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IntroductionIntroduction
■ Context of work: Error-based online failure prediction:

■ Data used:
● Commercial telecommunication system

● 200 components, 2000 classes

● Error- and failure logs

→ In this talk we present the data preprocessing concepts we applied 
to obtain accurate failure prediction results
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ContentsContents
■ Key facts on the data

■ Overview of online failure prediction and data preprocessing process

■ Detailed description of major preprocessing concepts
● Assigning IDs to Error Messages

● Failure Sequence Clustering

● Noise Filtering

■ Experiments and Results
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Key Facts on the DataKey Facts on the Data
■ Experimental setup:

■ 200 days of data from a 273 days period

■ 26,991,314 error log records

■ 1,560 failures of two types

■ Failure Definition:
● If within a 5 min interval

more than 0.01% of calls 
experience a response
time > 250ms

● Performance Failures

Call Tracker

failure logerror logs

Telecommunication System
 response times
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Online Failure PredictionOnline Failure Prediction
■ Approach: Pattern recognition using Hidden Semi-Markov Models

■ Objectives for data preprocessing:
● Create a data set to train HSMM models exposing key properties of system

● Identify how to process incoming data during runtime

■ Tasks:
● Machine-processable data → Error-ID assignment
● Separate sequences for inherent failure mechanisms → Clustering
● Distinguishing, noise-free sequences → Noise Filtering
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Training Data PreprocessingTraining Data Preprocessing
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Error ID AssignmentError ID Assignment
■ Problem: Error logs contain no message IDs

● Example message of a log record: 

process 1534: end of buffer reached
→ Task: Assign an ID to message to characterize what has happened

■ Approach: Two steps:
● Remove numbers

process xx: end of buffer reached
● ID assignment based on Levenshtein's edit distance

with constant threshold

Data No of Messages Reduction

Original 1,695,160

Without numbers 12,533

Levenshtein 1,435
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Failure Sequence ClusteringFailure Sequence Clustering
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Failure Sequence Clustering (2)Failure Sequence Clustering (2)
■ Goal: 

● Divide set of training failure sequences into subsets 

● Group according to sequence similarity

■ Approach:
● Train a small HSMM for each sequence

● Apply each HSMM to all sequences

● Sequence log-likelihoods express
similarities

● Make matrix symmetric by

● Apply standard clustering algorithm

.........

.........

.........M1

.........

.........

.........M2

.........

.........

.........M3

-2.1

-2.6

-7.8

F1

▾A B A

-4.2

-1.3

-6.9

F2

A B AC ▾

-9.7

-10.2

-1.2

F3

B A B ▾



10
15

Failure Sequence Clustering (3)Failure Sequence Clustering (3)
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Noise FilteringNoise Filtering
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Noise Filtering (2)Noise Filtering (2)
■ Problem: Clustered failure sequences contain many unrelated errors

→ Main reason: parallelism in the system

■ Assumption: Indicative events occur more frequently prior to a failure 
than within other sequences

→ Apply a statistical test to quantify what “more frequently” is
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Noise Filtering (3)Noise Filtering (3)
■ Testing variable derived from     goodness-of-fit test:

■ Keep events in the sequence if

■ Three ways to estimate priors     
from training data set

■ Results

denotes the number of occurrences of error
denotes the total number of errors in the time window.
denotes the prior probability of occurrence of error 
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Experiments and ResultsExperiments and Results
■ Objective: Predict upcoming failures as accurate as possible

■ Metric used: F-Measure:
● Precision: relative number of correct alarms to total number of alarms

● Recall: relative number of correct alarms to total number of failures

● F-Measure: harmonic mean of precision and recall

■ Failure prediction is achieved by comparing sequence likelihood of an 
incoming sequence computed from failure and non-failure models

■ Classification involves a
customizable decision threshold

→ Maximum F-Measure

Data Max. F-
Measure

Relative 
Quality

Optimal Results 0.66 100%

Without grouping 0.5097 77%

Without filtering 0.3601 55%
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ConclusionsConclusions
■ We have presented the data preprocessing techniques that we have 

applied for online failure prediction in a commercial telecommunication 
system

■ The presented techniques include:
● Assignment of IDs to error messages using Levenshtein's edit distance

● Failure sequence clustering

● Noise filtering based on a statistical test

■ Using error and failure logs of the commercial telecommunication 
system, we showed that elaborate data preprocessing is an essential 
step to achieve accurate failure predictions
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TuplingTupling
■ Goal: Remove multiple reporting of the same issue

■ Approach: 
Combine messages of the same type if they occur closer in time to each 
other than a threshold ε.

■ Problem: 
● Determine the threshold value ε

● Solution suggested by Tsao and Siewiorek: Observe the number of tuples 
for various values of ε and apply the “elbow rule” 

ε
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HSMM Model Structure forHSMM Model Structure for
Failure Sequence ClusteringFailure Sequence Clustering
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Cluster Distance MetricsCluster Distance Metrics

Single linkage complete linkageSingle linkage Average linkage
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Online Failure PredictionOnline Failure Prediction
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Comparison of TechniquesComparison of Techniques
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Hidden Semi-Markov ModelHidden Semi-Markov Model
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■ Discrete time Markov chain (DTMC)
● States (1,..., N-1,F)

● Transition probabilities

■ Hidden Markov Model (HMM)
● Each state can generate (error) symbols (A,B,C,F)

● Discrete probability distribution of symbols per state bi(X)

■ Hidden Semi-Markov Model (HSMM)
● Time-dependent transition probabilities gij(t) 
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Proactive Fault ManagementProactive Fault Management
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