Science of Security Experimentation

John McHugh, Dalhousie University
Jennifer Bayuk, Jennifer L Bayuk LLC
Minaxi Gupta, Indiana University
Roy Maxion, Carnegie Mellon University
Moderator: Jelena Mirkovic, USC/ISI

Topics

- Meaning of science
- Challenges to rigorous security experimentation:
 - Approach? choice of an appropriate evaluation approach from theory, simulation, emulation, trace-based analysis, and deployment
 - Data? how/where to gather appropriate and realistic data to reproduce relevant security threats
 - Fidelity? how to faithfully reproduce data in an experimental setting
 - Community? how to promote reuse and sharing, and discourage reinvention in the community
- Benchmarks? Requirements for and obstacles to creation of widely accepted benchmarks for popular security areas
- Scale? When scale matters?

Top Problems

- Good problem definition and hypothesis
 - Lack of methodology/hypothesis in publications
 - Learn how to use the word "hypothesis"
- Lack of data
 - Data is moving target, hard to affix science to attacks that change
- Program committees
 - Hard to publish, hard to fund, no incentive to good science
 - Data needs to be released with publications
- Who really cares except us?
- Rigor applied to defenses not to attacks
 - Define security
- Do we want science or engineering?
- Years behind attackers
- Provenance, tools that automate collection of provenance

Closing statements

- Learn from publications in other fields
- What you did, why was it the best thing to do (methodology and hypothesis matter)
- Right now we have the opportunity to change
 - Learn from other fields before we grow too big too wide too fast
 - We must avoid adopting wrong but easy approaches, hard to change
- Data is crucial, we need to focus on getting more data on ongoing basis
 - One-off datasets don't cut it

Approach

- Use what you think will give you the best answer for the question you have
 - Understanding your options and your hypothesis is what matters, the rest is given
 - Also constraints on time and resources
- Write up all the details in the methods section
 - Forcing people to write this all down would lead to many paper rejections and would quickly teach people about the rigor
 - Experience with QoP shows it's hard to even have people write this down, let alone do it correctly

Data

- Who has the data?
- How to get access?
- Lengthy lawyer interactions. In the meantime research isn't novel anymore.
- Resources to store data
- Results cannot be reproduced when data is not public
- No long-term data sets (10 years, study evolution) in real time
 - Need good compute power where the data is
 - There are common themes in data analysis this could be precomputed
- www.predict.org (lots of data here)
- Hard to get data on attacks before persecution is done, may be years. Also companies don't want to admit to be victims.

Data

- Metadata necessary for usefulness (anonymization, limitations, collection process)
 - Not enough info to gauge if data is useful to researchers
 - No detail about sanity checks, calibration steps
 - Improve collection design AND disclose it
- Understanding of common data products would drive better collection rigor
- Not every question can be answered with a given data

 relationship of data to problems is important
- Provenance on data, what can be done with it
- Keystroke data with proper metadata (by Roy Maxion)
 - http://www.cs.cmu.edu/~keystroke

Community

- We're competing among each other, attackers are advancing
- Adoption of protocols is field for research
- Problems that lack datasets are just not being addressed
- Teaching builds better experimental practices
 - Requirement courses for degrees
- Rigor requirements in conflict with funding
 - Actually in conflict with publishing and research community

Meaning of Science

- Tightly focused question
 - Forming a research hypothesis
 - Then validity, reproducibility by someone else, repeatability are important
 - Repeatability same run similar answers
 - Validity
 - External validity can you generalize your claims to a different, larger, population
 - Internal validity logical consistency internally in the experiment
- There's no building on work of others so rigor is not necessary
 - We don't even have the right questions formed
- NSF workshop on science of security, Dec'08 in Claremont

Where to Start?

- Formulating good questions
 - Predictability is a hard problem in security
 - Well-defined, small, constrained problems make sense
- Take courses on experimental design/ methodology (students)
- Read papers and critique the methodology in them
- Finding right tools to produce answers

Where to Start?

- Security means different things to different people
 - Must define which attribute of security you're measuring
- What PC's could do:
 - Enforce methodology/hypothesis questions
 - Enforce reproducibility
- Extra work with no quick payoff for select few that do what we suggest
- Attackers can avoid well-defined models
 - We need stronger models then

Where to Start?

- Attackers are evolving moving target
 - Hard to match this pace with methodology evolution
 - -Major logic is missing
- Large number of things manifest as security problems but are not
 - Buffer overflows are coding problems, sloppy sw

What to Fund

- Education
- A critical review journal
- Requirements analysis
 - Attributes of systems that give you assurance that your goals are met
 - Close specification of context