
The Seven Deadly Sins of Distributed Systems

Steve Muir
Department of Computer Science

Princeton University

Abstract

Applications developed for large-scale heterogeneous en-
vironments must address a number of challenges not
faced in other networked computer systems such as LAN
clusters. We describe some of the problems faced in im-
plementing the PlanetLab Node Manager application and
present general guidelines for application developers de-
rived from those problems.

1 Introduction
Developers of distributed applications face a number of
challenges particular to their environment, whether it be
a homogeneous cluster or a global environment like Plan-
etLab [6, 2], such as unreliable communication and in-
consistent state across the distributed system. Further-
more, personal experiences developing and running ap-
plications on workstations and/or servers with LAN in-
terconnects often are not applicable, particularly to prob-
lems such as resource allocation and sharing. We present
a set of guidelines created in response to our experiences
maintaining an infrastructure application for PlanetLab,a
large-scale heterogeneous environment.

This paper describes theseven deadly sins of dis-
tributed systems—seven challenges we encountered in
developingNode Manager, a key infrastructure compo-
nent of the PlanetLab environment. Although these chal-
lenges are described in the context of a particular appli-
cation we believe the underlying problems are common
to all large-scale heterogeneous environments and thus of
interest to a wider audience than just current and future
users of PlanetLab.

In Section 2 we briefly describe the PlanetLab envi-
ronment and Node Manager application in order to set
the stage for Section 3’s enumeration of the seven deadly
sins. After describing each challenge, along with con-
crete examples of how Node Manager addresses it, we
conclude with a summary of general principles applica-
ble to the design and development of distributed applica-
tions. Note that this paper focuses on challenges faced by

application developers, and so does not directly address
the problems faced in administering distributed systems
such as PlanetLab e.g., system security, effect of network
traffic on external sites.

2 PlanetLab

PlanetLab is a global distributed environment consisting
of 400+ nodes connected to the Internet at over 175 ge-
ographic locations, a mix of academic institutions and
research laboratories. Its global nature provides an ex-
tremely diverse network environment that makes imple-
menting a distributed application somewhat challenging.

PlanetLab nodes are IA-32 systems, usually running
Intel Xeon or Pentium 4 CPUs with some Pentium III
and AMD systems thrown into the mix. Each is centrally
administered and configured using a bootable CD that en-
sures the node boots in a standard manner and can also be
rebooted into a minimaldebugmode; this boot mecha-
nism is not intended to be secure against adversaries with
local access but merely to provide a reasonably degree of
assurance that nodes can be brought into a known state
remotely.

The PlanetLab OS is derived from RedHat Linux 9
with a small number of kernel patches applied; the most
significant patches are the standardvserverpatches to
provide namespace isolation between users, andplkmod,
a kernel module that provides CPU scheduling and net-
work virtualisation. These two components together pro-
vide users with an environment that appears essentially
to be a complete Linux system, with a restricted root ac-
count used to configure that system by each user.

2.1 Node Manager

Node Manager (NM) is the infrastructure subsystem that
configures the appropriate user environments—slivers—
on each node. A user creates aslicein the PlanetLab Cen-
tral (PLC) database, specifying such properties as nodes
to be instantiated upon, authorised users and resources
allocated to that slice. The contents of that database are



then exported to Node Manager as an XML file which is
subsequently used to configure slivers on each node.

Node Manager provides users with prompt creation
and deletion of slivers while contending with a large
number of problems inherent to the distributed nature of
PlanetLab. Our experiences developing and maintaining
Node Manager have led us to create a list of the most im-
portant challenges to be addressed: we refer to these as
the seven deadly sins of distributed systems.

2.2 Related Work

PlanetLab is neither the first nor only distributed envi-
ronment available to network experimenters and devel-
opers of new services but we believe it to be both larger
and more heterogeneous than earlier such projects. The
University of Utah’sEmulab[8] project provides a large
cluster environment for researchers but lacks the hetero-
geneous network environment of PlanetLab; of course,
for some applications that may actually be preferable.
MIT’s Resilient Overlay Network (RON)[1] testbed pro-
vides a similar network environment to PlanetLab but on
a much smaller scale. Finally, theGoogle file system[3],
a cluster-based filesystem, addresses many similar chal-
lenges to those encountered in PlanetLab even though the
environment is much more homogeneous.

3 The Seven Deadly Sins

For each of the ’sins’ listed below we will describe the
nature of the problem along with the solutions adopted in
Node Manager. While many of these problems are well-
known and in some cases the subjects of vast amounts
of existing research, we believe that the practical context
in which we encountered them helps motivate the appli-
cability of their solutions to PlanetLab and similar dis-
tributed systems.

1. Networks are unreliable in the worst possible way

2. DNS does not make for a good naming system

3. Local clocks are inaccurate and unreliable

4. Large-scale systems always have inconsistencies

5. Improbable events occur frequently in large systems

6. Overutilisation is the steady-state condition

7. Limited system transparency hampers debugging

Note that this list is far from complete, but reflects the
set of challenges we faced implementing Node Manager,
particularly where the problem or its effects were surpris-
ing.

3.1 Large Heterogeneous Networks are Fundamen-
tally Unreliable

The single biggest challenge facing architects of dis-
tributed applications is the simple fact that networks are
unreliable. Although the specifications of IP, TCP, UDP,
etc., all make clear the various forms this unreliability
can take, it is easy for application developers using high-
level languages and systems to forget, or fail to appreci-
ate, the practical implications of these problems for their
applications. Often, this unreliability does not take a con-
venient form from the architect’s perspective—the fate of
network packets is not simply sent or discarded, they may
also be delayed, duplicated and/or corrupted. Even ‘reli-
able’ protocols such as TCP still leave the designer to
deal with such problems as highly variable latency and
bandwidth and unexpected connection termination.

The implications of these problems for distributed
application development are significant. Some are
obvious—what should the application do if a connection
is refused—whereas others are more subtle—what should
the application do if a small file takes 24 hours to down-
load, or if a remote procedure call (RPC) is interrupted?

Perhaps the foremost rule in handling network prob-
lems is that all possible errors should be handled
gracefully—as the 5th problem described below says, it’s
the error condition that isn’t handled that will be the one
that occurs sooner or later when an application runs 24/7
on hundreds of nodes. Large, geographically distributed
networkswill exhibit all kinds of network failure modes,
including the obscure ones that never occur on local net-
works: packet reordering, duplicate packets arriving at a
destination.

Secondly, many transient failures occurring within the
network, e.g., packet loss, are successfully hidden from
applications by the network stack when in practice the
application needs to be aware of them. For example,
we frequently found that poor connectivity to our cen-
tral servers would lead to file downloads, even of small
files, taking many hours. This led to two problems: first,
the application becomes tied up in file download, thus be-
ing unable to perform other operations or respond to new
service requests; and second, the received data is often
stale by the time download is completed. The first prob-
lem can be addressed in several ways, but we use two
complementary solutions in Node Manager: multithread-
ing (or asynchronous I/O) is used to perform long latency
operations while responding to other events, and timeouts
(if chosen appropriately) are effective in terminating op-
erations that do not complete promptly. Stale data can
be identified using timestamps, although validating such
a timestamp has its own challenges (see Section 3.3).

RPC operations that terminate abnormally present an-
other class of problem. The client typically has little or
no information about the state that the server was in when



the operation terminated, so determining how to handle
this problem depends to a great deal upon the nature of
the operation. Transaction processing mechanisms are
one solution but may be too heavyweight for the rapid
prototyping of new network services that is the focus of
PlanetLab; one solution adopted in Node Manager is for
the server to maintain only minimal internal consistency
properties such that an aborted operation does not ad-
versely impact subsequent requests, and then have exter-
nal applications periodically verify that the server stateis
globally consistent.

For example, Node Manager provides a pair of
operations—acquireandbind—that are used together to
acquire a set of resources, returning a handle to the caller,
then use that handle to bind the resource set to a particu-
lar slice. If the acquire operation fails abnormally i.e., due
to an RPC mechanism error rather than an error returned
by Node Manager, the client has no information about
whether the resource set was allocated. Since the client
did not receive the resource set handle it has no way of
determining that information, so it retries the request; in
Node Manager itself we periodically cleanup allocated
resource sets that have not been bound.

Finally, distributed applications may have to deal with
interference from other network users. Random con-
nections from external networks, such as port-scanning
of network interfaces, are not uncommon, so applica-
tions providing network services must be able to handle
such invalid connection attempts gracefully. In particu-
lar, higher-level libraries may have internal error handling
designed for simple client-server applications that is in-
appropriate in the target environment.

3.2 DNS Names Make Poor Node Identifiers

A key challenge in any distributed system is naming of
entities in the system [7]. We focus only on the challenge
of naming nodes in the system i.e., assigning a nameN

to a node such thatN unambiguously refers to that node
and that node only, and the node can reliably determine,
in the face of unreliable communication, that its name is
N .

DNS names are appealing candidates as a solution for
several reasons: they’re simple, they’re well understood
by developers and users, and there’s a large amount of
infrastructure and tools to support use of them. Unfortu-
nately, DNS names suffer from bothambiguityandinsta-
bility—DNS names may not be unique and are not stable
over long periods of time. These problems arise due to
several root causes:

• Human errors: DNS names are assigned by system
administrators, so there are often mistakes made: the
same name assigned to multiple nodes or vice versa,
reverse lookups not matching forward lookups.

• Network reorganisation: sometimes sites change
their internal network addressing, thus requiring that
DNS records be updated; hostnames are even oc-
casionally changed to more ‘user-friendly’ variants
e.g.,nwu.edu changed tonorthwestern.edu.

• Infrastructure failures: DNS servers may fail com-
pletely or be overloaded, thus forcing requests to be
sent to a secondary server.

• Network asymmetry: nodes may have internal
DNS names—within their local institution’s net-
work infrastructure—that differ from their external
name, perhaps due to NAT; this is particularly prob-
lematic in the face of infrastructure failures.

• Non-static addresses and multihoming: both can in-
troduce further complexity into node naming if the
node derives its name from its IP address.

The consequences of these problems are twofold: ex-
ternal entities may not be able to identify and access a
node through its DNS name, and a node that attempts to
determine its own DNS name from its network configu-
ration cannot reliably do so. For example, some Planet-
Lab nodes hadCNAME (alias) records that were provided
only by certain nameservers—when the primary name-
server failed and the node asked one of these servers for
its name (using its IP address) it got back a different re-
sult than it would have gotten from the primary name-
server. Similarly, when the reverse mappings for two dis-
tinct IP addresses were erroneously associated with the
same name we found that two nodes believed they had
the same name.

An obvious alternative to using DNS for naming nodes
is to use IP addresses, but unfortunately they aren’t much
better—they do occasionally change, even on ‘static’ net-
works e.g., due to local network reconfiguration, and the
inherent non-human readable nature of IP addresses al-
ways leads to the temptation to convert to DNS names
for various purposes, thus introducing DNS-related prob-
lems, such as high latency for lookups and reverse
lookups, into unrelated code e.g., formatting debug mes-
sages.

In PlanetLab we adopted unique numeric IDs as node
names, with those IDs being generated by our centralised
database whenever a node is installed; a node ID is as-
sociated with the MAC address of the primary network
adapter, so node IDs do occasionally change, but we have
found this scheme to be more reliable than either DNS
names or IP addresses for naming nodes.

3.3 Local Clocks are Unreliable and Untrustworthy

A second problem often encountered in distributed sys-
tems is maintaining a globally consistent notion of
time [4]. Specific requirements in PlanetLab that have



proven problematic include determining whether an ex-
ternally generated timestamp is in the past or future, and
monitoring whether a particular subsystem is live or dead.
Of course, as a testbed for network experiments it is also
imperative that PlanetLab provide a reliable clock for
measurement purposes.

The root cause of time-related problems is the fact that
local clocks are sometimes grossly inaccurate: we com-
monly observed timer interrupt frequency errors of 2–3%
on some nodes, most likely due to bad hardware or in-
terrupts being lost due to kernel bugs, and in the most
extreme cases we observed nodes ‘losing’ about 10% of
their timer interrupts over a 1-hour period.

NTP [5] really helps but some sites block NTP ports,
and occasionally on heavily loaded systems, which al-
most all PlanetLab nodes are (see Section 3.6), NTP
doesn’t run frequently enough to compensate for massive
drift. While ideally kernel bugs would be identified and
fixed we have found that short-term solutions, such as ad-
justing the timer period to compensate for lost interrupts,
can make a significant difference. Finally, some appli-
cations e.g., local measurements, don’t actually require a
globally correct clock, just a timer of known period for
which a facility like the IA-32 timestamp counter is per-
fectly adequate.

The magnitude of clock errors that are considered rea-
sonable places limits on the granularity at which times-
tamps are useful. For example, once we realised that the
NTP service on our nodes was frequently making adjust-
ments of tens of seconds every 15–20 minutes it becomes
impractical to allocate resources with expiration times in
the minute range—an NTP adjustment can advance the
local clock so far that a resource just allocated becomes
expired immediately. Furthermore, although NTP limits
the size of its adjustments (usually to±1000 seconds),
an administrator who sees that a node’s clock has devi-
ated far from the correct value will often manually re-
set the clock, sometimes by as much as several days—
applications must therefore be designed and implemented
to detect gross changes in local time and respond grace-
fully.

Similarly, external monitoring of nodes e.g., to de-
tect when an event was last recorded, is unreliable if the
timestamp recorded with the event is not known to be
consistent with the monitor’s notion of time. The solu-
tion depends upon the particular type of monitoring: for
live services we have found that having a simple ‘ping’
facility in the application that can be exercised by the
monitor is preferable, while the accuracy of timestamps
in, say, log files can be increased somewhat by consid-
ering the current difference between the monitor’s clock
and the monitored node’s local clock, if that difference
is assumed to be representative, or used to calculate the
appropriate value.

3.4 Inconsistent Node Configuration is the Norm

It’s hard to maintain a consistent node configuration
across a distributed system like PlanetLab. Typically a
significant fraction of nodes will not have all the latest
versions of software packages and the most up-to-date
configuration information, usually because of network
outages that prevent the auto-configuration service from
downloading new files. In addition to leaving nodes ex-
posed to security vulnerabilities if recent updates have
not been applied, application designers must explicitly
handle inconsistencies between multiple versions of data
files and software packages; we focus only on the latter
problem.

The biggest effect of this global inconsistency is that
system administrators cannot make drastic changes to
data distributed to the nodes without taking into account
the ability of old versions of node software to handle
the new data (and corresponding metadata e.g., file for-
mats). This problem is exacerbated by the fact that soft-
ware and configuration updates may not be well-ordered:
a change to a configuration file may be applied to a node
even though a prior change to the corresponding software
package has not been applied.

For example: in PlanetLab we maintain a centralised
database of userslices—high-level virtual machines—
that are distributed across PlanetLab nodes. The con-
tents of this database are exported to nodes via an XML
file retrieved using HTTP (over SSL). When changes are
made to the database and/or the subset of that database
exported in that XML file we have to consider how our
changes will affect nodes running out-of-date versions of
the Node Manager software—if the format of the slice
description changes will NM fail to recognise that a slice
should be instantiated on the local node, and furthermore
delete it from that node if already instantiated?

Applications such as NM can be made more robust
against unexpected data format changes to a certain de-
gree, and it is often also possible to incorporate failsafe
behaviour, so that, say, the sudden disappearance of all
slices from the XML file, is recognised as most likely
being due to a major format change. The most obvious
way to prevent unexpected behaviour due to signficant
changes is to associate version numbers with file formats,
protocols, APIs, etc., so that large changes can be easily
detected. But it is generally not possible to completely
isolate data publishers—those entities that push data out
to the nodes—from the need to consider the effects of
data format changes upon application software.

3.5 There’s No Such Thing as “One-in-a-Million”

In a distributed system with hundreds of nodes running
24/7, even the most improbable events start to occur on a
not-too-infrequent basis. It’s no longer acceptable to ig-
nore corner cases that probably never occur—those cor-



ner cases will occur and will break your application.
For example: the Linuxlogrotate utility rotates log

files periodically. It can be configured to send aSIGHUP
signal to the daemon writing a log file when the log file
is rotated, so that the daemon can close its file handle and
reopen it on the new file. If the daemon happens to be
executing a system call when the signal is received that
signal call will be terminated with anEINTR error which
must be handled correctly by the daemon. If logs are ro-
tated only once a day or even once a week, and the dae-
mon only spends 1% of its time executing system calls,
then it becomes very tempting to ignore the possibility
that the signal will be received at the most inopportune
moment; unfortunately, as we discovered, this possibility
will actually happen with a non-negligible frequency.

A similar problem arises with filesystem corruption
due to nodes being rebooted without being shutdown
properly, an event that also occurs much more frequently
than one’s intuition leads one to believe. Whereas a
user running Linux on their desktop only very infre-
quently finds their system rebooted involuntarily e.g., due
to power outages, in a distributed system located at hun-
dreds of sites it is not uncommon for there to be one or
more such outages every week. Consequently we find
that instances of filesystem corruption are not uncom-
mon, particularly since our nodes are frequently very
heavily loaded and so the probability of there being in-
consistent metadata when such an outage occurs is high.

Hence application developers must not cut corners
when handling error conditions, and must be careful that
their own personal experiences of using one or two com-
puters at one or two locations do not lead to incorrect
assumptions of whether unusual events will occur.

3.6 No PlanetLab Node is Under-Utilised

We observe that even with an increasing number of Plan-
etLab nodes, each one is still more or less fully utilised
at all times. CPU utilisation is typically 100%, with
twenty or more independent slices concurrently active
within even short time periods (on the order of a few min-
utes). Hence it is not uncommon to find several hundreds
of processes in existence at any instant in time, and load
averages i.e., number of runnable processes, in the 5–10
range are normal. This is yet another example where user
experience running an application on a single-user work-
station doesn’t provide good intuition as to how that ap-
plication will behave when deployed on PlanetLab.

The most obvious effect of this over-utilisation is that
applications typically run much slower on PlanetLab,
since they only receive a fraction of the CPU time avail-
able. While this is often not in itself a problem, it can
have unforeseen implications for functions that make im-
plicit assumptions about relative timing of operations.
For example, the PLC agent component of Node Man-

ager uses a pair of RPC operations to create new slices:
in an unloaded system the first operation—acquiring a re-
source handle—completes very quickly, so the resource
corresponding to the new handle is likely to be available
for use by the second RPC operation. When the system
is heavily loaded, the latency of the first operation can
increase up to several minutes or more, so the state of
the system when the second RPC is invoked may have
changed significantly and the resource referred to by the
handle may no longer be available.

The inherent global nature of such resource over-
consumption means that a system-wide solution is often
most effective; in PlanetLab we implemented a propor-
tional share CPU scheduler to guarantee that each slice
gets an equal (or weighted) share of the CPU within ev-
ery time period (typically a few seconds). However, it is
still prudent for applications to anticipate the effects of
heavy load: fortunately many of the enhancements that
are appropriate are similar to those concerned with inac-
curacies in local clocks e.g., not allocating resources with
very short timeouts. Another measure adopted by Node
Manager to handle heavy load is to detect when an oper-
ation takes too long (obviously defined in an application-
specific manner) and build a degree of leniency into the
system e.g., extend resource expiration times in such
cases.

3.7 Limited System Transparency Hampers Debug-
ging

A further difference between developing an application
on a single-user workstation and deploying it on a dis-
tributed system like PlanetLab is that one often does not
have complete access to system nodes in the latter envi-
ronment. While some distributed systems only provided
users with restricted accounts, in other cases the lack of
transparency is due to virtualisation that prevents the il-
lusion of full access while hiding other system activity
from the user.

For example, in PlanetLab we allocate user slices as
environments within which services and experiments are
run, each slice being an isolated VM that gives the ap-
pearance, albeit only if one doesn’t looktoo closely, of
each user having unrestricted access to a Linux system;
each user has a restricted root account within their slice
that can be used to run standard system configuration
tools such as RedHat’srpm or Debian’sdpkg.

Unfortunately the shared nature of PlanetLab nodes
combined with the limited view of the system available
to each user can make it more challenging for individual
users to debug their applications. Similarly to the previ-
ous point, this problem is best addressed by system-wide
measures, such as providing new tools that can be used
by slice users to obtain the required debugging and status
information. One example is the PlanetLabSliceStatser-



vice that exports aggregate process information for each
slice i.e., the total amount of memory, CPU time and net-
work bandwidth consumed by all processes within a slice.

From the individual user’s perspective, this lack of vis-
ibility into the distributed system emphasises the impor-
tance of debugging the application locally as thoroughly
as possible before deploying to PlanetLab, ideally under
simulated conditions that closely resemble those of the
distributed environment e.g., heavy CPU load. Report-
ing as much information as is available to the applica-
tion rather than relying upon traditional system monitor-
ing tools—dumping received packets in a readable man-
ner rather than using an auxiliarytcpdump, say—also
pays dividends.

4 Conclusions
Application developers who are designing and imple-
menting new distributed applications, or porting an exist-
ing application, have a number of challenges inherent to
the distributed environment to address. Our experiences
implementing the Node Manager component of the Plan-
etLab infrastructure led us to develop a list of the seven
most important of these challenges. From the solutions
adopted to address these challenges a smaller set of gen-
eral guidelines emerged:

• Many assumptions made in non-distributed applica-
tions are not valid in large-scale and/or heteroge-
neous environments.

• Distributed applications must gracefully handle a
broad variety of corner-case failure modes that are
often ignored in the non-distributed environment.

• Resource management in the distributed envi-
ronment is significantly different from the non-
distributed case.

• Even local operations can behave radically differ-
ently in a system that is heavily over-utilised.

By following these guidelines in the implementation
of Node Manager we have successfully increased the ro-
bustness of the distributed application and helped make
PlanetLab a more reliable environment for deploying new
network services.

References
[1] A NDERSEN, D., BALAKRISHNAN , H., KAASHOEK, F., AND MORRIS, R.

Resilient Overlay Networks. InProc. 18th SOSP(Banff, Alberta, Canada,
Oct 2001), pp. 131–145.

[2] CHUN, B., ET AL. PlanetLab: An Overlay Testbed for Broad-Coverage Ser-
vices.ACM SIGCOMM Computer Communication Review 33, 3 (Jul 2003).

[3] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google file system.
In Proc. 19th SOSP(Lake George, NY, Oct 2003).

[4] L AMPORT, L. Time, clocks, and the ordering of events in a distributedsys-
tem. Communications of the ACM 21, 7 (Jul 1978), 558–565.

[5] M ILLS, D. L. Internet time synchronization: The Network Time Protocol.
Internet Req. for Cmts.(Oct. 1989).

[6] PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE, T. A
Blueprint for Introducing Disruptive Technology into the Internet. InProc.
HotNets–I(Princeton, NJ, Oct 2002).

[7] WATSON, R. W. Identifiers (Naming) in Distributed Systems. InDistributed
Systems—Architecture and Implementation, An Advanced Course. Springer-
Verlag, 1981, pp. 191–210.

[8] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD, S.,
NEWBOLD, M., HIBLER, M., BARB, C., AND JOGLEKAR, A. An Inte-
grated Experimental Environment for Distributed Systems and Networks. In
Proc. 5th OSDI(Boston, MA, Dec 2002), pp. 255–270.


