Go further, faster

CLUEBOX: A Performance Log Analyzer for Automated Troubleshooting

Niranjan Thirumale et al. NetApp, Inc.

WASL 2008

NetApp[™]

- Complex system deployments have ad-hoc but effective mechanisms for:
 - Data collection
 - Monitoring
 - Alerting
- ...but do not have good analysis tools
- What's available: detailed performance counters. Can we mine that to:
 - Characterize and identify workload?
 - help in the performance troubleshooting workflow?

Workload Identification: Evaluation

- SIO
 - 6 workloads, each with varying read/write ratios and sequential/random I/O ratios
- Cthon
 - 5 workloads, each exercising different sets of file system metadata operations
- PostMark
 - 2 workloads, each operating on different number of files and different file size ranges
- Sysbench
 - 5 workloads, each exercising database-like workloads

Workload Identification: How Many NetApp[®] Counters Do We Really Need?

© 2008 NetApp. All rights reserved.

S1: Read 80%, Seq 80% S4: Read 30%, Seq 10% S2: Read 20%, Seq 80% S5: Read 80%, Seq 90% S3: Read 30%, Seq 90% S6: Read 80%, Seq 10%

© 2008 NetApp. All rights reserved.

- Known workloads training data contains:
 - S5: SIO, Seq Reads = 72%, Seq Writes = 18%, Random Reads = 8%, Random Writes = 2%
 - P2: PostMark, # Files = 10^5, File Size = 1KB to 100KB
- Test workload: SIO, Seq Reads = 72%, Seq Writes = 8%, Random Reads = 18%, Random Writes = 2%

Workload Identification: Results

- Known workloads training data contains
 - C2: Cthon Test 8 (symlink, readlink), # files = 1000, #symlinks = 1000
 - SIO, Seq Reads = 64%, Seq Writes = 16%, Random Reads = 16%, Random Writes = 4%
- Test workload: Cthon Test8 with different parameters

User: "the performance of the system was fine at Time T. I haven't changed a thing since then, but now the latencies are very high"

Run the cluster medoids and Workload at T through RF and get proximities

Closest Workload

Predict counter values and diff with measured values

Rank counters in order of variable importance (predictive power of counter for latencies, given by RF)

- A handful of top-ranked counters were enough
- Anomalies in counters + Non-anomalous counters were both important
- An expert scanning this list diagnosed the rootcause rapidly
 - Conducive to a rule-based system at this point?

Anomaly Detection: fsck-like load

Counter	Deviation from Prediction
lfnet:e0:total_packets	-99.4%
Processor0:hard_switches	-63.6%
System:cpu_busy	305.6%
wafl:restart_msg_cnt:BACK DOOR	99947%
Readahead:total_read_reqs	-100%
Wafl:buf_hash_hit	7088%
Wafl:new_msg_cnt:BACKD OOR	972.9%

- Readahead counters have dropped, so not a replication load
- Absence of anomaly in cp_phase_times counter, so no high amount of destaging from cache
- Buf_hash_hit is extremely high, which cannot be explained by repeated mounts and unmounts
- Only an fsck or similar scanner can explain the data

Anomaly Detection: Local I/O load

Counter	Deviation from Prediction
Testaggr:cp_read_blocks	129%
Ifnet:e0:total_packets	8.2%
System:cpu_busy	359.9
Wafl:buf_hash_hit	3045
Testaggr:total_transfers	164.2%

- system:cpu_busy higher than predicted indicative of some other load
- ifnet:e0:total_packets is not different, so not a network I/O load
- No other significant anomalies, so not a bookkeeping activity
- testaggr:total_transfers higher imples significant amount of new I/O
- Only a separate I/O workload local to the storage controller can explain the symptoms

- Test CLUEBOX on customer environments
 - Real performance problems
 - Real workloads
- Incorporate CLUEBOX into NetApp's performance log analysis workflows
 - AutoSupport Database
 - Support Case Resolution
 - Duplicate case/bug report Identification
- Figure out how to avoid re-training if system configurations are changed (e.g., a few more disks added)