
Deploying Large File Transfer on an
HTTP Content Distribution Network

KyoungSoo Park and Vivek S. Pai
Department of Computer Science

Princeton University

Abstract

While HTTP-based Content Distribution Networks have
been successfully used to serve Web users, several design
and operational issues have prevented them from being
used for the scalable and efficient transfer of large files.
We show that with a small number of changes, support-
ing large file transfer can be efficiently handled on ex-
isting HTTP CDNs, without modifying client or server
software. This approach not only reduces infrastructure
and the need for resource provisioning between services,
but can also improve reliability by leveraging the stabil-
ity of the existing CDN to deploy this new service. We
show that this approach can be implemented at low cost,
and provides efficient transfers even under heavy load.

1 Introduction

HTTP-based Content Distribution Networks (CDNs)
have successfully been used to serve Web pages, offload-
ing origin servers and reducing download latency. These
systems, such as those from Akamai [2], generally con-
sist of a distributed set of caching Web proxies and a set
of request redirectors. The proxies are responsible for
caching requested objects so that they can be served from
the edge of the network instead of contacting the ori-
gin server. The redirectors, often modified DNS servers,
send clients to appropriate CDN nodes, using a number
of factors, such as server load, request locality (presence
of object in the cache), and proximity (network latency
to the node).

Given the scale, coverage, and reliability of CDN sys-
tems, it is tempting to use them as the base to launch new
services that build on the existing software infrastructure.
Doing so can reduce the duplication of infrastructure,
and reduce or eliminate decisions about resource pro-
visioning on the nodes. For example, some current ap-
proaches to distributing different types of content (Web
objects, streaming media) often require running multi-
ple separate servers, so decisions about how much mem-
ory and disk to devote to each one must be made in ad-
vance, instead of being automatically adjusted dynam-

ically based on the workload. We consider the issue of
distribution of large files (100’s of MB and above), which
has recently been the focus of much academic and devel-
opment interest [3, 5, 6, 7, 10].

With Web content being heavily skewed to small files
and whole-file access, the design decisions that optimize
CDN behavior for the average case also make serving
large files unattractive. However, these large files can
include movie trailers and software CD (ISO) images,
making them ideal candidates for CDNs. With main
memory in the 1GB range and average Web objects in
the 10KB range, a standard proxy used as a CDN node
can easily cache 10K-100K objects completely in main
memory. While disk caches can be much larger, the
slower disk access times drive designers to aim for high
main-memory cache hit rates. In this environment, serv-
ing files in the 100+MB range can cause thousands of
regular files to be evicted from main memory, reducing
the overall effectiveness of the CDN node.

This work focuses on deploying a practical large file
transfer service that can efficiently leverage HTTP CDN
infrastructure, without requiring any changes to the client
or server infrastructure. Such a service would allow
CDN developers an attractive option for handling this
content, and may allow content providers new flexibil-
ity in serving these requests.

The rest of this paper is organized as follows: in Sec-
tion 2, we provide some background and explain the im-
pediments in current CDNs. We then discuss our ap-
proach and its implementation, CoDeploy, in Section 3.
Finally, we evaluate our performance in Section 4, dis-
cuss related work in Section 5, and conclude in Sec-
tion 6.

2 Background

Large files tax the CDN node’s most valuable resource,
physical memory. While over-committing other re-
sources (disk, network, CPU) result in linear slowdowns,
accessing disk-based virtual memory is much worse
than physical memory. Among the problems large files
present for content distribution networks are:



Cache hit rates– with current approaches, large files
would require much higher hit rates to compensate the
CDN/proxy for all the small files they displace in main
memory. As a result, proxies generally “tunnel” such
files, fetching them from the origin site and not caching
them. Some CDNs provide a storage service [9] for un-
burdening the content providers and enhancing the ro-
bustness of delivery. While this approach does offload
bandwidth from the origin server, it does not scale the
storage of the CDN due to the use of whole-file caching.

Buffer consumption – while multiple client requests
for the same uncached file can often be merged and
served with one download from the origin server, doing
so for large files requires the proxy to buffer all data not
received by the slowest client, potentially approaching
the entire file size. This buffer either pollutes the cache
and consumes memory, or causes disk access and evic-
tion. Throttling the fastest client to reduce the buffer size
only makes the CDN slow and increases the number of
simultaneous connections.

Serving large files using an HTTP-based infrastructure
has received very little attention, and the only published
related effort of which we are aware is FastReplica [6],
which fragments large files and uses all-to-all communi-
cation to push them within a CDN. Its focus is on push-
ing the whole file to all CDN nodes, and does not af-
fect the whole-file caching and service model used by
the nodes. Our focus is breaking away from the whole-
file caching model to something more amenable to large
file handling.

Other work in large file handling uses custom overlay
protocols for peer-to-peer transfers. The most heavily
deployed, BitTorrent [7], implements a peer-to-peer net-
work with centralized tracking of available clients. Aca-
demic initiatives include (a) LoCI [3], which builds a
stateful, filesystem-like network infrastructure, (b) Bul-
let [10], which uses a self-organizing overlay mesh, and
(c) SplitStream [5], which has a superimposed collection
of multicast trees on a peer-to-peer overlay. To the best
of our knowledge, all of these approaches use (or will
use, when deployed) custom protocols for data transfers.

While these designs report promising levels of success
within their intended scenarios, they are not readily ap-
plicable to our problem, since they require content prepa-
ration at the content provider, and custom software at
the receivers. Any non-HTTP protocols imply a higher
barrier to deployment and decisions regarding resource
provisioning. We are interested in efficient handling of
large file transfers within HTTP in a way that minimizes
fetches from the content providers, reduces the amount
of space consumption within the CDN, requires no mod-
ification to the clients, and is completely demand-driven
rather than requiring advanced preparation.

3 Approach and Implementation

Our approach to handling large files is to treat them as
a large number of small files, which can then be spread
across the aggregate memory of the CDN as needed. To
ensure that this approach is as unobtrusive as possible to
clients, servers, and even the CDN’s own proxies, the dy-
namic fragmentation and reassembly of these small files
will have to be performed inside the CDN, on demand.

To hide this behavior from clients, each CDN node
has an agent that is responsible for accepting requests for
large files and converting them into a series of requests
for pieces of the file. To specify pieces, we use HTTP/
1.1’s widely-supported byte-range feature [8], which is
normally used by browsers to resume interrupted down-
loads. After these individual requests are injected into
the CDN, the results are reassembled by the agent and
passed to the actual client. For simplicity, this agent can
occupy a different port number than the CDN’s proxy.

Making the stream of requests CDN/proxy-friendly re-
quires modifying the ingress and egress points of the
CDN. Since CDNs use URLs for their redirection de-
cisions, simply using the same URL for all byte-range
requests would send all requests along the same path, de-
feating our purpose. Likewise, we are not aware of any
HTTP proxy that is capable of caching disjoint pieces of
a file. To avoid these problems, we have the CDN agent
affix the range information to the URL itself, so that the
CDN believes all of the requests are for different files.
On egress from the CDN, these requests are normalized
– the URL is reverted to the original, and the range in-
formation is added as standard headers. The response
from the origin server is converted from a 206 code (par-
tial file) to a 200 (whole file), and the headers indicat-
ing what range is served are converted into the standard
content-length headers.

Since the transfer appears to the CDN as a large num-
ber of small files, it can use its normal routing, repli-
cation, and caching policies. These cached pieces can
then be used to serve future requests. If a node expe-
riences cache pressure, it can evict as many pieces as
needed, instead of evicting one large file. Similarly, the
addition/departure of nodes will only cause pieces to be
fetched from the origin, instead of the whole file. The
only difference to the server is that instead of seeing
one large file request from one proxy, it sees many byte-
range requests from many proxies. Except for the con-
nection and header traffic, no extra bytes are shipped by
the server. One artifact of this approach will be an in-
crease in the number of requests to the server, so more
entries will appear in the access log.

We have added this support into the CoDeeN content
distribution network [18], which runs on 120 PlanetLab
nodes in North America. CoDeeN itself is implemented



Client

Origin
Server

Large File
Agent

Reverse
Proxy

Reverse
Proxy

Reverse
Proxy1

2

3

4

5

Redirector

Figure 1:Processing steps for large-file handling - 1. the client
sends the request to the agent, 2. the agent generates a series of
requests for the URL with special suffixes and sends them to the
redirector on the same CDN node, 3. those requests are spread
across the CDN as normally occurs, 4. on egress from the CDN
(assuming cache misses), the URLs are de-mangled, and the
response header is mangled to mimic a regular response, 5. as
the data returns to the agent, it sends it back to the client in
order, appearing as a single large response

as a module on top of a programmable proxy, using a C
API that allows customization of the proxy’s data han-
dling [11]. Given a URL, CoDeeN chooses a replica
proxy using the Highest Random Weight(HRW) hashing
scheme [15], which preserves the uniform distribution of
the contents. To avoid hot spots for a popular piece of
a file, CoDeeN replicates each piece tok different loca-
tions with a configurable numberk .

The overall development effort of this system, called
CoDeploy, has been relatively light, mostly because the
agent can leave all routing, replication, and caching de-
cisions to the CDN. The support in the proxy module for
large files is approximately 50 lines of code, mostly deal-
ing with header parsing, insertion and deletion. The bulk
of the effort is in the client agent, which we have imple-
mented as a separate program that resides on every CDN
node. It consists of less than 500 source lines, exclud-
ing comments. However, in that code, it initiates parallel
fetches of file pieces, uses non-blocking code to down-
load them in parallel, restarts any slow/failed downloads,
and performs other sanity checks to ensure that the large
file is being received properly.

The most complicated part of the agent is the restart-
ing of slow downloads. It has been our experience that
while most nodes perform “well enough” most of the
time, their instantaneous performance can differ dramat-
ically, and some mechanism is needed to prevent a few
slow transfers from becoming a bottleneck. To automat-
ically adapt to the speed of the network or the origin
server, we keep an exponentially-weighted moving aver-
age (EWMA) of the most recent chunk download times

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

5.1M2.5M1.2M640K320K160K80K40K20K10K

B
an

dw
id

th
 (K

bp
s)

Total Buffer Size

10K chunk
20K chunk
40K chunk
80K chunk

Figure 2: Bandwidth versus total buffer size – buffer size is
the chunk size times the # of chunks fetched in parallel

per connection, and time out a download when it takes
more than a few times the average. When this occurs,
the URL is slightly modified by appending a letter to
the start position. This letter is meaningless, since the
start position is interpreted as an integer, but it causes the
CDN to direct the request to a different node than the
original. We choose an original timeout of five times the
average, and double this value for consecutively failed
downloads. The multiple is reset to five once a download
succeeds, and the new average includes the recent chunk,
increasing the effective future timeout value.

4 Evaluation

We briefly describe some of our early results with CoDe-
ploy, focusing on the performance of our large file sup-
port in various scenarios. We also make a number of ob-
servations regarding the implementation of our system,
and possible future paths for exploration.

To understand the impact of parallelism and chunk
size, we vary these parameters on a lightly-loaded node.
The client repeatedly requests the file, and the nodes are
configured to either cache at the reverse proxies or not
cache at all. These results are shown in Figure 2, with
the configurations sorted by the product of # of chunks
and chunk size. The general trend indicates that perfor-
mance improves as the total buffer size increases. We
do see that larger chunk sizes show some performance
loss compared to the smaller ones when the total buffer
is small, but this effect is secondary to the correlation
with total buffer size. As a general compromise between
performance and memory consumption, we choose val-
ues of 10 parallel fetches of 60KB each by default.

Our competitive evaluation focuses on the perfor-
mance of single downloads and multiple simultaneous
downloads using different configurations. All tests are



Node Ping Direct Aggr CoDeploy
First Cached

Rutgers 5.6 18617 14123 3624 4501
U Maryland 5.5 12046 14123 4095 5535
U Notre Dame 35.1 8359 25599 4179 7728
U Michigan 46.9 5688 10239 4708 6205
U Nebraska 51.4 2786 4266 4551 5119
U Utah 66.8 2904 7585 2512 3900
UBC 74.6 3276 7728 2100 4137
U Washington 79.2 4551 17808 1765 4357
UC Berkeley 81.4 4501 20479 6501 9308
UCLA 84.6 2677 7314 2178 4055

Table 1:Ping times (in ms) and bandwidths (in Kbps) across
several nodes for various downloading approaches using only
one active client at a time.

performed on the 120 nodes running CoDeeN, which
are located mostly at North American educational sites
in PlanetLab. For the single download tests, we test
consecutively on 10 nodes, whereas for the simultane-
ous download test, all 120 clients begin at the same
time. The origin server is a lightly-loaded PlanetLab
node at Princeton running a tuned version of Apache,
serving a 50MB file, and is connected to the Internet
via two high-bandwidth (45 Mbps) connections and one
burstable lower-bandwidth connection. The test scenar-
ios are as follows:
1. Direct – fetches from origin in a single download.
This is basically what standard browsers would do. How-
ever, we increase the socket buffer sizes(=120KB) from
the system defaults to expand the space available to cover
the bandwidth-delay product.
2. Aggressive– uses byte-range support and multiple
parallel connections to download from the origin, sim-
ilar to the behavior of “download optimizer” programs.
The number of parallel connections and chunk size are
the same as CoDeploy.
3. CoDeploy First – The client uses CoDeploy, but the
content has not been accessed. It must be loaded from the
origin server, and is then cached on the reverse proxies.
4. CoDeploy Cached– Clients use CoDeploy, and the
cached content is already on the reverse proxies.

We begin our analysis of these results with the single-
client tests, shown in Table 1. The direct downloads
show general degradation in bandwidth as the ping times
increase, which seems surprising since a 50MB file
should be large enough to cause the TCP congestion win-
dow to grow large enough to cover the bandwidth-delay
product. We see that using the aggressive strategy causes
a large increase in some of the bandwidths, suggesting
that multiple connections can overcome packet loss and
congestion much better than a single connection. When
the ping times exceed 40ms, CoDeploy’s cached results

25% Median Mean 75%
Direct 651 742 851 1037
Aggressive 588 647 970 745
CoDeploy First 2731 3011 2861 3225
CoDeploy Cached 3938 4995 4948 6023

Table 2: Bandwidths (in Kbps) for various downloading ap-
proaches with all 120 clients simultaneously downloading.

beat the direct downloads, but we see that CoDeploy’s
single-client numbers do not beat the aggressive strategy.

The situation is much different when comparing mul-
tiple simultaneous downloads, as shown in Table 2. The
table shows mean, median,25th and 75th percentile
bandwidths for the 120 nodes. Here, the aggressive strat-
egy performs slightly worse than the direct downloads,
in general. With all 120 clients simultaneously down-
loading, the origin server’s bandwidth is the bottleneck,
and we are using virtually all of Princeton’s outbound
connectivity. However, both First and Cached show
large improvements, with Cached delivering 4-6 times
the bandwidth of the non-CoDeploy cases. The perfor-
mance gain of First over Direct and Aggressive stems
from the fact that with multiple simultaneous downloads,
some clients are being satisfied by the reverse proxies af-
ter the initial fetches are caused by faster clients.

For CoDeploy, these measurements are encouraging,
because our long-term goal is to use CoDeeN to absorb
flash crowds for large files, such as software releases. In
this scenario, CoDeploy is the clear winner. These exper-
iments suggest that if the client and server have a lightly-
loaded, high-bandwidth connection between them, either
direct connections or an aggressive downloader are ben-
eficial, while CoDeploy can provide better performance
if any of those conditions do not hold. The aggressive
downloader is not a scalable solution – if everyone were
to use it, the extra load could cause severe problems for
the origin server. In fact, when our server was behind a
firewall, the connection rate caused the firewall to shut
down. CoDeploy, on the other hand, performs reason-
ably well for single clients and extremely well under
heavy load.

4.1 Observations and Challenges
Our most important observation is that our approach to
large file handling is practical and can be relatively easily
implemented on HTTP-based content distribution net-
works. The system is relatively straightforward to im-
plement and performs well.

The result that the achieved bandwidth is largely a
function of the total buffer size is unexpected, but un-
derstandable. The underlying reason for this result is that
the buffer acts as a sliding window over the file, with var-
ious CDN nodes providing the data. The bottleneck will



base 1% 2% 5%
Univ Utah 3900 5395 7839 10861
UCLA 4055 4339 4814 4955
Univ Brit Columbia 4137 5598 6711 8359
Univ Washington 4357 5926 7488 10542
Rutgers 4501 4811 4939 5072
Univ Nebraska 5119 6339 7079 8895
Univ Maryland 5535 5648 5767 6056
Univ Michigan 6205 6284 6331 7148
Univ Notre Dame 7728 8522 8932 9558
UC Berkeley 9308 10173 11120 14135

Table 3: Improvements from tail reduction – the base num-
ber is the current CoDeploy bandwidth, and the other columns
show what the bandwidth if that percentage of the slowest
chunks were replaced with the median download time.

be the slowest nodes, and as the buffer size increases, the
slow nodes enter the sliding window further ahead of the
time their data is needed. We should be able to tailor the
window size to saturate the client’s bandwidth with the
least amount of buffer space needed.

This result implies that we should be able to use some
form of deadline scheduling to make requests to CDN
nodes in a “just in time” fashion, reducing the amount of
memory actually consumed by the sliding window. This
approach would be conditioned on the stability of down-
load times per CDN node, and the ability of the agent to
know where the CDN will send a particular request.

The challenge to such optimization, however, is the
variability of download times that we have experienced.
We have experienced some nodes that always respond
slower than the rest of the CDN. Requests that might
have been sent to these nodes could simply be diverted
elsewhere, or started much earlier than others. However,
the main problem is that even our “fast” nodes tend to
show dramatic slowdowns periodically. In some cases,
we have noticed some chunks taking more than 10-20
times as long as others, and this behavior is not determin-
istic. We believe that these are due to short-term conges-
tion, and the gains from reducing them can be significant.

We can estimate the achievable bandwidth improve-
ment by shrinking the download times of the slowest
chunks. For each download, we identify the chunks that
had the largest download times, and we replace them
with the median download time. Any chunks that had
been waiting on this bottleneck are time-shifted to re-
flect the reduction of the bottleneck, and the overall
bandwidth of the new trace is calculated. These results,
shown in Table 3, show that even modest improvements
in speeding up the slowest chunks can dramatically im-
prove bandwidth.

4.2 Supporting Efficient Push and Fast
Synchronization

With the large file support in place, one useful service
that is easily built on it is efficiently pushing files ton
different locations. This includes the initial deployment
of the files as well as updating them as new versions are
available. This approach essentially provides a scalable
1-to-many version ofrsync [16] while avoiding traffic
bottlenecks at the source. The necessary steps for en-
abling this is following,

1. A user sets up a URL containing the directory to be
pushed to the destinations. Destinations may have
some, all, or none of the files in this directory.

2. A special program, calledcosync, produces a script
which examines and optionally fetches each file in
the user’s directory hierarchy via the large file agent
using the URL specified in step 1. While most files
can be transferred without problems,cosync must
take some special steps for some files, as described
below:

(a) Any executable bits in the file’s privilege mask
are cleared, to avoid having the source web-
server try to execute the file as a CGI program.

(b) Since the HTTP standard specifies that proxies
should calculate the cacheable lifetime of a file
based on its last modification time, recently-
modified files aretouched to have an older
age. This step ensures that cached files will
not expire before the download is complete.

(c) The execution bits and the modification time
are restored to their previous values after
downloading is finished.

3. Cosync copies only the script to the destinations and
executes it on each node. The script makes sure to
download only the modified files for each individ-
ual node. For larger scripts, we can store it with
the other files, and push only a small script that first
downloads it using the large file support before ex-
ecuting it.

Two issues arise in this scenario. One is how to figure
out which files to update, and the other is how to prevent
the stale version of a cached object from being down-
loaded. We solve both problems by using the MD5 [13]
checksum of each file. Cosync generates and stores the
MD5 checksum of each file in the script – when exe-
cuting, the script checks for an existing file, checks its
MD5 checksum, and downloads it only if needed. Also,
whenever contacting the large file agent for requesting a
file, the script provides the MD5 checksum of the file in



an HTTP header. The agent appends this string to the
end of each chunk request URL to avoid using any stale
copy in the proxy cache. This approach avoids forcing
the proxy to unnecessarily revalidate cached content with
the origin server, and provides strong consistency. For
initial deployments of content, the per-file checking and
downloading is not needed, so we also have the option in
cosync that creates a tar file of the tree and downloads it
as one large file. We have been running cosync on Plan-
etLab as an open service for over six months.

5 Related Work

In the streaming media community, the technique of
caching small segments rather than a whole file is not
new [1, 4, 12]. They further optimize the streaming be-
havior by prefetching and caching more frequently re-
quested portions of the content. Akamai uses a similar
strategy [14, 9]. Our contribution is that we have shown
how to do this using HTTP, and only requiring small
changes to the CDN itself. We do not need to change
the CDN’s caching and replication policies.

While comparing our approach with previous work is
difficult due to the difference in test environment, we
can make some informed conjecture based on our ex-
periences. FastReplica’s evaluation includes tests of 4-
8 clients, and their per-client bandwidth drops from 5.5
Mbps with 4 clients to 3.6 Mbps with 8 clients [6]. Given
that their file is broken into a small number equal-sized
pieces, it would appear that the slowest node in the sys-
tem would be the overall bottleneck. By using a large
number of small, fixed-size pieces, CoDeploy can miti-
gate the effects of slow nodes, either by increasing the
size of its “sliding window”, or by retrying chunks that
are too slow. Comparisons with Bullet [10] are harder,
since most of Bullet’s evaluation uses ModelNet [17], a
controlled emulation environment. Our experience indi-
cates that CoDeploy’s performance bottleneck are short
time-scale effects, not the predictable bandwidth limits
Bullet’s evaluation uses. The highest-performance eval-
uation of Bullet on the live Internet uses a 1.5 Mbps
stream with 10 client nodes, which we show we can eas-
ily match. No information is given about the highest per-
formance Bullet can achieve in this setup, so we cannot
draw conclusions in this regard.

6 Conclusion
We have demonstrated that HTTP-based content distri-
bution networks can be extended to efficiently handle
large file distribution, an area that had traditionally been
approached using different protocols with separate in-
frastructure. Our measurements indicate that our pro-
totype outperforms even well-connected origin servers,

and our experience suggests that tuning opportunities can
be used to increase its performance and reduce its mem-
ory usage.

References
[1] S. Acharya and B. Smith. Middleman: A video caching proxy

server. InNOSSDAV’00, 2000.

[2] Akamai Technologies Inc., 1995. http://www.akamai.com/.

[3] M. Beck, D. Arnold, A. Bassi, F. Berman, H. Casanova, J. Don-
garra, T. Moore, G. Obertelli, J. Plank, M. Swany, S. Vadhiyar,
and R. Wolski. Logistical computing and internetworking: Mid-
dleware for the use of storage in communication. In3rd Annual
International Workshop on Active Middleware Services (AMS),
San Francisco, August 2001.

[4] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul. Design and
implementation of a caching system for streaming media over
the internet. InIEEE Real Time Technology and Applications
Symposium, 2000.

[5] M. Castro, P. Drushcel, A. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. SplitStream: High-bandwidth content distribution
in a cooperative environment. InProceedings of IPTPS’03, Feb
2003.

[6] L. Cherkasova and J. Lee. FastReplica: Efficient large file dis-
tribution within content delivery networks. InProceedings of the
4th USITS, Seattle, WA, March 2003.

[7] B. Cohen. Bittorrent, 2003. http://bitconjurer.org/BitTorrent.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol –
HTTP/1.1. RFC 2616, June 1999.

[9] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. Kleinberg,
B. Mancuso, D. Shaw, and D. Stodolsky. A transport layer for
live streaming in a content delivery network. InProceedings of
the IEEE, volume 92, pages 1408 – 1419, 2004.

[10] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: high
bandwidth data dissemination using an overlay mesh. InPro-
ceedings of the 19th ACM SOSP, 2003.

[11] V. Pai, A. Cox, V. Pai, and W. Zwaenepoel. A flexible and effi-
cient application programming interface for a customizable proxy
cache. InProceedings of the 4th USITS, Seattle, WA, March
2003.

[12] R. Rejaie and J. Kangasharju. Mocha: A quality adaptive multi-
media proxy cache for internet streaming. InNOSSDAV’01, 2001.

[13] R. Rivest. The MD5 message-digest algorithm. RFC 1321, April
1992.

[14] R. Sitaraman. Streaming content delivery networks. Keynote
address inthe 12th International Packetvideo Workshop, 2002.
http://amp.ece.cmu.edu/packetvideo2002/keynotespeakers.htm.

[15] D. Thaler and C. Ravishankar. Using Name-based Mappings to
Increase Hit Rates. InIEEE/ACM Transactions on Networking,
volume 6, 1, 1998.

[16] A. Tridgell. Efficient Algorithms for Sorting and Synchronization.
PhD thesis, The Australian National University, 1999.

[17] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a large-scale
network emulator. InProceedings of 5th Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2002.

[18] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliabil-
ity and security in the CoDeeN content distribution network. In
Proceedings of the USENIX Annual Technical Conference, 2004.


