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High-Performance Computing Trends

PROJECTED PERFORMANCE DEVELOPMENT
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• Expected that computing will continue to double each year

– Petaflop systems listed on top500.org

– However CPU clock rates will see limited increases

• Computing improvements achieved with more processors

– IBM Blue Gene at LLNL has 212,992 processors

– System failures will become more problematic
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System Events

• There are several critical system events

– Hardware failure, software failure, and user error

– Frequency will increase as systems become larger (cluster)

– Resulting in lower overall system utilization

• Cannot easily improve failure rates, can we manage failure?

– Smarter scheduling of applications and services

– Minimize the impact of failure

• Accurate event predictions are key for event management

– Are predictions possible? How accurate?

– Need system status information to make predictions
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System Status Information

• Almost every computer maintains a system log file

– Provide information about system events

– syslog is actually general-purpose logging facility [Lon01]

• An event represents a change in system state

– Include hardware failures, software failures, and security

Host Facility Level Tag Time Message

198.129.8.6 kern alert 1 1171062692 kernel raid5: Disk failure on sde1, disabling device

• Entries contain information such as: time, message, and tag

– Time identifies when the message was recorded

– Message describes the event, typically natural language

– Tag represents criticality, low values are more important
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Log Files

Host Facility Level Tag Time Message

198.129.8.6 local7 notice 189 1171061732 sysstat

198.129.8.6 kern info 6 1171061732 kernel md: using maximum available idle IO bandwidth

198.129.8.6 cron info 78 1171061733 crond 2500 (root) CMD (/usr/lib/sa/sa1 1 1)

198.129.8.6 auth info 38 1171062445 rsh(pam unix) 2215 session opened for user by (uid=0)

198.129.8.6 auth info 38 1171062445 in.rshd 2216 root@hpcs2.cs.edu as root: cmd=/root/temps

198.129.8.6 daemon info 30 1171062590 smartd 88 Device: /dev/twe0 SMART Prefailure Attribute

198.129.8.18 syslog info 46 1171062590 syslogd restart.

198.129.7.282 daemon info 30 1171062590 ntpd 2555 synchronized to 198.129.149.218, str

198.129.7.222 daemon info 30 1171062590 ntpd 2555 synchronized to 198.129.149.218, str

198.129.7.238 daemon info 30 1171062590 ntpd 2555 synchronized to 198.129.149.218, str

198.129.8.6 auth notice 37 1171062590 sshd(pam unix) 12430 auth failure; logname=el-fork-o

198.129.8.6 kern info 6 1171062590 kernel md: using 512k, over a total of 12287936 blocks.

198.129.8.6 cron info 78 1171062601 crond 2500 (root) CMD (/usr/lib/sa/fork-it 1 1)

198.129.8.6 kern alert 1 1171062692 kernel raid5: Disk failure on sde1, disabling device

• Log file is a list of messages, can be analyzed for

– Auditing, determine the cause of an event (past)

– Predicting important events (future)
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Example System Event to Predict

• An interesting event is disk failure

– By 2018 [large systems] could have

300 concurrent reconstructions at

any time [SG07]

– Predicting disk failure is important

– Easy to identify event in the log...

• Predict failure as early as possible

– n messages M = {m1, m1, ..., mn}
– Assume mn is the event

– Min depth d and max lead l

• Are all messages the same?

M

depth

lead  

time
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SMART

• Self-Monitoring Analysis & Reporting Technology (SMART)

– SMART disks monitor their health and performance

– Attributes describe current state, each attribute has unique ID

• Many different types of messages (Attribute and Value)

Attribute Meaning

1 Raw Read Error Rate changed to x
190 Airflow Temperature changed to x
2 Throughput Performance

8 Seek Time Performance

201 Soft Read Error Rate changed to x

• Pinheiro et.al. investigated Google hard drive failure [PWB07]

– Some SMART parameters do correlate with drive failure

– Conclude SMART messages alone may not be sufficient
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Disk Failure Prediction

• What features (information) should be considered?

– A message contains criticality, message, and time

– Is there a series of messages that tend to be a precursor?

• Consider a sequence of messages arriving (ordered by time)

– Is it possible to classify into failure and non-failure classes?

– Other approaches have considered Bayesian Nets and HMM
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Support Vector Machines

• Support Vector Machine (SVM) is a classification algorithm

– Consider a set of samples from two different classes

– Each vector consists of features describing the sample

– SVM finds a hyperplane separating the classes in hyperspace

– The vectors closest to the plane are the support vectors

• Great for aggregate statistics, what about series?

– Interested in using sequences of messages as features
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Spectrum Kernel

• A spectrum kernel considers k length sequences as features

– The frequency of the sequence is the feature value

• Assume two symbols {A, B} and sequence length k = 2

– There are 2k possible sequences (features) (AA, AB, BA, BB)

– Value of a feature is the number of occurrences

M = {A, A, B, A, A, B, B, A}
AA: 2

AB: 2

BA: 2

BB: 1

– There are bk possible sequences, were b is number of symbols

• How does this work for syslog messages?
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tag Sequences

• Each message has a tag that indicates criticality

– Sequence of messages represented by sequence of tag values
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– Need to reduce number of symbols, assume three levels

– high (tag < 10), medium (10 <tag< 140), low (tag> 140)

• Given a series of messages M , process using a sliding window

– Count the number of occurrences of k-length sequences
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Example tag Processing

• Let M = {148, 148, 158, 40, 158, 188, 188, 88, 158, 188}
• Assume b = 3 and k = 5, then 35 = 243 possible features

tag Encoding (e) Sequence f (base 10)

148 2 2
148 2 22
158 2 222
40 1 2221
158 2 22212 239
188 2 22122 233
188 2 21222 215
88 1 12221 160
158 2 22212 239
188 2 22122 215

• Feature number is ft+1 = mod (b · ft, b
k) + e

• Vector for M would be (160:1, 215:2, 233:1, 239:2)
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System Data used for Experiments

• About 24 months of syslog files from 1024 node Linux cluster

– Averaged 3.24 messages an hour (78 a day) per machine

– Observed 120 disk failure events
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• Tag values ranged from 0 to 189

– 61 unique tag messages were observed during this time
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Prediction Experiments

• Sets of M =1200 messages (15 days) collected per machine

– From first message, processed d = {400, 600, 800, 1000, 1100}
• One SVM considered aggregate features occurring within d

– Number of occurrences for each tag value

• Another SVM also considered tag sequences occurring within d

– Sequences consisted of 5 messages, there were 19 tag ranges
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Prediction Results

• Accuracy, precision, recall, and ROC recorded per experiment

– Where acc=TP+TN
P+N , prec= TP

TP+FP , and recall= TP
P
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• More messages improved prediction results

• Combined were better, 73% accuracy with 200 message lead
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Prediction Results
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• ROC curve can be used to compare classifiers/predictions [Faw06]

– Closer to the north-west, the better the performance

– Some issues with false negatives

• Combined features performed better, typically 4% to 5% increase
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Feature Weights

• Use of a linear kernel for the SVM allows for feature analysis

– Larger weight (positive or negative) indicates a feature useful
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• Of 2,476,289 features, only 2,251 were useful

– Of the useful features 22 were aggregate, remaining were

sequences
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Runtime Performance

• For the combined feature experiments

– Training time averaged 7 minutes 38 seconds

– Tesing time averaged 0.21 seconds
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Conclusions and Future Work

• Using syslog data to predict disk failures

– Spectrum-kernel SVM predicted with 73% 100 msg lead

– Message sequences did improve performance

• Several areas for improvement

– determine k and b, add new features, ...

– How does message rate impact performance?

– Need more and different data

• Consider other interesting events

– Other failures, since disk failure �= node failure

– Can this be useful for security?

– Multi-system analysis

• Possible to create a reduced message system? [YM05]
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Other Prediction Stats

Accuracy

M = 400 600 800 1000 1100

Agg 64 65 65 68 70
Comb 67 69 72 73 74

Precision

M = 400 600 800 1000 1100

Agg 64 66 67 69 72
Comb 67 69 72 73 74

Recall

M = 400 600 800 1000 1100

Agg 62 63 63 66 66
Comb 63 66 68 69 70

F-score

M = 400 600 800 1000 1100

Agg 63 64 65 67 69
Comb 66 68 71 71 73
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