

Error Log Processing for Accurate Failure Prediction

Felix Salfner ICSI Berkeley

Steffen Tschirpke Humboldt-Universität zu Berlin

Introduction

Context of work: Error-based online failure prediction:

- Data used:
 - Commercial telecommunication system
 - 200 components, 2000 classes
 - Error- and failure logs

→ In this talk we present the data preprocessing concepts we applied to obtain accurate failure prediction results

Contents

- Key facts on the data
- Overview of online failure prediction and data preprocessing process
- Detailed description of major preprocessing concepts
 - Assigning IDs to Error Messages
 - Failure Sequence Clustering
 - Noise Filtering
- Experiments and Results

Online Failure Prediction

Approach: Pattern recognition using Hidden Semi-Markov Models

- Objectives for data preprocessing:
 - Create a data set to train HSMM models exposing key properties of system
 - Identify how to process incoming data during runtime
- Tasks:
 - Machine-processable data → **Error-ID assignment**
 - Separate sequences for inherent failure mechanisms \rightarrow **Clustering**
 - Distinguishing, noise-free sequences \rightarrow **Noise Filtering**

Training Data Preprocessing

Error ID Assignment

- Problem: Error logs contain no message IDs
 - Example message of a log record:

process 1534: end of buffer reached

- → Task: Assign an ID to message to characterize *what has happened*
- Approach: Two steps:
 - Remove numbers

process xx: end of buffer reached

• ID assignment based on Levenshtein's edit distance with constant threshold

Data	No of Messages	Reduction
Original	1,695,160	
Without numbers	12,533	
Levenshtein	1,435	

Failure Sequence Clustering

Failure Sequence Clustering (2)

Goal:

- Divide set of training failure sequences into subsets
- Group according to sequence similarity
- Approach:
 - Train a small HSMM for each sequence
 - Apply each HSMM to all sequences
 - Sequence log-likelihoods express similarities

• Make matrix symmetric by

$$D(i,j) = \left| \frac{\log \left[P(F^i | M^j) \right] + \log \left[P(F^j | M^i) \right]}{2} \right|$$

• Apply standard clustering algorithm

Failure Sequence Clustering (3)

agnes average 20 states bg = 0.25

agnes complete 20 states bg = 0.25

Agglomerative Coefficient = 0.57

agnes single 20 states bg = 0.25

Agglomerative Coefficient = 0.45

diana standard 20 states bg = 0.25

234 200 160 120 80 60 40 20 0 Heliant

Divisive Coefficient = 0.69

Height

Agglomerative Coefficient = 0.72

agnes ward 20 states bg = 0.25

Agglomerative Coefficient = 0.85

Noise Filtering

Noise Filtering (2)

Problem: Clustered failure sequences contain many unrelated errors

- Assumption: Indicative events occur more frequently prior to a failure than within other sequences
 - \rightarrow Apply a statistical test to quantify what "more frequently" is

Noise Filtering (3)

• Testing variable derived from χ^2 goodness-of-fit test:

$$X_i = \frac{n_i - n\,\hat{p}_i^0}{\sqrt{n\,\hat{p}_i^0}}$$

 n_i denotes the number of occurrences of error e_i n denotes the total number of errors in the time window. \hat{p}_i^0 denotes the prior probability of occurrence of error e_i

- Keep events in the sequence if $X_i > c$
- Three ways to estimate priors \$\hilpsymbol{\hilpsymbol{\hilpsymbol{b}}}_i^0\$ from training data set

Results

13 15

Experiments and Results

- Objective: Predict upcoming failures as accurate as possible
- Metric used: F-Measure:
 - Precision: relative number of correct alarms to total number of alarms
 - Recall: relative number of correct alarms to total number of failures
 - F-Measure: harmonic mean of precision and recall
- Failure prediction is achieved by comparing sequence likelihood of an incoming sequence computed from failure and non-failure models
- Classification involves a customizable decision threshold
- → Maximum F-Measure

Data	Max. F- Measure	Relative Quality
Optimal Results	0.66	100%
Without grouping	0.5097	77%
Without filtering	0.3601	55%

Conclusions

- We have presented the data preprocessing techniques that we have applied for online failure prediction in a commercial telecommunication system
- The presented techniques include:
 - Assignment of IDs to error messages using Levenshtein's edit distance
 - Failure sequence clustering
 - Noise filtering based on a statistical test
- Using error and failure logs of the commercial telecommunication system, we showed that elaborate data preprocessing is an essential step to achieve accurate failure predictions

Backup

Tupling

- Goal: Remove multiple reporting of the same issue
- Approach:

Combine messages of the same type if they occur closer in time to each other than a threshold $\boldsymbol{\epsilon}.$

- Problem:
 - Determine the threshold value $\boldsymbol{\epsilon}$
 - Solution suggested by Tsao and Siewiorek: Observe the number of tuples for various values of ε and apply the "elbow rule"

HSMM Model Structure for Failure Sequence Clustering

Cluster Distance Metrics

Single linkage

complete linkage

Average linkage

Online Failure Prediction

DT.

Comparison of Techniques

Hidden Semi-Markov Model

- Discrete time Markov chain (DTMC)
 - States (1,..., N-1,F)
 - Transition probabilities
- Hidden Markov Model (HMM)
 - Each state can generate (error) symbols (A,B,C,F)
 - Discrete probability distribution of symbols per state b_i(X)
- Hidden Semi-Markov Model (HSMM)
 - Time-dependent transition probabilities g_{ij}(t)

Proactive Fault Management

