs) and we implemented the detection
framework for offline analysis of TOCTTOU vulner-
abilities. The CUU model is programming language-
independent. The software tools work without changes
or access to application source code.

Using offline analysis, we confirmed known
TOCTTOU attacks such as esd [17]. Running a rela-
tively modest set of experiments (about 130 system
utility programs), we also found and confirmed previ-
ously unreported TOCTTOU vulnerabilities in (the
unmodified, original version of) rpm, emacs and vi.

To understand better TOCTTOU vulnerabilities, we
recorded and analyzed in detail the main events in the
attack scenarios. These analyses support a quantitative
evaluation of the likelihood of success for each attack
(ranging from very unlikely in the gedit case to highly
likely in the rpm case at 85%). This evaluation is a
non-trivial task for non-deterministic concurrent pro-
grams. We also measured and found modest perform-
ance overhead of our tools by running the Andrew and
PostMark benchmarks (a few percent additional over-
head for application level benchmarks).

The CUU model-based analysis of TOCTTOU vul-
nerabilities also suggests online defense mechanisms
similar to pseudo-transactions [13]. This is a topic of
active research and beyond the scope of this paper.

8 Acknowledgement
This work was partially supported by NSF/CISE IIS
and CNS divisions through grants CCR-0121643, IDM-
0242397 and ITR-0219902. We also thank the anony-
mous FAST reviewers for their insightful comments.

9 References
[1] R. P. Abbott, J.S. Chin, J.E. Donnelley, W.L. Konigs-

ford, S. Tokubo, and D.A. Webb. Security Analysis and
Enhancements of Computer Operating Systems. NBSIR
76-1041, Institute of Computer Sciences and Technol-
ogy, National Bureau of Standards, April 1976.

[2] Matt Bishop and Michael Dilger. Checking for Race
Conditions in File Accesses. Computing Systems,
9(2):131–152, Spring 1996.

[3] Matt Bishop. Race Conditions, Files, and Security Flaws;
or the Tortoise and the Hare Redux. Technical Report
95-8, Department of Computer Science, University of
California at Davis, September 1995.

[4] Hao Chen, David Wagner. MOPS: an Infrastructure for
Examining Security Properties of Software. In Proceed-
ings of the 9th ACM Conference on Computer and Com-
munications Security (CCS), pages 235--244,
Washington, DC, November 2002.

[5] Crispin Cowan, Steve Beattie, Chris Wright, and Greg
Kroah-Hartman. RaceGuard: Kernel Protection From

Temporary File Race Vulnerabilities. In Proceedings of
the 10th USENIX Security Symposium, Washington DC,
August 2001.

[6] Drew Dean and Alan J. Hu. Fixing Races for Fun and
Profit: How to use access(2). In Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, August
2004.

[7] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem. Checking System Rules Using System-Specific,
Programmer-Written Compiler Extensions. In Proceed-
ings of Operating Systems Design and Implementation
(OSDI), September 2000.

[8] Dawson Engler, Ken Ashcraft. RacerX: Effective, Static
Detection of Race Conditions and Deadlocks. Proceed-
ings of the Nineteenth ACM Symposium on Operating
Systems Principles (SOSP'2003).

[9] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system,
Transactions on Computer Systems, vol. 6, pp. 51-81,
February 1988.

[10] Calvin Ko, George Fink, Karl Levitt. Automated Detec-
tion of Vulnerabilities in Privileged Programs by Execu-
tion Monitoring. Proceedings of the 10th Annual
Computer Security Applications Conference, page 134-
144.

[11] PostMark benchmark.
http://www.netapp.com/tech_library/3022.html

[12] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A Dynamic
Data Race Detector for Multithreaded Programs. ACM
Transactions on Computer Systems, Vol. 15, No. 4, No-
vember 1997, Pages 391–411.

[13] Eugene Tsyrklevich and Bennet Yee. Dynamic detection
and prevention of race conditions in file accesses. In
Proceedings of the 12th USENIX Security Symposium,
pages 243–256, Washington, DC, August 2003.

[14] United States Computer Emergency Readiness Team,
http://www.kb.cert.org/vuls/

[15] U.S. Department of Energy Computer Incident Advisory
Capability. http://www.ciac.org/ciac/

[16] BUGTRAQ Archive
http://msgs.securepoint.com/bugtraq/

[17] BUGTRAQ report RHSA-2000:077-03: esound contains
a race condition. http://msgs.securepoint.com/bugtraq/

[18] Ahmed Amer and Darrell D. E. Long. Noah: Low-cost
file access prediction through pairs. In Proceedings of
the 20th IEEE International Performance, Computing
and Communications Conference (IPCCC '01), April
2001.

[19] Tsozen Yeh, Darrell D. E. Long, and Scott Brandt. Per-
forming file prediction with a program-based successor
model. In Proceedings of the 9th IEEE International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS
'01), pages 193~202, Cincinnati, OH, August 2001.

[20] Calton Pu, Jinpeng Wei. A theoretical study of
TOCTTOU problem modeling. In preparation.

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 167

