
A Highly Immersive Approach to
Teaching Reverse Engineering

Golden G. Richard III, Ph.D.
Professor

Director, Greater New Orleans Center for Information Assurance (GNOCIA)
Department of Computer Science

University of New Orleans

Co-founder, Digital Forensics Solutions, LLC

golden@cs.uno.edu
http://www.cs.uno.edu/~golden

What?

•  A hands-on course in reverse engineering, focusing on
malware

•  Provide solid background in theory of reversing
–  Code generation
–  How tools work: e.g., disassemblers, debuggers
–  Anti-analysis and anti-debug strategies

•  Interleaved with hard reversing / analysis projects
•  Not a collection of Powerpoint and toy examples
•  Not a general “hacking” course

–  Not because I object (I don’t)
–  Not enough time in one semester to cover any additional

“hacking” topics
•  Goal: Students develop serious, usable reverse

engineering skills in one semester

Why So Little RE in Academia?

•  Because it’s hard for the instructor?

•  Perception that skills can’t be developed in
a single semester?

•  The university won’t allow it

•  Should we be doing this?

•  Lack of student interest?

•  I’m here to discover the others

Aside: Building Trust

•  I personally have no problems getting courses like
this approved

•  I seriously lay down the law concerning what will
happen to:
–  Classes like this being offered
–  Access to all the cool toys, HW, and SW in my security

lab
•  …should things go “horribly wrong”
•  Historically, despite teaching very hands-on courses in:

–  OS internals
–  Digital forensics
–  Network security

•  And despite having classes of students running around
with root privileges on the machines in the lab…

Aside: Building Trust (2)

•  Nothing external and nothing significant has
been destroyed

•  Students understand network is monitored and
impact of blowing something up outside my lab

•  As a result, students are careful and self-policing

•  I’ve been around for a long time and haven’t
blown anything up

•  Your mileage may vary

Why Do It?

•  60%: RE is useful and should be taught
–  Great way to motivate students to dig deeper into

systems
–  ASM skills, OS internals, Intel manuals as

recreational reading
–  Computing != Computer + Java

•  20%: Students begging
–  Resistance: I knew it would be a lot of work to do

correctly, tho it’s been coming together for awhile

•  20%: I’m a hacker in professorial clothing
–  Good chance to do what I like

Who?

•  Class taught in Spring 2009 for the first time
•  25 students, 2/3 graduate, 1/3 undergrad
•  ~20% had taken an OS internals course
•  100% had taken the Intro to Security course
•  ~50% had taken or were enrolled in a digital

forensics course
•  Few had serious assembler skills
•  1 student had nearly expert RE skills
•  2-3 others had at least basic RE skills
•  “The hardest course I’ve ever had”
•  1 student dropped in Spring 2009

Aside: ASM Courses: Don’t Get Me Started

•  Serious problem: Students have poor ASM skills
•  Don’t know about yours, but our ASM course is

(IMO) worthless
•  Didn’t use to be…I took that course in 1983!
•  Can’t volunteer to teach that course…no time
•  No time to “teach” the ASM course inside RE
•  Solution:

–  (Nearly) compassion-free immersion
–  ASM every day
–  Tight deadlines assignments requiring ASM

comprehension

Topics
•  Goals of reverse engineering

–  Software interoperability, patch verification, malware analysis,
cracking

•  Ethics and legal issues
–  DMCA, EULAs, RE == jail, seek ye lawyers

•  Techniques / Tools for RE
–  Static vs. dynamic analysis, disassemblers, debuggers, live

forensics tools, memory dumpers, packing / unpacking, …
•  Malware background

–  Types, propagation strategies, payload delivery, poly- and
metamorphic malware, …

•  Basic Intel assembler (a few lectures, then “on the job”)
–  Registers, flags, common instructions, data formats, 32 vs. 64bit

code, hardware components, paging, debugging architecture,
examples

Topics (2)

•  Windows Portable Executable (PE) format
•  C control structure, function, array, struct/union

patterns generated by common compilers
•  Common malware functionality

–  Delta offset calculation, API address discovery,
infection and propagation, …

•  Anti-debugging / anti-VM functionality
–  Dynamic jumps, instruction prefetch attacks, LDT/

GDT/IDT location analysis, use of debugging facilities
•  Packing and unpacking techniques

–  Hand-rolled, UPX, Armadillo, …

Laboratory Setup

•  Isolated gigabit network with fast, private fileserver (16 x
15K SAS drives) – has to serve VMWare images

•  Workstations running Linux + VMWare
•  User accounts including XP VMWare image stored by

file server
•  XP image contains:

–  sysinternals suite
–  Visual C++ Express Edition
–  MASM32
–  ollydbg
–  IDA Pro 5.x + x86emu plugin for x86 emulation
–  HBGary Responder (thanks, Penny!)
–  FACE, Volatools, ptfinder, …

•  Networking OFF in VMWare image whenever possible

Approach: Challenges

•  Time is short!

•  ASM skills

•  Flipping Powerpoint guaranteed to fail

•  Want actual, rather than theoretical, skills to
emerge

•  Skills at end of semester should be (almost?)
sufficient to analyze modern malware

•  Must hurt students (a lot) to achieve skill levels
without completely discouraging them

Approach: Malware Sampler

•  Requirements:
–  Students start RE immediately
–  With each new malware sample, push students

almost to breaking point  but not quite

•  Michelangelo  DOS-7  SQL Slammer 
Murkry  Lucius  Harulf  Conficker

•  These were interleaved with short “malware”
samples (that I wrote) to introduce:
–  Registry hacking
–  Replacement of system binaries
–  Addition of user accounts
–  …

Approach: Workflow

Traditional lectures w/
Powerpoint for

necessary background

Documented ASM
walkthroughs on document

camera: new malware

Midterm / Final:
60% reverse engineering assignments

40% background material

Reversing assignments of
increasing difficulty,

in teams of 2-3

Lab sessions
in lieu of lecture

to introduce use of
tools or concepts

such as unpacking

Documented ASM
walkthroughs on document

 camera: team assignments

Approach: Assignments

•  Series of team-based malware analyses
•  Goal is to produce fully documented disassemblies
•  Initially, uncommented but correct disassemblies
•  Later, only a binary malware sample

–  Must coax tools to generate correct disassembly
–  Deal with packing, anti-analysis techniques

•  Modest expectations initially, increase sharply as the
semester progresses

•  In some cases:
–  Solutions accepted and signed
–  Necessary concepts for complete solution discussed in class
–  Solution returned and then may be resubmitted

•  Always let students try (and potentially fail) before giving
away the solution

NukeHD:
 sub cx,cx

NukeDism:
 inc cx
 push cs
 pop es
 mov ax,FE05h
 jmp $-2

 sub ax,E702h
 mov bh,1
 mov dx,80h
 int 13h
 jmp short NukeDism

NukeHD:
 sub cx,cx ; cx == sector number <-- 0
 ; FALL THROUGH...

NukeDism:
 inc cx ; target next sector
 push cs ;
 pop es ; es <-- cs
 mov ax,FE05h ; ax <-- FE05h
 jmp $-2 ; jumps into middle of last instruction
 ; last instruction disassembled =
 ; B8 05 FE EB FC
 ;
 ; JMP targets 05 byte which is the
 ; opcode for a 16-bit immediate add
 ; to AX, thus ax <-- ax + EBFEh
 ;
 ; the remaining byte, FC, is the
 ; opcode for the single byte instruction
 ; CLD (clear direction flag)
 ;
 sub ax,E702h ; ax <-- ax - 0E702h = 301h
 mov bh,1 ;
 mov dx,80h ; first hard drive
 int 13h ; write 1 sector to hard drive
 jmp short NukeDism ; write "forever"

Approach: Exams

•  30%: Abstract scenarios / “Book material”
–  “You discover that a binary is packed with UPX. To

discover the original entry point (OEP), you…”
–  “A malware sample makes heavy use of dynamic

JMPs. Which disassembler design is more likely to
encounter problems? Why? Solutions?”

•  70%: References to RE exercises
–  Precise, detailed answers required
–  Hard to answer within available time if student didn’t

participate in the team-based analyses
–  “When you analyzed the following section of Harulf,

what did you discover? Comment each line.”
–  Example follows on next slide

Start:
 jmp stuck
 sig_1 dd 0
 sig_2 dd 0

stuck:
 call here

 jmp getdelta
here:

 assume fs:nothing
 mov eax,[esp]
 push eax
 push fs:[0]
 mov fs:[0],esp
 xor eax,eax
 mov eax,[eax]
 ret

getdelta:
 ...
 pop fs:[0]
 pop edx
 pop ebp
 sub ebp,offset here
 add ebp,2h
 cmp ebp,0
 je skipdecrypt

Start:
 jmp stuck
 sig_1 dd 0
 sig_2 dd 0

stuck:
 call here ; start delta offset calculation,
 ; trip up debuggers with stack-based SEH
 jmp getdelta ; this will be new SEH

here:
 assume fs:nothing
 mov eax,[esp] ; address of “jmp getdelta” in eax
 push eax ; save address on stack (new SEH)
 push fs:[0] ; save old SEH head
 mov fs:[0],esp ; “jmp getdelta” is new SEH
 xor eax,eax ; zero eax
 mov eax,[eax] ; null ptr reference, invokes SEH
 ret

getdelta:
 ...
 pop fs:[0] ; restore SEH
 pop edx ;
 pop ebp ; address of getdelta
 sub ebp,offset here ; subtract compile-time offset of ‘here’
 add ebp,2h ; jmp getdelta is two bytes
 cmp ebp,0 ; are we at entry point?
 je skipdecrypt ; yes, no need to decrypt body

Final Thoughts

•  It’s fun
•  It’s hard (for you and for students)
•  Lots of initial student interest, interest sustained
•  Student feedback was overwhelmingly positive
•  Great way to generate students with sufficient

background in systems to do real research
•  Potential benefit to students is high
•  In many cases, job interviews are “won” with a

single data point—this course provides many
•  RE will be offered regularly at UNO

23

Thanks.

?
golden@cs.uno.edu

golden@digitalforensicssolutions.com

