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Abstract

On multicore systems, contention for shared resources
occurs when memory-intensive threads are co-scheduled
on cores that share parts of the memory hierarchy, such
as last-level caches and memory controllers. Previous
work investigated how contention could be addressed
via scheduling. A contention-aware scheduler separates
competing threads onto separate memory hierarchy do-
mains to eliminate resource sharing and, as a conse-
quence, to mitigate contention. However, all previous
work on contention-aware scheduling assumed that the
underlying system is UMA (uniform memory access la-
tencies, single memory controller). Modern multicore
systems, however, are NUMA, which means that they
feature non-uniform memory access latencies and multi-
ple memory controllers.

We discovered that state-of-the-art contention man-
agement algorithms fail to be effective on NUMA sys-
tems and may even hurt performance relative to a default
OS scheduler. In this paper we investigate the causes for
this behavior and design the first contention-aware algo-
rithm for NUMA systems.

1 Introduction

Contention for shared resources on multicore proces-
sors is a well-known problem. Consider a typical mul-
ticore system, schematically depicted in Figure 1, where
cores share parts of the memory hierarchy, which we
term memory domains, and compete for resources such
as last-level caches (LLC), system request queues and
memory controllers. Several studies investigated ways of
reducing resource contention and one of the promising
approaches that emerged recently is contention-aware
scheduling [23, 10, 16]. A contention-aware scheduler
identifies threads that compete for shared resources of a
memory domain and places them into different domains.
In doing so the scheduler can improve the worst-case

performance of individual applications or threads by as
much as 80% and the overall workload performance by
as much as 12% [23].

Unfortunately studies of contention-aware algorithms
focused primarily on UMA (Uniform Memory Access)
systems, where there are multiple shared LLCs, but only
a single memory node equipped with the single memory
controller, and memory can be accessed with the same
latency from any core. However, new multicore sys-
tems increasingly use the Non-Uniform Memory Access
(NUMA) architecture, due to its decentralized and scal-
able nature. In modern NUMA systems, there are mul-
tiple memory nodes, one per memory domain (see Fig-
ure 1). Local nodes can be accessed in less time than re-
mote ones, and each node has its own memory controller.
When we ran the best known contention-aware sched-
ulers on a NUMA system, we discovered that not only do
they not manage contention effectively, but they some-
times even hurt performance when compared to a de-
fault contention-unaware scheduler (on our experimental
setup we observed as much as 30% performance degra-
dation caused by a NUMA-agnostic contention-aware al-
gorithm relative to the default Linux scheduler). The
focus of our study is to investigate (1) why contention-
management schedulers that targeted UMA systems fail
to work on NUMA systems and (2) devise an algorithm
that would work effectively on NUMA systems.

Why existing contention-aware algorithms may hurt
performance on NUMA systems: Existing state-of-
the-art contention-aware algorithms work as follows on
NUMA systems. They identify threads that are sharing
a memory domain and hurting each other’s performance
and migrate one of the threads to a different domain. This
may lead to a situation where a thread’s memory is lo-
cated in a different domain than that in which the thread
is running. (E.g., consider a thread being migrated from
core C1 to core C5 in Figure 1, with its memory being lo-
cated in Memory Node #1). We refer to migrations that
may place a thread into a domain remote from its mem-
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Figure 1: A schematic view of a system with four mem-
ory domains and four cores per domain. There are 16
cores in total, and a shared L3 cache per domain.

ory NUMA-agnostic migrations.
NUMA-agnostic migrations create several problems,

an obvious one being that the thread now incurs a higher
latency when accessing its memory. However, contrary
to a commonly held belief that remote access latency –
i.e., the higher latency incurred when accessing a remote
domain relative to accessing a local one – would be the
key concern in this scenario, we discovered that NUMA-
agnostic migrations create other problems, which are far
more serious than remote access latency. In particular,
NUMA-agnostic migrations fail to eliminate contention
for some of the key hardware resources on multicore
systems and create contention for additional resources.
That is why existing contention-aware algorithms that
perform NUMA-agnostic migrations not only fail to be
effective, but can substantially hurt performance on mod-
ern multicore systems.

Challenges in designing contention-aware algo-
rithms for NUMA systems: To address this problem, a
contention-aware algorithm on a NUMA system must
migrate the memory of the thread to the same domain
where it migrates the thread itself. However, the need to
move memory along with the thread makes thread mi-
grations costly. So the algorithm must minimize thread
migrations, performing them only when they are likely to
significantly increase performance, and when migrating
memory it must carefully decide which pages are most
profitable to migrate. Our work addresses these chal-
lenges.

The contributions of our work can be summarized as
follows:

• We discover that contention-aware algorithms

known to work well on UMA systems may actually
hurt performance on NUMA systems.

• We identify NUMA-agnostic migration as the cause
for this phenomenon and identify the reasons why
performance degrades. We also show that remote
access latency is not the key reason why NUMA-
agnostic migration hurt performance.

• We design and implement Distributed Intensity
NUMA Online (DINO), a new contention-aware al-
gorithm for NUMA systems. DINO prevents super-
fluous thread migrations, but when it does perform
migrations, it moves the memory of the threads
along with the threads themselves. DINO performs
up to 20% better than the default Linux scheduler
and up to 50% better than Distributed Intensity,
which is the best contention-aware scheduler known
to us [23].

• We devise a page migration strategy that works on-
line, uses Instruction-Based Sampling, and elimi-
nates on average 75% of remote accesses.

Our algorithms were implemented at user-level, since
modern operating systems typically export the interfaces
for implementing the desired functionality. If needed, the
algorithms can also be moved into the kernel itself.

The rest of this paper is organized as follows. Sec-
tion 2 demonstrates why existing contention-aware al-
gorithms fail to work on NUMA systems. Section 3
presents and evaluates DINO. Section 4 analyzes mem-
ory migration strategies. Section 5 provides the exper-
imental results. Section 6 discusses related work, and
Section 7 summarizes our findings.

2 Why existing algorithms do not work on
NUMA systems

As we explained in the introduction, existing contention-
aware algorithms perform NUMA-agnostic migration,
and so a thread may end up running on a node remote
from its memory. This creates additional problems be-
sides introducing remote latency overhead. In particu-
lar, NUMA-agnostic migrations fail to eliminate memory
controller contention, and create additional interconnect
contention. The focus of this section is to experimentally
demonstrate why this is the case.

To this end, in Section 2.1, we quantify how con-
tention for various shared resources contributes to per-
formance degradation that an application may experi-
ence as it shares the hardware with other applications.
We show that memory controller contention and inter-
connect contention are the most important causes of per-
formance degradation when an application is running re-
motely from its memory. Then, in Section 2.2 we use
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Figure 2: A schematic view of a system used in this
study. A single domain is shown.
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Figure 3: Placement of threads and memory in all exper-
imental configurations.

this finding to explain why NUMA-agnostic migrations
can be detrimental to performance.

2.1 Quantifying causes of contention

In this section we quantify the effects of performance
degradation on multicore NUMA systems depending on
how threads and their memory are placed in memory do-
mains. For this part of the study, we use benchmarks
from the SPEC CPU2006 benchmark suite. We perform
experiments on a Dell PowerEdge server equipped with

four AMD Barcelona processors running at 2.3GHz, and
64GB of RAM, 16GB per domain. The operating system
is Linux 2.6.29.6. Figure 2 schematically represents the
architecture of each processor in this system.

We identify four sources of performance degradation
that can occur on modern NUMA systems, such as those
shown in Figures 1 and 2:

• Contention for the shared last-level cache (CA).
This also includes contention for the system request
queue and the crossbar.

• Contention for the memory controller (MC). This
also includes contention for the DRAM prefetching
unit.

• Contention for the inter-domain interconnect (IC).

• Remote access latency, occurring when a thread’s
memory is placed in a remote node (RL).

To quantify the effects of performance degradation
caused by these factors we use the methodology depicted
in Figure 3. We run a target application, denoted as
T with a set of three competing applications, denoted
as C. The memory of the target application is denoted
MT , and the memory of the competing applications is
denoted MC. We vary (1) how the target application is
placed with respect to its memory, (2) how it is placed
with respect to the competing applications, and (3) how
the memory of the target is placed with respect to the
memory of the competing applications. Exploring per-
formance in these various scenarios allows us to quantify
the effects of NUMA-agnostic thread placement.

Figure 3 summarizes the relative placement of mem-
ory and applications that we used in our experiments.
Next to each scenario we show factors affecting the
performance of the target application: CA, IC, MC or
RL. For example, in Scenario 0, an application runs
contention-free with its memory on a local node, so no
performance-degrading factors are present. We term this
the base case and compare to it the performance in other
cases. The scenarios where there is cache contention are
shown on the right and the scenarios where there is no
cache contention are shown on the left.

We used two types of target and competing appli-
cations, classified according to their memory intensity:
devil and turtle. The terminology is borrowed from an
earlier study on application classification [21]. Devils
are memory intensive: they generate a large number of
memory requests. We classify an application as a devil
if it generates more than two misses per 1000 instruc-
tions (MPI). Otherwise, an application is deemed a turtle.
We further divide devils into two subcategories: regular
devils and soft-devils. Regular devils have a miss rate
that exceeds 15 misses per 1000 instructions. Soft-devils
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have an MPI between two and 15. Solo miss rates, ob-
tained when an application runs on a machine alone, are
used for classification.

We experimented with nine different target applica-
tions: three devils (mcf, omnetpp and milc), three soft-
devils, (gcc, bwaves and bzip) and three turtles (povray,
calculix and h264).

Figure 4 shows how an application’s performance de-
grades in Scenarios 1-7 from Figure 3 relative to Sce-
nario 0. Performance degradation, shown on the y-axis,
is measured as the increase in completion time relative
to Scenario 0. The x-axis shows the type of competing
applications that were running concurrently to generate
contention: devil, soft-devil, or turtle.

These results demonstrate a very important point ex-
hibited in Scenario 3: when a thread runs alone on a
memory node (i.e., there is no contention for cache),
but its memory is remote and is in the same domain as
the memory of another memory-intensive thread, perfor-
mance degradation can be very severe, reaching 110%
(see MILC, Scenario 3). One of the reasons is that the
threads are still competing for the memory controller of
the node that holds their memory. But this is exactly
the scenario that can be created by a NUMA-agnostic
migration, which migrates a thread to a different node
without migrating its memory. This is the first piece of
evidence showing why NUMA-agnostic migrations will
cause problems.

We now present further evidence. Using the data in
these experiments, we are able to estimate how much
each of the four factors (CA, MC, IC, and RL) con-
tributes to the overall performance degradation in Sce-
nario 7 – the one where performance degradation is the
worst. For that, we compare experiments that differ from
each other precisely by one degradation factor involved.
This allows us to single out the influence of this differ-
entiating factor on the application performance. Figure 5
shows the breakdown for the devil and soft-devil applica-
tions. Turtles are not shown, because their performance
degradation is negligible. The overall degradation for
each application relative to the base case is shown at the
top of the corresponding bar. The y-axis shows the frac-
tion of the total performance degradation that each factor
causes. Since contention causing factors on a real system
overlap in complex and integrated ways, it is not possi-
ble to obtain a precise separation. These results are an
approximation that is intended to direct attention to the
true bottlenecks in the system.

The results show that of all performance-degrading
factors contention for cache constitutes only a very small
part, contributing at most 20% to the overall degrada-
tion. And yet, NUMA-agnostic migrations eliminate
only contention for the shared cache (CA), leaving the
more important factors (MC, IC, RL) unaddressed! Since

the memory is not migrated with the thread, several
memory-intensive threads could still have their mem-
ory placed in the same memory node and so they would
compete for the memory controller when accessing their
memory. Furthermore, a migrated thread could be sub-
ject to the remote access latency, and because a thread
would use the inter-node interconnect to access its mem-
ory, it would be subject to the interconnect contention.
In summary, NUMA-agnostic migrations fail to elimi-
nate or even exacerbate the most crucial performance-
degrading factors: MC, IC, RL.

2.2 Why existing contention management
algorithms hurt performance

Now that we are familiar with causes of performance
degradation on NUMA systems, we are ready to explain
why existing contention management algorithms fail to
work on NUMA systems. Consider the following ex-
ample. Suppose that two competing threads A and B
run on cores C1 and C2 on a system shown in Figure 1.
A contention-aware scheduler would detect that A and
B compete and migrate one of the threads, for example
thread B, to a core in a different memory domain, for ex-
ample core C5. Now A and B are not competing for the
last-level (L3) cache, and on UMA systems this would be
sufficient to eliminate contention. But on a NUMA sys-
tem shown in Figure 1, A and B are still competing for
the memory controller at Memory Node #1 (MC in Fig-
ure 5), assuming that their memory is physically located
in Node #1. So by simply migrating thread B to another
memory domain, the scheduler does not eliminate one of
the most significant sources of contention – contention
for the memory controller.

Furthermore, the migration of thread B to a different
memory domain creates two additional problems, which
degrade thread B’s performance. Assuming that thread
B’s memory is physically located in Memory Node #1
(all operating systems of which we are aware would al-
locate B’s memory on Node #1 if B is running on a core
attached to Node #1 and then leave the memory on Node
#1 even after thread migration), B is now suffering from
two additional sources of overhead: interconnect con-
tention and remote latency (labeled IC and RL respec-
tively in Figure 5). Although remote latency is not a
crucially important factor, interconnect contention could
hurt performance quite significantly.

To summarize, NUMA-agnostic migrations in the ex-
isting contention management algorithms cause the fol-
lowing problems, listed in the order of severity according
to their effect on performance: (1) They fail to eliminate
memory-controller contention; (2) They may create ad-
ditional interconnect contention; (3) They introduce re-
mote latency overhead.
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Figure 4: Performance degradation due to contention, cases 1-7 from Figure 3 relative to running contention free (case
0).
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Figure 5: Contribution of each factor to the worst-case
performance degradation.

3 A Contention-Aware Scheduling Algo-
rithm for NUMA Systems

We design a new contention-aware scheduling algo-
rithm for NUMA systems. We borrow the contention-
modeling heuristic from the Distributed Intensity (DI)
algorithm, because it was shown to perform within 3%
percent of optimal on non-NUMA systems1 [23]. Other
contention aware algorithms use similar principles as
DI [10, 16].

We begin by explaining how the original DI algorithm
works (Section 3.1). For clarity we will refer to it from
now on as DI-Plain. We proceed to show that simply
extending DI-Plain to migrate memory – this version of
the algorithm is called DI-Migrate – is not sufficient to
achieve good performance on NUMA systems. We con-
clude with the description of our new DI-NUMA Online,

1Although some experiments with DI reported in [23] were per-
formed on a NUMA machine, the experimental environment was con-
figured so as to eliminate any effects of NUMA.

or DINO, that in addition to migrating thread memory
along with the thread eliminates superfluous migrations
and unlike other algorithms improves performance on
NUMA systems.

3.1 DI-Plain

DI-Plain works by predicting which threads will inter-
fere if co-scheduled on the same memory domain and
placing those threads on separate domains. Prediction
is performed online, based on performance characteris-
tics of threads measured via hardware counters. To pre-
dict interference, DI uses the miss-rate heuristic – a mea-
sure of last-level cache misses per thousand instructions,
which includes the misses resulting from hardware pre-
fetch requests. As we and other researchers showed in
earlier work the miss-rate heuristic is a good approxima-
tion of contention: if two threads have a high LLC miss
rate they are likely to compete for shared CPU resources
and degrade each other’s performance [23, 2, 10, 16].

Even though the miss rate does not capture the full
complexity of thread interactions on modern multicore
systems, it is an excellent predictor of contention for
memory controllers and interconnects – key resource
bottlenecks on these systems – because it reflects how
intensely threads use these resources. Detailed study
showing why the miss rate heuristic works well and
how it compares to other modeling heuristics is reported
in [23, 2].

DI-Plain continuously monitors the miss rates of run-
ning threads. Once in a while (every second in the orig-
inal implementation), it sorts the threads according to
their miss rates, and assigns them to memory domains so
as to co-schedule low-miss-rate threads with high-miss-
rate threads. It does so by first iterating over the sorted
threads starting from the most memory-intensive (the one
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with the highest miss rate) and placing each thread in a
separate domain, iterating over domains consecutively.
This way it separates memory-intensive threads. Then it
iterates over the array from the other end, starting from
the least memory-intensive thread, placing each on an
unused core in consecutive domains. Then it iterates
from the other end of the array again, and continues alter-
nating iterations until all threads have been placed. This
strategy results in balancing the memory intensity across
domains. DI-Plain performs no memory migration when
it migrates the threads.

Existing operating systems (Linux, Solaris) would not
move the thread’s memory to another node when a thread
is moved to a new domain. Linux performs new memory
allocations in the new domain, but will leave the mem-
ory allocated before migration in the old one. Solaris
will act similarly2. So on either of these systems, if the
thread after migration keeps accessing the memory that
was allocated on another domain, it will cause negative
performance effects described in Section 2.

3.2 DI-Migrate

Our first (and obvious) attempt to make DI-Plain
NUMA-aware was to make it migrate the thread’s mem-
ory along with the thread. We refer to this “intermedi-
ate” algorithm in our design exploration as DI-Migrate.
The description of the memory migration algorithm is
deferred until Section 4, but the general idea is that it
detects which pages are actively accessed and migrates
them to the new node along with a chunk of surrounding
pages. For now we present a few experiments comparing
DI-Plain with DI-Migrate. Our experiments will reveal
that memory migration is insufficient to make DI-Plain
work well on NUMA systems, and this will motivate the
design of DINO.

Our experiments were performed on the same system
as described in Section 2.1.

The benchmarks shown in this section are scientific
applications from SPEC CPU2006 and SPEC MPI2007
suites with reference sets in both cases. (In a later
section we also show results for the multithreaded
Apache/MySQL workload.) We evaluated scientific ap-
plications for two reasons. First, they are CPU-intensive
and often suffer from contention. Second, they were
of interest for our partner Western Canadian Research
Grid (WestGrid) – a network of compute clusters used
by scientists at Canadian universities and in particular

2Solaris will perform new allocations in the new domain if a
thread’s home lgroup – a representation of a thread’s home memory
domain – is reassigned upon migration, but will not move the mem-
ory allocated prior to home lgroup reassignment. If the lgroup is un-
changed, even new memory allocations will be performed in the old
domain.

by physicists involved in ATLAS, an international par-
ticle physics experiment at the Large Hadron Collider
at CERN. The WestGrid site at our university is inter-
ested in deploying contention management algorithms on
their clusters. Prospect of adoption of contention man-
agement algorithms in a real setting also motivated their
user-level implementation – not requiring a custom ker-
nel makes the adoption less risky. Our algorithms are im-
plemented on Linux as user-level daemons that measure
threads’ miss rates using perfmon, migrate threads us-
ing scheduling affinity system calls, and move memory
using the numa migrate pages system call.

For SPEC CPU we show one workload for brevity;
complete results are presented in Section 5. All bench-
marks in the workload are launched simultaneously and
if one benchmark terminates it is restarted until each
benchmark completes three times. We use the result of
the second execution for each benchmark, and perform
the experiment ten times, reporting the average of these
runs.

For SPEC MPI we show results for eleven different
MPI jobs. In each experiment we run a single job, each
comprised of 16 processes. We perform ten runs of each
job and present the average completion times.

We compare performance under DI-Plain and DI-
Migrate relative to the default Linux Completely Fair
Scheduler, to which we refer as Default. Standard de-
viation across the runs is under 6% for the DI algo-
rithms. Deviation under Default is necessarily high, be-
cause being unaware of resource contention it may force
a low-contention thread placement in one run and a high-
contention mapping in another. Detailed comparison of
deviations under different schedulers is also presented in
Section 5.

Figures 6 and 7 show the average completion time im-
provement for the SPEC CPU and SPEC MPI workloads
respectively (higher numbers are better) under DI algo-
rithms relative to Default. We draw two important con-
clusions. First of all, DI-Plain often hurts performance
on NUMA systems, sometimes by as much as 36%. Sec-
ond, while DI-Migrate eliminates performance loss and
even improves it for SPEC CPU workloads, it fails to ex-
cel with SPEC MPI workloads, hurting performance by
as much as 25% for GAPgeofem.

Our investigation revealed DI-Migrate migrated pro-
cesses a lot more frequently in the SPEC MPI work-
load than in the SPEC CPU workload. While fewer than
50 migrations per process per hour were performed for
SPEC CPU workloads, but as many as 400 (per process)
were performed for SPEC MPI! DI-Migrate will migrate
a thread to a different core any time its miss rate (and its
position in the array sorted by miss rates) changes. For
the dynamic SPEC MPI workload this happened rather
frequently and led to frequent migrations.
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Figure 6: Improvement of completion time under DI-
Plain and DI-Migrate relative to the Default for a SPEC
CPU 2006 workload.
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Figure 7: Improvement of completion time under DI-
Plain and DI-Migrate relative to Default for eleven SPEC
MPI 2007 jobs.

Unlike on UMA systems, thread migrations are not
cheap on NUMA systems, because you also have to
move the memory of the thread. No matter how efficient
memory migrations are, they will never be completely
free, so it is always worth reducing the number of migra-
tions to the minimum, performing them only when they
are likely to result in improved performance. Our analy-
sis of DI-Migrate behaviour for the SPEC MPI workload
revealed that oftentimes migrations resulted in a thread
placement that was not better in terms of contention than
the placement prior to migration. This invited opportuni-
ties for improvement, which we used in design of DINO.

3.3 DINO
3.3.1 Motivation

DINO’s key novelty is in eliminating superfluous thread
migrations – those that are not likely to reduce con-
tention. Recall that DI-Plain (Section 3.1) triggers mi-
grations when threads change their miss rates and their
relative positions in the sorted array. Miss rates may
change rather often, but we found that it is not necessary
to respond to every change in order to reduce contention.

This insight comes from the observation that while
the miss rate is an excellent heuristic for predicting rel-

ative contention at coarse granularity (and that is why it
was shown to perform within 3% of the optimal oracular
scheduler in DI) it does not perfectly predict how con-
tention is affected by small changes in the miss rate.

Figure 8 illustrates this point. It shows on the x-axis
SPEC CPU 2006 applications sorted in the decreasing or-
der by their performance degradation when co-scheduled
on the same domain with three instances of itself, relative
to running solo. The bars show the miss rates and the line
shows the degradations3. In general, with the exception
of one outlier mcf, if one application has a much higher
miss rate than another, it will have a much higher degra-
dation. But if the difference in the miss rates is small, it is
difficult to predict the relative difference in degradations.

What this means is that it is not necessary for the
scheduler to migrate threads upon small changes in the
miss rate, only upon the large ones.
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Figure 8: Performance degradation due to contention and
miss rates for SPEC CPU2006 applications.

3.3.2 Thread classification in DINO and multi-
threaded support

To build upon this insight, we design DINO to organize
threads into broad classes according to their miss rates,
and to perform migrations only when threads change
their class, while trying to preserve thread-core affinities
whenever possible. Classes are defined as follows (again,
we borrow the animalistic classification from previous
work):

Class 1: turtles – fewer than two LLC misses per 1000
instructions.
Class 2: devils – 2-100 LLC misses per 1000 instruc-
tions.
Class 3: super-devils – more than 100 LLC misses per
1000 instructions.

Threshold values for classes were chosen for our tar-
get architecture. Values for other architectures should be

3We omit several benchmarks whose counters failed to record dur-
ing the experiment.
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chosen by examining the relationship between the miss
rates and degradations on that architecture.

Before we describe DINO in detail, we explain the
special new features in DINO to deal with multithreaded
applications.

First of all, DINO tries to co-schedule threads of the
same application on the same memory domain, provided
that this does not conflict with DINO’s contention-aware
assignment (described below). This assumes that per-
formance improvement from co-operative data sharing
when threads are co-scheduled on the same domain are
much smaller than the negative effects of contention.
This is true for many applications [22]. However, when
this assumption does not hold, DINO can be extended to
predict when co-scheduling threads on the same domain
is more beneficial than separating them, using techniques
described in [9] or [19].

When it is not possible to co-schedule all threads in an
application on the same domain, and if threads actively
share data, they will put pressure on memory controller
and interconnects. While there is not much the sched-
uler can do in this situation (re-designing the application
is the best alternative), it must at least avoid migrating
the memory back and forth, so as not to make the perfor-
mance worse. Therefore, DINO detects when the mem-
ory is being “ping-ponged” between nodes and discon-
tinues memory migration in that case.

3.3.3 DINO algorithm description

We now explain how DINO works using an example.
In every rebalancing interval, set to one second in our

implementation, DINO reads the miss rate of each thread
from hardware counters. It then determines each thread’s
class based on its miss rate. To reduce the influence
of sudden spikes, the thread only changes the class if it
spent at least 7 out of the last 10 intervals with the mis-
srate from the new class. Otherwise, the thread’s class
remains the same. We save this data as an array of tuples
<new class, new processID, new threadID>, sorted by
memory-intensity of the class (e.g., super-devils, fol-
lowed by devils and followed by turtles). Suppose we
have a workload of eight threads containing two super-
devils (D), three devils (d) and three turtles (t). Threads
numbered <0, 3, 4, 5> are part of process 0. The re-
maining threads, numbered 1, 2, 6 and 7 each belong to
a separate process, numbered 1, 2, 3 and 4 respectively
4. Then the sorted tuple array will look like this:

new_class: D D d d d t t t
new_processID: 0 4 0 2 3 0 0 1
new_threadID: 0 7 4 2 6 3 5 1

4DINO assigns a unique thread ID to each thread in the workload.

DINO then proceeds with the computation of the
placement layout for the next interval. The placement
layout defines how threads are placed on cores. It is
computed by taking the most aggressive class instance
(a super devil in our example) and placing it on a core in
the first memory domain dom0, then the second aggres-
sive (also a super devil) – on a core in the second domain
and so on until we reach the last domain. Then we iter-
ate from the opposite end of the array (starting with the
least memory-intensive instance) and spread them across
domains starting with dom3. We continue alternating be-
tween two ends of the array until all class instances have
been placed on cores. In our example, for the NUMA
machine with four memory domains and two cores per
domain, the layout will be computed as follows:

domain: dom0 dom1 dom2 dom3
new_core: 0 1 2 3 4 5 6 7
layout: D t D t d t d d

Although this example assumes that the number of
threads equals the number of cores, the algorithm gen-
eralizes for scenarios when the number of threads is
smaller or greater than the number of cores. In the lat-
ter case, each core will have T “slots” that can be filled
with threads, where T = num threads/num cores,
and instead of taking one class-instance from the array
at a time, DINO will take T .

Now that we determined the layout for class-instances,
we are yet to decide which thread will fill each core-class
slot – any thread of the given class can potentially fill
the slot corresponding to the class. In making this deci-
sion, we would like to match threads to class instances
so as to minimize the number of migrations. And to
achieve that, we refer to the matching solution for the
old rebalancing interval, saved in the form of a tuple ar-
ray: <old domain, old core, old class, old processID,
old threadID> for each thread.

Migrations are deemed superfluous if they change
thread-core assignment, while not changing the place-
ment of class-instances on cores. For example, if a thread
that happens to be a devil (d) runs on a core that has
been assigned the (d)-slot in the new assignment, it is
not necessary to migrate this thread to another core with
a (d)-slot. DI-Plain did not take this into considera-
tion and thus performed a lot of superfluous migrations.
To avoid them in DINO we first decide the thread as-
signment for any tuple that preserves core-class place-
ment according to the new layout. So, if for a given
thread old core = new core and old class =
new class, then the corresponding tuple in the new
solution for that thread will be <new core, new class,
old processID, old threadID>.

For example, if the old solution were:

domain: dom0 dom1 dom2 dom3
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old_core: 0 1 2 3 4 5 6 7
old_class: D t d t d t d t
old_processID: 0 1 2 0 0 0 3 4
old_threadID: 0 1 2 3 4 5 6 7

then the initial shape of the new solution would be:

domain: dom0 dom1 dom2 dom3
new_core: 0 1 2 3 4 5 6 7
new_class: D t D t d t d d
new_processID: 0 1 0 0 0 3
new_threadID: 0 1 3 4 5 6

Then, the threads whose placement was not deter-
mined in the previous step – i.e., those whose old class is
not the same as their current core’s new class, as deter-
mined by the new placement, will fill the unused cores
according to their new class:

domain: dom0 dom1 dom2 dom3
new_core: 0 1 2 3 4 5 6 7
new_class: D t D t d t d d
new_processID: 0 1 4 0 0 0 3 2
new_threadID: 0 1 7 3 4 5 6 2

Now that the thread placement is determined, DINO
makes the final pass over the thread tuples to take
care of multithreaded applications. For each thread
A it checks if there is another thread B of the same
multithreaded application (new processID(A) =
new processID(B)) among the thread tuples not
yet iterated so that B is not placed in the same memory
domain with A. If there is one, we check the threads
that are placed in the same memory domain with A. If
there is a thread C in the same domain with A, such that
new processID(A) != new processID(C)
and new class(B) = new class(C) then we
switch tuples B and C in the new solution. In our
example this would result in the following assignment:

domain: dom0 dom1 dom2 dom3
new_core: 0 1 2 3 4 5 6 7
new_class: D t D t d t d d
new_processID: 0 0 4 1 0 0 3 2
new_threadID: 0 3 7 1 4 5 6 2

DINO has complexity of O(N) in the number of
threads. Since the algorithm runs at most once a sec-
ond, this has little overhead even for a large number of
threads. We found that more frequent thread rebalanc-
ing did not yield better performance. Relatively infre-
quent changes of thread affinities mean that the algo-
rithm is best suited for long-lived applications, such as
the scientific applications we target in our study, data
analytics (e.g., MapReduce), or servers. When there’s
more threads than cores coarse-grained rebalancing is
performed by DINO, but fine-grained time sharing of
cores between threads is performed by the kernel sched-
uler. If threads are I/O- or synchronization-intensive and
have unequal sleep-awake periods, any resulting load im-
balance must be corrected, e.g., as in [16].

3.3.4 DINO’s Effect on Migration Frequency

We conclude this section by demonstrating how DINO
is able to reduce migration frequency relative to DI-
Migrate. Table 1 shows the average number of memory
migrations per hour of execution under DI-Migrate and
DINO for different applications from the workloads eval-
uated in Section 3.2. The results for MPI jobs are given
for one of its processes and not for the whole job. Due
to space limitations, we show the numbers for selected
applications that are representative of the overall trend.
The numbers show that DINO significantly reduces the
number of migrations. As will be shown in Section 5,
this results in up to 30% performance improvements for
jobs in the MPI workload.

4 Memory migration

The straightforward solution to implement memory mi-
gration is to migrate the entire resident set of the thread
when the thread is moved to another domain. This does
not work for the following reasons. First of all, for mul-
tithreaded applications, even those where data sharing is
rare, it is difficult to determine how the resident set is
partitioned among the threads. Second, even if the appli-
cation is single-threaded, if its resident set is large it will
not fit into a single memory domain, so it is not possi-
ble to migrate it in its entirety. Finally, we experimen-
tally found that even in cases where it is possible to mi-
grate the entire resident set of a process, this can hurt per-
formance of applications with large memory footprints.
So in this section we describe how we designed and im-
plemented a memory migration strategy that determines
which of the thread’s pages are most profitable to migrate
when the thread is moved to a new core.

4.1 Designing the migration strategy

In order to rapidly evaluate various memory migration
strategies, we designed a simulator based on a widely
used binary instrumentation tool for x86 binaries called
Pin [15]. Using Pin, we collected memory access traces
of all SPEC CPU2006 benchmarks and then used a cache
simulator on top of Pin to determine which of those ac-
cesses would be LLC misses, and so require an access to
memory.

To evaluate memory migration strategies we used a
metric called Saved Remote Accesses (SRA). SRA is the
percent of the remote memory accesses that were elimi-
nated using a particular memory migration strategy (af-
ter the thread was migrated) relative to not migrating
the memory at all. For example, if we detect every re-
mote access and migrate the corresponding page to the
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Table 1: Average number of memory migrations per hour of execution under DI-Migrate and DINO for applications
evaluated in Section 3.2.

SPEC CPU2006 SPEC MPI2007
soplex milc lbm gamess namd leslie lamps GAPgeofem socorro lu

DI-Migrate 36 22 11 47 41 381 135 237 340 256
DINO 8 6 5 7 6 2 1 3 2 1

thread’s new memory node, we are eliminating all re-
mote accesses, so the SRA would be 100%.

Each strategy that we evaluated detects when a thread
is about to perform an access to a remote domain, and
migrates one or more memory pages from the thread’s
virtual address space associated with the requested ad-
dress. We tried the following strategies: sequential-
forward where K pages including and following the
one corresponding to the requested address are mi-
grated; sequential-forward-backward where K/2 pages
sequentially preceding and K/2 pages sequentially fol-
lowing the requested address are migrated; random
where randomly chosen K pages are migrated; pattern-
based where we detect a thread’s memory-access pat-
tern by monitoring its previous accesses, similarly to how
hardware pre-fetchers do this, and migrate K pages that
match the pattern. We found that sequential-forward-
backward was the most effective migration policy in
terms of SRA.

Another challenge in designing a memory migration
strategy is minimizing the overhead of detecting which
of the remote memory addresses are actually being ac-
cessed. Ideally, we want to be able to detect every re-
mote access and migrate the associated pages. However,
on modern hardware this would require unmapping ad-
dress translations on a remote domain and handling a
page fault every time a remote access occurs. This re-
sults in frequent interrupts and is therefore expensive.

After analyzing our options we decided to use hard-
ware counter sampling available on modern x86 systems:
PEBS (Precise Event-Based Sampling) on Intel proces-
sors and IBS (Instruction-Based Sampling) on AMD pro-
cessors. These mechanisms tag a sample of instruction
with various pieces of information; load and store in-
structions are annotated with the memory address.

While hardware-based event sampling has low over-
head, it also provides relatively low sampling accuracy –
on our system it samples less than one percent of instruc-
tions. So we also analysed how SRA is affected depend-
ing on the sampling accuracy as well as the number of
pages that are being migrated. The lower the accuracy,
the higher the value of K (pages to be migrated) needs
to be to achieve a high SRA. For the hardware sampling
accuracy that was acceptable in terms of CPU overhead
(less than 1% per core), we found that migrating 4096

pages enables us to achieve the SRA as high as 74.9%.
We also confirmed experimentally that this was a good
value for K (results shown later).

4.2 Implementation of the memory migra-
tion algorithm

Our memory migration algorithm is implemented for
AMD systems, and so we use IBS, which we access via
Linux performance-monitoring tool perfmon [5].

Migration in DINO is performed in a user-level dae-
mon running separately from the scheduling daemon.
The daemon wakes up every ten milliseconds, sets up
IBS to perform sampling, reads the next sample and mi-
grates the page containing the memory address in the
sample (if the sampled instruction was a load or a store)
along with K pages in the application address space that
sequentially precede and follow the accessed page. Page
migration is effected using the numa move pages system
call.

5 Evaluation

5.1 Workloads

In this section we evaluate DINO implemented using the
migration strategy described in the previous section. We
evaluate three workload types: SPEC CPU2006 applica-
tions, SPEC MPI2007 applications, and LAMP – Lin-
ux/Apache/MySQL/PHP.

We used two experimental systems for evaluation.
One was described in Section 2.1. Another one is a Dell
PowerEdge server equipped with two AMD Barcelona
processors running at 2GHz, and 8GB of RAM, 4GB per
domain. The operating system is Linux 2.6.29.6. The
experimental design for SPEC CPU and MPI workloads
was described in Section 3.2. The LAMP workload is
described below.

The LAMP acronym is used to describe the applica-
tion environment consisting of Linux, Apache, MySQL
and PHP. The main data processing in LAMP is done
by the Apache HTTP server and the MySQL database
engine. The server management daemons apache2 and
mysqld are responsible for arranging access to the web-
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site scripts and database files and performing the ac-
tual work of data storage and retrieval. We use Apache
2.2.14 with PHP version 5.2.12 and MySQL 5.0.84. Both
apache2 and mysqld are multithreaded applications that
spawn one new distinct thread for each new client con-
nection. This client thread within a daemon is then re-
sponsible for executing the client‘s request.

In our experiment, clients continuously retrieve from
the Apache server various statistics about website activ-
ity. Our database is populated with the data gathered by
the web statistics system for five real commercial web-
sites. This data includes the information about website‘s
audience activity (what pages on what website were ac-
cessed, in what order, etc.) as well as the information
about visitors themselves (client OS, user agent informa-
tion, browser settings, session id retrieved from the cook-
ies, etc.). The total number of records in the database is
more than 3 million. We have four Apache daemons,
each responsible for handling a different type of request.
There are also four MySQL daemons that perform main-
tenance of the website database.

We further demonstrate the effect that the choice of K
(the number of pages that are moved on every migration)
has on performance of DINO. Then we compare DINO
to DI-Plain, DI-Migrate and Default.

5.2 Effect of K

Two of our workloads, SPEC CPU and LAMP demon-
strate the key insights, and so we focus on those work-
loads. We show how performance changes as we vary the
value of K. We compare to the scenario where DINO
migrates the thread’s entire resident set upon migrating
the thread itself. The per-process resident sets of the two
chosen workloads could actually fit in a single memory
node on our system (it had 4GB per node), so whole-
resident-set migration was possible. For SPEC CPU
applications, resident sets vary from under a megabyte
to 1.6GB for mcf. In general, they are in hundreds of
megabytes for memory-intensive applications and much
smaller for others. In LAMP, MySQL’s resident set was
about 400MB and Apache’s was 120MB.

We show average completion time improvement (for
Apache/MySQL this is average completion time per re-
quest), worst-case execution time improvement, and de-
viation improvement. Completion time improvement is
the average over ten runs. To compute the worst-case ex-
ecution time we run each workload ten times and record
the longest completion time. Improvement in deviation
is the percent reduction in standard deviation of the aver-
age completion time.

Figure 9 shows the results for the SPEC CPU work-
loads. Performance is hurt when we migrate a small
number of pages, but becomes comparable to whole-

resident-set migration when K reaches 4096. Whole-
resident set migration actually works quite well for
this workload, because migrations are performed infre-
quently and the resident set is small.

However upon experimenting with the LAMP work-
load we found that whole-resident set migration was
detrimental to performance, most likely because the resi-
dent sets were much larger and also because this is a mul-
tithreaded workload where threads share data. Figure 10
shows performance and deviation improvement when
K = 4096 relative to whole-resident-set migration. Per-
formance is substantially improved when K = 4096.
We experimented with smaller values of K, but found
no substantial differences on performance.

We conclude that migrating very large chunks of mem-
ory is acceptable for processes with small resident sets,
but not advisable for multithreaded applications and/or
applications with large resident sets. DINO migrates
threads infrequently, so a relatively large value of K re-
sults in good performance.
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Figure 10: Performance improvement with DINO for
K = 4096 relative to whole-resident-set migration for
LAMP.

5.3 DINO vs. other algorithms
We compare performance under DINO, DI-Plain and DI-
Migrate relative to Default, and similarly to the previous
section, report completion time improvement, worst-case
execution time improvement and deviation improvement.

Figures 11-13 show the results for the three work-
load types, SPEC CPU, SPEC MPI and LAMP respec-
tively. For SPEC CPU, DI-Plain hurts completion time
for many applications, but both DI-Migrate and DINO
improve, with DINO performing slightly better than DI-
Migrate for most applications. Worst-case improvement
numbers show a similar trend, although DI-Plain does
not perform as poorly here. Improvements in the worst-
case execution time indicate that a scheduler is able to
avoid pathological thread assignments that create espe-
cially high contention, and produce more stable perfor-
mance. Deviation of running times is improved by all
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Figure 9: Performance improvement with DINO as K is varied relative to whole-resident-set migration for SPEC
CPU.
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(a) Average execution time improvement of DINO (IBS), DI-Migrate (IBS) and DI-Plain over Default Linux scheduler.
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(b) Worst-case execution time improvement of DINO (IBS), DI-Migrate (IBS) and DI-Plain over Default Linux scheduler.
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(c) Deviation improvement of DINO (IBS), DI-Migrate (IBS) and DI-Plain over Default Linux scheduler.

Figure 11: DINO, DI-Migrate and DI-Plain relative to Default for SPEC CPU 2006 workloads.

three schedulers relative to Default.
As to SPEC MPI workloads (Figure 12) only DINO is

able to improve completion times across the board, by as
much as 30% for some jobs. DI-Plain and DI-Migrate,
on the other hand, can hurt performance by as much as
20%. Worst-case execution time also consistently im-
proves under DINO, while sometimes degrading under
DI-Plain and DI-Migrate.

LAMP is a tough workload for DINO or any scheduler
that optimizes memory placement, because the workload
is multithreaded and no matter how you place threads

they still share data, putting pressure on interconnects.
Nevertheless, DINO still manages to improve comple-
tion time and worst-case execution time in some cases,
to a larger extent than the other two algorithms.

5.4 Discussion
Our evaluation demonstrates that DINO is significantly
better at managing contention on NUMA systems than
the DI algorithm designed without NUMA awareness or
DI that was simply extended with memory migration.
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(c) Deviation improvement

Figure 12: DINO, DI-Migrate and DI-Plain relative to Default for SPEC MPI 2007.
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Figure 13: DINO, DI-Migrate and DI-Plain relative to Default for LAMP.

Multiprocess workloads representative of scientific Grid
clusters show excellent performance under DINO. Im-
provements for the challenging multithreaded workloads
are less significant as expected, and wherever degrada-
tion occurs for some threads it is outweighed by perfor-
mance improvements for other threads.

6 Related Work

Research on NUMA-related optimizations to systems is
rich and dates back many years. Many research efforts
addressed efficient co-location of the computation and
related memory on the same node [14, 3, 12, 19, 1, 4].
More ambitious proposals aimed to holistically redesign
the operating system to dovetail with NUMA architec-
tures [7, 17, 6, 20, 11]. None of the previous efforts, how-
ever, addressed shared resource contention in the context
of NUMA systems and the associated challenges.

Li et al. in [14] introduced AMPS, an operating sys-
tem scheduler for asymmetric multicore systems that
supports NUMA architectures. AMPS implemented a
NUMA-aware migration policy that can allow or deny
thread migration requested by the scheduler. The authors
used the resident set size of a thread in deciding whether
or not the OS schedule is allowed to migrate thread to
a different domain. If the migration overhead were ex-
pected to be high the migration would be disallowed.
Our scheduler, instead of prohibiting migrations, detects
which pages are being actively accessed and moves them

as well as surrounding pages to the new domain.
LaRowe et al. [12] presented a dynamic multiple-copy

policy placement and migration policy for NUMA sys-
tems. The policy periodically reevaluates its memory
placement decisions and allows multiple physical copies
of a single virtual page. It supports both migration and
replication with the choice between the two operations
based on reference history. A directory-based invalida-
tion scheme is used to ensure the coherence of replicated
pages. The policy applies a freeze/defrost strategy: to de-
termine when to defrost a frozen page and trigger reeval-
uation of its placement is based on both time and refer-
ence history of the page. The authors evaluate various
fine-grained page migration and/or replication strategies,
however, since their test machine only has one processor
per NUMA node, they do not address contention. The
strategies developed in this work could have been very
useful for our contention aware scheduler if the inexpen-
sive mechanisms that the authors used for detecting page
accesses were available to us. Detailed page reference
history is difficult to obtain without hardware support;
obtaining it in software may cause overhead for some
workloads.

Goglin et al. [8] developed an effective implementa-
tion of the move pages system call in Linux, which al-
lows the dynamic migration of large memory areas to
be significantly faster than in previous versions of the
OS. This work is integrated in Linux kernel 2.6.29 [8],
which we use for our experiments. The Next-touch pol-
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icy, also introduced in the paper to facilitate thread-data
affinity, works as follows: the application marks pages
that it will likely access in the future as Migrate-on-next-
touch using a new parameter to the madvise() system
call. The Linux kernel then ensures that the next access
to these pages causes a special page fault resulting in the
pages being migrated to their threads. The work pro-
vides developers with an opportunity to improve mem-
ory proximity for their programs. Our work, on the other
hand, improves memory proximity by using hardware
counters data available on every modern machine. No
involvement from the developer is needed.

Linux kernel since 2.6.12 supports the cpusets mech-
anism and its ability to migrate the memory of the ap-
plications confined to the cpuset along with their threads
to the new nodes if the parameters of a cpuset change.
Schermerhorn et al. further extended the cpuset function-
ality by adding an automatic page migration mechanism
to it [18]: if enabled, it migrates the memory of a thread
within the cpuset nodes whenever the thread migrates to
a core adjacent to a different node. Two options for the
memory migration are possible. The first is a lazy mi-
gration, when the kernel attempts to unmap any anony-
mous pages in the process’s page table. When the pro-
cess subsequently touches any of these unmapped pages,
the swap fault handler will use the ”migrate-on-fault”
mechanism to migrate the misplaced pages to the correct
node. Lazy migration may be disabled, in which case,
automigration will use direct, synchronous migration to
pull all anonymous pages mapped by the process to new
node. The efficiency of lazy automigration is compara-
ble to our memory migration solution based on IBS (we
performed experiments to verify). However, automigra-
tion requires kernel modification (it is implemented as a
collection of kernel patches), while our solution is imple-
mented on user level. Cpuset mechanism needs explicit
configuration from the system administrator and it does
not perform contention management.

In [19] the authors group threads of the same applica-
tion that are likely to share data onto neighbouring cores
to minimize the costs of data sharing between them.
They rely on several features of Performance Monitor-
ing Unit unique to IBM Open-Power 720 PCs: the abil-
ity to monitor CPU stall breakdown charged to different
microprocessor components and using the data sampling
to track the sharing pattern between threads. The DINO
algorithm introduced in our work complements [19] as it
is designed to mitigate contention between applications.
DINO provides sharing support by attempting to group
threads of the same application and their memory on the
same NUMA node, but as long as co-scheduling multiple
threads of the same application does not contradict with
a contention-aware schedule. In order to develop a more
precise metric that assesses the effects of performance

degradation versus the benefits from co-scheduling, we
would need stronger hardware support, such as that avail-
able on IBM Open-Power 720 PCs or on the newest Ne-
halem systems (as demonstrated by the member of our
team [9]).

The VMware ESX hypervisor supports NUMA load
balancing and automatic page migration for its vir-
tual machines (VMs) in commercial systems [1]. ESX
Server 2 assigns each virtual machine a home node on
whose processors a VM is allowed to run and its newly-
allocated memory comes from the home node as well.
Periodically, a special rebalancer module selects a VM
and changes its home node to the least-loaded node. In
our work we do not consider load balancing. Instead,
we make thread migration decisions based on shared re-
source contention. To eliminate possible remote access
penalties associated with accessing the memory on the
old node, ESX Server 2 performs page migration from
the virtual machine’s original node to its new home node.
ESX selects migration candidates based on finding hot
remotely-accessed memory from page faults. The DINO
scheduler, on the other hand, identifies hot pages using
Instruction-Based Sampling. No modification to the OS
is required.

The SGI Origin 2000 system [4] implemented the
following hardware-supported [13] mechanism for co-
location of computation and memory. When the dif-
ference between remote and local accesses for a given
memory page is greater than a tunable threshold, an in-
terrupt is generated to inform the operating system that
the physical memory page is suffering an excessive num-
ber of remote references and hence has to be migrated.
Our solution to page migration is different in that it
detects ”hot” remotely accessed pages via Instruction-
Based Sampling, and performs migration in the context
of a contention-aware scheduler.

In a series of papers [7] [17] [6] [20] the authors
describe a novel operating system Tornado specifically
designed for NUMA machines. The goal of this new
OS is to provide data locality and application indepen-
dence for OS objects thus minimizing penalties due to re-
mote memory access in a NUMA system. The K42 [11]
project, which is based on Tornado, is an open-source
research operating system kernel that incorporates such
innovative design principles like structuring the system
using modular, object-oriented code (originally demon-
strated in Tornado), designing the system to scale to very
large shared-memory multiprocessors, avoiding central-
ized code paths and global locks and data structures and
many more. K42 keeps physical memory close to where
it is accessed. It uses large pages to reduce hardware
and software costs of virtual memory. K42 project has
resulted in many important contributions to Linux, on
which our work relies. As a result, we were able to avoid
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deleterious effects of remote memory accesses without
requiring changes to the applications or the operating
system. We believe that our NUMA contention-aware
scheduling approach that was demonstrated to work ef-
fectively in Linux can also be easily implemented in
K42 with its inherent user-level implementation of ker-
nel functionality and native performance monitoring in-
frastructure.

7 Conclusions

We discovered that contention-aware algorithms de-
signed for UMA systems may hurt performance on sys-
tems that are NUMA. We found that contention for mem-
ory controllers and interconnects occurring when thread
runs remotely from its memory are the key causes. To ad-
dress this problem we presented DINO: a new contention
management algorithm for NUMA systems. While de-
signing DINO we found that simply migrating a thread’s
memory when the thread is moved to a new node is not a
sufficient solution; it is also important to eliminate super-
fluous migrations: those that add to migration cost with-
out providing the benefit. The goals for our future work
are (1) devising metric for predicting a trade-off between
performance degradation and benefits from thread shar-
ing and (2) investigate the impact of using small versus
large memory pages during migration.
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