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What? 

•  A hands-on course in reverse engineering, focusing on 
malware 

•  Provide solid background in theory of reversing 
–  Code generation 
–  How tools work:  e.g., disassemblers, debuggers 
–  Anti-analysis and anti-debug strategies 

•  Interleaved with hard reversing / analysis projects 
•  Not a collection of Powerpoint and toy examples 
•  Not a general “hacking” course 

–  Not because I object (I don’t) 
–  Not enough time in one semester to cover any additional 

“hacking” topics 
•  Goal:  Students develop serious, usable reverse 

engineering skills in one semester 



Why So Little RE in Academia? 

•  Because it’s hard for the instructor? 

•  Perception that skills can’t be developed in 
a single semester? 

•  The university won’t allow it  

•  Should we be doing this? 

•  Lack of student interest? 

•  I’m here to discover the others 



Aside: Building Trust 

•  I personally have no problems getting courses like 
this approved 

•  I seriously lay down the law concerning what will 
happen to: 
–  Classes like this being offered 
–  Access to all the cool toys, HW, and SW in my security 

lab 
•  …should things go “horribly wrong” 
•  Historically, despite teaching very hands-on courses in: 

–  OS internals 
–  Digital forensics 
–  Network security 

•  And despite having classes of students running around 
with root privileges on the machines in the lab… 



Aside: Building Trust (2) 

•  Nothing external and nothing significant has 
been destroyed 

•  Students understand network is monitored and 
impact of blowing something up outside my lab 

•  As a result, students are careful and self-policing 

•  I’ve been around for a long time and haven’t 
blown anything up 

•  Your mileage may vary 



Why Do It? 

•  60%: RE is useful and should be taught  
–  Great way to motivate students to dig deeper into 

systems 
–  ASM skills, OS internals, Intel manuals as 

recreational reading 
–  Computing != Computer + Java 

•  20%: Students begging 
–  Resistance: I knew it would be a lot of work to do 

correctly, tho it’s been coming together for awhile 

•  20%: I’m a hacker in professorial clothing 
–  Good chance to do what I like 



Who? 

•  Class taught in Spring 2009 for the first time 
•  25 students, 2/3 graduate, 1/3 undergrad 
•  ~20% had taken an OS internals course 
•  100% had taken the Intro to Security course 
•  ~50% had taken or were enrolled in a digital 

forensics course 
•  Few had serious assembler skills 
•  1 student had nearly expert RE skills 
•  2-3 others had at least basic RE skills 
•  “The hardest course I’ve ever had” 
•  1 student dropped in Spring 2009 



Aside: ASM Courses: Don’t Get Me Started 

•  Serious problem: Students have poor ASM skills 
•  Don’t know about yours, but our ASM course is 

(IMO) worthless 
•  Didn’t use to be…I took that course in 1983! 
•  Can’t volunteer to teach that course…no time 
•  No time to “teach” the ASM course inside RE 
•  Solution:  

–  (Nearly) compassion-free immersion 
–  ASM every day 
–  Tight deadlines assignments requiring ASM 

comprehension 



Topics 
•  Goals of reverse engineering 

–  Software interoperability, patch verification, malware analysis, 
cracking 

•  Ethics and legal issues 
–  DMCA, EULAs, RE == jail, seek ye lawyers 

•  Techniques / Tools for RE 
–  Static vs. dynamic analysis, disassemblers, debuggers, live 

forensics tools, memory dumpers, packing / unpacking, … 
•  Malware background 

–  Types, propagation strategies, payload delivery, poly- and 
metamorphic malware, … 

•  Basic Intel assembler (a few lectures, then “on the job”) 
–  Registers, flags, common instructions, data formats, 32 vs. 64bit 

code, hardware components, paging, debugging architecture, 
examples 



Topics (2) 

•  Windows Portable Executable (PE) format 
•  C control structure, function, array, struct/union 

patterns generated by common compilers 
•  Common malware functionality 

–  Delta offset calculation, API address discovery, 
infection and propagation, … 

•  Anti-debugging / anti-VM functionality 
–  Dynamic jumps, instruction prefetch attacks, LDT/

GDT/IDT location analysis, use of debugging facilities 
•  Packing and unpacking techniques 

–  Hand-rolled, UPX, Armadillo, … 



Laboratory Setup 

•  Isolated gigabit network with fast, private fileserver (16 x 
15K SAS drives) – has to serve VMWare images 

•  Workstations running Linux + VMWare 
•  User accounts including XP VMWare image stored by 

file server 
•  XP image contains: 

–  sysinternals suite 
–  Visual C++ Express Edition 
–  MASM32 
–  ollydbg 
–  IDA Pro 5.x + x86emu plugin for x86 emulation 
–  HBGary Responder (thanks, Penny!) 
–  FACE, Volatools, ptfinder, … 

•  Networking OFF in VMWare image whenever possible 



Approach: Challenges 

•  Time is short! 

•  ASM skills 

•  Flipping Powerpoint guaranteed to fail 

•  Want actual, rather than theoretical, skills to 
emerge 

•  Skills at end of semester should be (almost?) 
sufficient to analyze modern malware 

•  Must hurt students (a lot) to achieve skill levels 
without completely discouraging them 





Approach: Malware Sampler 

•  Requirements: 
–  Students start RE immediately 
–  With each new malware sample, push students 

almost to breaking point    but not quite 

•  Michelangelo  DOS-7  SQL Slammer  
Murkry  Lucius  Harulf  Conficker 

•  These were interleaved with short “malware” 
samples (that I wrote) to introduce: 
–  Registry hacking 
–  Replacement of system binaries 
–  Addition of user accounts 
–  … 



Approach: Workflow 

Traditional lectures w/ 
Powerpoint for  

necessary background 

Documented ASM 
walkthroughs on document  

camera: new malware 

Midterm / Final: 
60% reverse engineering assignments 

40% background material 

Reversing assignments of 
increasing difficulty, 

in teams of 2-3 

Lab sessions 
in lieu of lecture 

to introduce use of  
tools or concepts  

such as unpacking 

Documented ASM 
walkthroughs on document 

 camera: team assignments 



Approach: Assignments 

•  Series of team-based malware analyses 
•  Goal is to produce fully documented disassemblies 
•  Initially, uncommented but correct disassemblies 
•  Later, only a binary malware sample 

–  Must coax tools to generate correct disassembly 
–  Deal with packing, anti-analysis techniques 

•  Modest expectations initially, increase sharply as the 
semester progresses 

•  In some cases: 
–  Solutions accepted and signed 
–  Necessary concepts for complete solution discussed in class 
–  Solution returned and then may be resubmitted 

•  Always let students try (and potentially fail) before giving 
away the solution 



NukeHD: 
 sub cx,cx   
    

NukeDism: 
 inc cx    
 push cs    
 pop es    
 mov ax,FE05h   
 jmp $-2    
    
    
    
    
    
    
    
    
    
    
    
 sub ax,E702h   
 mov bh,1   
 mov dx,80h   
 int 13h    
 jmp short NukeDism   



NukeHD: 
 sub cx,cx  ; cx == sector number <-- 0 
   ; FALL THROUGH... 

NukeDism: 
 inc cx   ; target next sector 
 push cs   ;  
 pop es   ; es <-- cs 
 mov ax,FE05h  ; ax <-- FE05h 
 jmp $-2   ; jumps into middle of last instruction 
   ; last instruction disassembled =  
   ; B8 05 FE EB FC   
   ; 
   ; JMP targets 05 byte which is the 
   ; opcode for a 16-bit immediate add 
   ; to AX, thus ax <-- ax + EBFEh 
   ; 
   ; the remaining byte, FC, is the 
   ; opcode for the single byte instruction 
   ; CLD (clear direction flag) 
   ; 
 sub ax,E702h  ; ax <-- ax - 0E702h = 301h   
 mov bh,1  ;  
 mov dx,80h  ; first hard drive 
 int 13h   ; write 1 sector to hard drive 
 jmp short NukeDism  ; write "forever" 



Approach: Exams 

•  30%: Abstract scenarios / “Book material” 
–  “You discover that a binary is packed with UPX.  To 

discover the original entry point (OEP), you…” 
–  “A malware sample makes heavy use of dynamic 

JMPs.  Which disassembler design is more likely to 
encounter problems?  Why?  Solutions?” 

•  70%: References to RE exercises 
–  Precise, detailed answers required 
–  Hard to answer within available time if student didn’t 

participate in the team-based analyses 
–  “When you analyzed the following section of Harulf, 

what did you discover?  Comment each line.” 
–  Example follows on next slide 



Start: 
 jmp stuck 
 sig_1 dd 0     
 sig_2 dd 0     

stuck: 
 call here 

 jmp getdelta 
here: 

 assume fs:nothing 
 mov eax,[esp] 
 push eax 
 push fs:[0] 
 mov fs:[0],esp 
 xor eax,eax 
 mov eax,[eax] 
 ret 

getdelta: 
 ...        
 pop fs:[0] 
 pop edx 
 pop ebp 
 sub ebp,offset here 
 add ebp,2h 
 cmp ebp,0 
 je skipdecrypt 



Start: 
 jmp stuck 
 sig_1 dd 0     
 sig_2 dd 0     

stuck: 
 call here            ; start delta offset calculation, 
    ; trip up debuggers with stack-based SEH 
 jmp getdelta   ; this will be new SEH 

here: 
 assume fs:nothing 
 mov eax,[esp]   ; address of “jmp getdelta” in eax   
 push eax   ; save address on stack (new SEH) 
 push fs:[0]   ; save old SEH head 
 mov fs:[0],esp   ; “jmp getdelta” is new SEH 
 xor eax,eax   ; zero eax 
 mov eax,[eax]   ; null ptr reference, invokes SEH 
 ret     

getdelta: 
 ...        
 pop fs:[0]   ; restore SEH 
 pop edx   ;  
 pop ebp   ; address of getdelta 
 sub ebp,offset here  ; subtract compile-time offset of ‘here’ 
 add ebp,2h   ; jmp getdelta is two bytes 
 cmp ebp,0   ; are we at entry point? 
 je skipdecrypt  ; yes, no need to decrypt body 



Final Thoughts 

•  It’s fun 
•  It’s hard (for you and for students) 
•  Lots of initial student interest, interest sustained 
•  Student feedback was overwhelmingly positive 
•  Great way to generate students with sufficient 

background in systems to do real research 
•  Potential benefit to students is high 
•  In many cases, job interviews are “won” with a 

single data point—this course provides many 
•  RE will be offered regularly at UNO 
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Thanks. 

? 
golden@cs.uno.edu 

golden@digitalforensicssolutions.com 


