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Abstract 
The number and complexity of distributed applications has exploded, and to-date, each has 
had to create its own method for providing diagnostic tools and performance metrics. These 
distributed services have become increasingly dependent, not only on the system and network 
infrastructures upon which they are built, but also each other. The effectiveness of a 
diagnostician is seriously hindered by the difficulty in accessing diagnostic data.  However, 
even when access can be gained, it exposes the daunting challenge of correlating a myriad of 
different data formats and an incredible amount of data (both in static files and real time 
streams). To say that diagnosis of distributed systems is a complex and difficult is a vast 
understatement; and the task is getting tougher every day.  There is a paucity of tools, data 
mining methods and logfile standards that has been worsening for years.  Researchers face the 
same difficulty in gaining access to data for purposes of experimentation. Responding to these 
difficulties, we've established the CyDAT (Cyber-center for Diagnostics Analytics and 
Telemetry) effort within CyLAB at Carnegie Mellon, to enable researchers to interact with a 
rich and varied set of data in an open, multi-vendor environment that enables and supports 
open, interdisciplinary research.  This paper described the CyDAT and a reference 
implementation of an event framework (EDDY) to normalize, transform, and transport 
telemetry data to the analytics that need them, providing a means for tackling the diagnostic 
Hydra. 

Introduction 
Consider any of the myriad daily tasks we 
perform at our computers: sending email, 
browsing web and ftp sites, accessing remote 
databases, submitting forms on the web 
(including the submission of this paper).  Now 
consider the myriad failures that we have all 
experienced when attempting these tasks – some 
silent, some cryptic, and some verbose.  When 
something goes wrong, what is the cause? 

The problem could be caused by a hundred 
different circumstances: perhaps the web site is 
at fault, maybe there’s an intervening firewall, 
possibly a link is down, or your perhaps  the 
document has a virus. How can we quickly 
pinpoint the most effective next step as we try to 
fix (or work around) the difficulties? 

There are many difficult issues to address, and 
the most significant challenge is that the log 
information is never written in the language of 
the problem. There’s no log that says “Doug 
doesn’t know if he submitted his proposal,” so 
even in the simplest of scenarios it is incredibly 
difficult to map the question of “what went 

wrong?” to a solution of “here’s what happened 
and what you need to do next”. 

In spite of great strides in software development 
languages, software engineering techniques, 
hardware engineering, fabrication, and quality 
management methodologies, errors remain 
inevitable in the systems we deploy, and systems 
still fail. As the demands on computing systems 
continue to increase and the complexity of 
interdependent components continues to grow, 
problems in production environments will 
increasingly result from unexpected interactions 
between software components; from a range of 
infrastructure layers that were developed 
separately, at different times, and by different 
people, mostly with little knowledge of the 
requirements now placed on their components.  

This combination of conditions leaves the 
modern IT shop in the very difficult position of 
having precious little information about failures 
when they occur, with little to go on in trying to 
avoid the next failure or limit its potential 
impact.  Diagnostic procedures have gone from a 
simple program to test the proper functioning of 
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a component to black-art intuition based on 
incomplete information. 

Logging (or the lack thereof) extends to physical 
systems and environments as well as virtual.  
The process control industry long ago learned 
that process monitors, flow-rate meters, and 
active controls are as essential to the 
manufacturing process as the pipes, valves, and 
reactions they monitor and control.  With the 
recent and continuing emergence of inexpensive 
small sensors, an explosion in capability for 
sensing and telemetry has been created.  
Networked through Information Technology 
standards, this new physical sensing and control 
capability is partly transformed into an 
Information Technology problem. 

Carnegie Mellon has significant research efforts 
that have contributed solutions to IT and IT-
enabled systems.  From embedded sensor 
systems, health of legacy infrastructures, and 
behavior of active physical environments, 
through software systems research, security 
infrastructures, and process modeling techniques, 
involving data mining, fault tolerance, and 
autonomics, to algorithms for pattern analysis, 
behavior characterization, and anomaly 
detection. All this research shares at least one 
common thread: the need for systematic 
gathering and management of data related to the 
system being studied and the experiment 
designed to inform the researcher.  This Data 
Problem forces most researchers to become 
expert data collectors in addition to their core 
domain expertise as data analyzers, synthesizers, 
and hypothesizers.  

Carnegie Mellon’s CyDAT  
The Cyber-center for Diagnostics, Analytics, and 
Telemetry is a attempt to create an open, 
advanced, collaborative instrument to support 
research into the collection, management, and 
use of advanced telemetry and analytics in a 
multi- and inter-disciplinary fashion.  

It is not aimed at any particular discipline or 
analytic approach.  Rather it expects to 
accommodate and integrate telemetry data, 
analytic algorithms, and response mechanisms 
for multiple disciplines for radical improvement. 

CyDAT is positioned to catalyze and 
significantly reduce the data collection and 
management burden for researchers while 
simultaneously expanding the realm and reach of 
data possibilities, including information from 

operational systems, experimental sensors, and 
laboratory environments.  The essential goal is to 
create a capability and expertise in data 
orchestration and management along with a 
generalized, sustained research instrument to 
gather and manage data from arbitrary IT-
enabled observation points, making that data 
available to researchers with interest to study it. 

We have established a framework and created an 
evolving environment where we can begin to 
effectively experiment with parameters of 
Telemetry, Analytics, Diagnostics, and 
Autonomics 

What We Learned First 
Interviews were initially conducted with a wide 
variety of individuals who both use and manage 
large distributed system facilities, as well as 
smaller IT shops.  Help desk staff, system and 
network administrators, managers, systems 
architects and developers all participated in the 
interviews. Surprisingly, most shared a common 
belief of the major obstacles in diagnosing 
distributed systems.  These obstacles can be 
categorized into five specific areas which we call 
the “banes of the distributed system 
diagnostician:” 

• Access: Little or no access to diagnostic data 
on systems that may be involved in the fault.  
If access could be obtained to the system, then 
chances are that file protection access was 
restricted.  When there was a need to share 
data with others outside the administrative 
domain of the system in question, it was an 
extremely difficult process due to policy 
concerns. In many cases the logging of 
specific diagnostic data had been suspended or 
had never been enabled. 

• Multiple Formats: Most systems have many 
log formats (typically one for each service: 
application, version, OS type, etc).  Keeping 
up with version changes becomes a daunting 
task. 

• Scale: Systems that provide enterprise mail or 
web services generally have an enormous 
amount of log data generated.  Network 
devices (such as routers) have flow data in 
excess of 100K flow events/sec.  Each event 
could contain between 128 and 512 bytes, 
which is approx. 50MB/sec.   Clearly, 
collecting these events and inserting them in a 
database is not possible. 
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• Proof of the diagnosis: There is a need for a 
common audit record to provide evidence for 
non-repudiation when two or more participants 
are working on the problem. A typical scenario 
is where the network group says “it’s the 
problem with the web application,” and the 
web developers say “it’s the network.”  Which 
group is right and how can you prove it?  

• Sharing Knowledge: Having domain experts 
share their diagnoses and the methods for 
discovery with the rest of the organization is 
essential, not only for rapid fault diagnosis but 
efficient use of resources.  Automating the 
transfer of knowledge from an expert to less 
experienced operational staff was deemed very 
important to those interviewed. 

A New Approach 
The group agreed to take a direction that 
promoted experimenting with new diagnostic 
methods to begin to understand the scale of the 
task at hand and test if our ideas would expose 
any possibility of success without the investment 
of too many resources. 

While the access problem was complex, we 
decided to opt for a simple solution: to export the 
diagnostic data off the system quickly (in real-
time), to a common data-store and use 
file/directory permissions as well as specific 
anonymization methods to preserve privacy 
while exposing valuable information.  An 
additional requirement was when exporting the 
diagnostic data off the target system, there 
should be minimum changes needed to the 
existing logging system.  This way, adoption of 
our methods within production facilities would 
be more widely accepted. 

The diagnostic data format issue (currently being 
addresses by many standards organizations) was 
extremely fragmented; based primarily on the 
diagnostic domain (network, security, etc).  
Monitoring their assorted efforts would be the 
best approach to gain insight of any 
consolidation. Rather then waiting (perhaps 
years) for the standards to consolidate, we 
decided to take a radical leap and build a 
common event record (CER).  In designing the 
CER, we attempted to maximize the ability to 
correlating events while remaining as domain-
agnostic as possible (and enabling us to proceed 
with research while the standards were still being 
bickered over). 

While our main focus was within the IT realm 
(system, network, application and security 
events), colleagues began encouraging us to 
consider including events outside of IT, 
including building management, environmental 
sensors, and healthcare domains.  This expansion 
would certainly test the design of our CER as 
regards being a generic event diagnostic record. 
At the same time it would prove that the CER 
would be flexible enough to serve as a base for 
experimentation in other (non-IT) domains. 
Additiionally, the CER design also directly 
addressed the non-repudiation requirement. so a 
common audit record could be used for all 
diagnostic domains. 

Some members within our development group 
thought that the issue of scale would be the 
primary challenge, drawing analogies to “finding 
a needle in a haystack.”  Interviews with 
diagnostic experts suggested that most of the 
diagnostic data generated would be of little use 
to a broad audience.  Specific diagnostic domain 
areas would be interested in only that data that 
their analysis tools could process, but regardless 
wanted the ability to receive additional 
diagnostic data, as needed.  Since network events 
presented the greatest volume of data (and thus 
the greatest challenge to scalability), the group 
set a proof-of-concept scale of at least 5K 
events/sec initally.  If our testbed could handle 
that, we stood a good change of addressing scale 
in other event domains. 

We also wanted to capture the knowledge of 
expert diagnosticians and export it to other 
members of their tream in an automated way, 
therefore a new taxonomy was needed.  This 
taxonomy would result in an automated means of 
collecting information into manageable groups.  
We focused on an approach that acknowledged 
that: 

• there would be multiple orders of diagnostic 
events, where the lower orders would be the 
single records within the logs themselves, 

• by combining events multiple events, one 
could generate higher orders of events (much 
like an expert does when they begin to 
diagnose a problem). 

See Figure 1 for a representational overview of 
the flow of data consolidation, reduction, and 
synthesizing higher order analysis records.  
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A Real-world Example 

Consider the case where an organization uses 
flow records to monitor their network egress for 
bandwidth abuse. We envisioned (and 
constructed) agents that: 

• process flow records at a high rate of over 
8,000 events/sec 

• transform groups of flow events into a 
consolidated record that enables better 
correlation 

• strip off the attributes that are of little value to 
the end analysis tool 

• build higher order events that express the N 
hosts that use the most network bandwidth, 
packets, and flows (as well as which services 
each uses). 

The higher order events would only need to be 
updated every 10 seconds or so (which would be 
a mere fraction of the traffic generated by the 
network flow records).  These high-order events 
(which would mimic those created by a domain-
expert) could feed help desk and bandwidth 
abuse applications.  The intermediate events 
could feed security applications and (if properly 
anonymized), could be used by researchers for a 
myriad of purposes (see Figure 2). 

 
Figure 1: Representational overview of event collection, transformation/reduction and analysis 

 
Figure 2: Real-world usage, analysis of Network Flows 
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CyDAT Architectural Approach 
It was clear from the onset that a generalized 
architecture and data model was required as a 
reference to assist in managing integration-
maturity through the variety of data formats and 
transport models. 

Data Model 
With the pre-exisiting and on-going work on 
standard formats for representing log and 
performance data, it was not scalable or effective 
for us to immediately engage in standards work.  
Indeed, the goals of data standardization are 
entirely complementary to the primary goals of 
CyDAT as a place for integration and 
experimentation, so we instead opted for a very 
simple and flexible model to encapsulate the 
native format while allowing for experimentation 
on incremental exposure of native semantics.   

Transport Architecture 
Since we had had significant experience with a 
data-driven model for real-time reporting of 
network flow information, it was natural for us 
to design from a data-flow (or streaming 
database) perspective.  Although many log and 
event models engage file-based recording instead 
of a push-based event model, a real-time element 
provides significant additional flexibility to the 
current routine. 

The general model engages a modified pipeline 
pattern where data sources are immediately 
normalized into a common event form.  They 
may then be transported across a backplane of 
agents to optimize the flow of information to 
target analytics.  Figure 3 shows a high-level 
view of the proposed architecture (as embodied 

in the reference implementation).  The following 
is a short description of the core elements of the 
pipeline model. 

• Normalize – encapsulate raw events in their 
native form for transport to interested agents 

• Select – choose which events to receive based 
on preset (or adaptive) search criteria 

• Transform – modify the form (e.g. syntax or 
scale) of an event 

• Project – choose a subset of elements from a 
particular event (this feature requires some 
semantic parsing of raw events) 

• Route – transport events to downstream agents 
based on static or dynamic configuration 

• Store – retain sets of events for later analysis 

• Query – ask for historical events of interest 

• Analyze – examine contents of one or more 
events from one or more sources to automate 
correlation and validate hypotheses 

• Application Proxy – reformat event syntax so 
it may be consumed by an external application 

There are many other semantic elements not 
described in detail here, including issues of 
discovery, access control, privacy, delivery 
guarantees, data lifecycle, optimization, 
provisioning, element actuation, adaptive 
configuration, and proxy to/from existing 
applications, but these nine methods are 
suggested as basic capability for the event 
backplane to support a good base model from 
which to build. 

 

 
Figure 3: The CyDat Architecture as embodied in the EDDY diagnostic backplane 
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Getting Started: The EDDY Reference 
Implementation 
For a basic architecture, we needed an 
experimental core to build around in order to 
begin testing concepts and begin integration as 
use-cases brought new platforms and pieces to be 
fitted.  We created a reference implementation 
called EDDY (for End-to-end Diagnostic 
Discovery) to get ourselves started. 

EDDY is an experimental lingua franca for 
exchange, management, and correlation of log 
and event information. It defines a common form 
for encapsulation and a method for efficient 
transport of native event information from 
sensors to data managers to analyzers.  

The EDDY architecture is grounded in the 
following assumptions: 

1. Performance matters and pragmatics are 
important – there is no end to the monitoring 
one might do and no limit to the variations 
that different sites will choose. A system 
must be simple enough to be useable by a 
small installation with only a few focused 
events per minute, yet flexible and fast 
enough to accommodate a large installation 
with millions of distributed events per 
second.  

2. It must be possible to experiment and grow 
into the use of a unified diagnostic data 
management system without mandating a 
‘cutover’ day – without immediate or 
catastrophic change to existing diagnostic 
infrastructures and techniques.  

3. Leverage domain expertise, don’t reinvent 
the wheel.  The initial goal of EDDY is to 
provide a data orchestration function that 
can be leveraged by existing analytic 
techniques, but the final goal is to enable 
those techniques to be composed, modified, 
and extended to consider other information 
(possibly including that which hadn’t 
previously been available) in the analysis.  

4. Models may be pretty but there must be 
working code. Our initial approach has led 
to some innovative correlation, but there is 
much to learn. There are many options for 
creating an interoperable diagnostic 
infrastructure. We intend to build and learn 
and rebuild, focusing on the standardization 
and reference implementation of key 
formats and interfaces to enable 
interoperation. 

Initial Directions and Prototypes 
In 2004 we decided to focus on building a 
diagnostic event orchestration platform to 
experiment with different methods and data 
structures.  This would address the five banes of 
the diagnostician, be as inobtrusive as possible 
(to create a low barrier for adoption), and be 
flexible enough to enable component substitution 
(to facilitate experimentation). The initial version 
(0.1) of this experimental platform (the End-to-
end Diagnostic DiscoverY, or EDDY), was 
released in 2005.  It was developed in Java, 
which proved to be a good compromise between 
application performance and rapid application 
development.  Other languages would be 
considered at a later date, incoporating developer 
preference, performance, or interfaces to event 
import/export. A requirement of the platform 
was the ability to supply campus researchers 
with a source of data that was isolated from 
format changes at the source (version changes or 
changing network flow engines) and that 
accommodated a wide variety of analysis 
applications (with different APIs).  The initial 
data types we focused on were network flow 
events and application events such as HTTPD, 
and Syslog. 

The EDDY Architecture 
The EDDY architecture was designed 
fundamentally to be simple, efficient, and highly 
extensible. We started from the assumption that 
there was much we didn’t know, and any initial 
design was likely to require several iterations 
before the components of value would become 
apparent. In that spirit then, we started from a 
small kernel of functionality to satisfy some 
simple requirements and constraints. 

Event Definition and Basics 
The following provides the basic motivation and 
description of the elements and format of the 
EDDY Common Event Record (CER) 
architecture, the basic data construct of the 
EDDY diagnostic infrastructure. 

1. Minimal common event elements: to 
maintain efficiency and maximize 
generality, we felt that only a few elements 
were essential  

o CER version  

o Unique reference identifier per record  

o Timestamp for event creation  
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o Location where the event was seen  

o Location where the event was 
introduced into the event backplane  

o Type of enclosed event  

2. Additional common elements: to allow 
immediate experimentation with generic 
analysis and correlation across multiple 
sources and event types.  

o Severity of the event, an easily 
identifiable and discoverable parameter 
to assist in high-level classification of 
events;  

o An explicit, extensible user ‘tag’ 
attribute, representative to the desire to 
easily leverage (and route) important 
event semantics  

3. Encapsulation of the transported events: no 
constraints on domain-based definition of 
events.  

o Opaque encapsulation of external 
schema – many domains have ongoing 
efforts to define control and audit 
information appropriate for their own 
components. The basic idea is to 
capture the external event in its entirety, 
attach the required common elements, 
calculate and attach the extra common 
elements, and forward it along, now 
enabled for normalized processing.  

o Ad hoc schema – in addition to pre-
existing events, we anticipate that a 
pipelining of events and event 
processors will give rise to new event 
types, borne from creative analysis of 
sets of event flows. Two possibilities 
include: composing events (merging a 
set of events into a single “class” or 
“super” event) and analyzed events 
(where a certain sequence of events 
indicates another condition). 

4. Event representation: variations in 
representation and exposure of key event 
elements can allow for pipeline processing 
and real-time insights not previously 
possible.  

We decided to use XML for formatted 
representation of common event elements. 
This has its tradeoffs (verbosity and the 
overall volume of data transmitted), but the 
flexibility and wide availability of XML 
read/write tools allows us to easily 

experiment and still optimize when needed.  
This enables us to easily encapsulate events, 
with both “raw events” (a complete, opaque 
origin event encapsulated in minimal XML) 
and “cooked event elements” (a hierarchical 
XML representation of specific components 
from the origin event). 

Generic correlation across event types from 
different domains will require common 
semantics, but as this is very new, we also 
wanted to enable experimentation.  We 
started with two forms of standardization of 
common schema elements for inter-domain 
processing:  

o Simple data types (e.g. integer, string) 
for event elements.  This will allow a 
great number of generic analyses 
completely agnostic of event domain. 
Instance counts and statistical analyses 
are often the best first reporting 
requirements.  

o Common diagnostic objects (e.g. host, 
temperature, location). As we learn 
more, we will discover objects and 
elements that are common subjects and 
actors across a great number of 
domains. As we attempt to correlate 
events based on the commonality of 
subject or actor, new experimental 
syntax and semantics will be required. 
We have little preconceived notion for 
the extent of this need, but expect to see 
many models for experimentation. 

Transport Services 
The following provides a summary description 
of the elements and form of the EDDY transport 
architecture, the basic method for moving 
Common Event Records.  

1. The Event Channel emulates a UNIX 
pipeline for transporting events from a 
source, through selection and translation, to 
analysis or storage. There are several key 
values we immediately gain through a data-
driven approach:  

o it enables in-line analytics and some 
easy data-reduction optimizations. 

o it allowed us to defer issues regarding 
data discovery, location, and 
authorization. If we presume to push the 
appropriate data to those with the 
interest and authorization to receive it, 
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we do not have to design nor implement 
universal data access and protection 
protocols.  Simplifying the problem 
simplified our task. 

o it deferred considerations for database 
maintenance and lifecycle issues 

o it is entirely compatible with and 
complementary to a process-driven 
model. 

The default model for the event channel is 
unmodified event forwarding from source to 
destination (other models are of course 
available). The EDDY architecture enhances 
this basic view by an explicit definition of 
event selection, and by replication methods 
at each point in the pipeline.  The EDDY 
architecture also provides a control method 
for a downstream component to interact with 
an upstream provider, in order to modify the 
content of the data stream. 

2. The Query Channel is a process-driven 
system for event processing, where an 
investigator writes queries against a data 
store to acquire information.  The EDDY 
reference implementation currently does not 
implement a rich query model, expecting 
that other common, complementary 
elements could easily add this desired 
functionality.  

Performance Considerations 
While the reference implementation is primarily 
to experiment with functional elements, our first 
pragmatic assumption was that performance 
matters, so we did identify a few goals to support 
the notion of CyDAT as living laboratory:  

Basic throughput 

Our initial target rate was 10,000 records per 
second between two modern desktop hosts. This 
number was chosen because it mapped to the 
event rate for a network flow probe on a 
moderately loaded enterprise backbone. 
Transaction rates for most other logging systems 
are generally substantially less than this, though 
there are many scenarios where this is woefully 
inadequate.  

Horizontal scaling 

As the bandwidth of data being analyzed (and 
reported) increases, a divide-and-conquer 
method can be applied to assist in event 

processing.  We envision several approaches to 
horizontal scaling to aid performance:  

• Selective projection – substantially reduce 
total bandwidth and text processing by in-
flight trimming of records to contain only data 
of interest.  

• Partial stream commonality – replication of a 
single source feed to multiple sinks. 

• Parallel striping – combine selective projection 
and partial stream commonality to enable 
striped processing. 

Format and Data Optimizations  

• Compression of XML (reducing a verbose 
general format into a concise domain-specific 
format). 

• Sessioning – collecting redundant elements of 
successive events into a session to reduce 
overall data transmissions.  

Security Considerations 
Although “a little learning is a dangerous thing,” 
a complete knowledge of the workings (and 
failings) of an IT network can be even more 
dangerous in the wrong hands. Therefore, the 
security ramifications of collecting and 
correlating activity data cannot be overstated. It 
is our opinion that we must address the issues 
up-front to allow for open dialogue about the 
risks inherent in this style of activity, but also to 
weigh the value of new methods against the risk 
of abuse, and to openly encourage work to 
maximize value and minimize risk.  

One aspect of the transformation of data must 
include the ability to anonymize data so that 
trends can be identified without exposing 
individual components to targeted attack. 

Summary & Future Work 
CyDAT is a real-world, active testbed for  
experimentation with real-time and historical 
performance data for active and experimental 
systems in many areas across Carnegie Mellon.  
CyDAT leverages EDDY to deliver diagnostic 
events to algorithms for dynamic analysis.  In the 
current incarnation at Carnegie Mellon, we are 
monitoring network flows from both core and 
egress networks comprising over 100,000 hosts, 
we’re enabling analysis on DNS lookups, web 
access, syslog records, email logs, Shibboleth 
logs, embedded system events, environmental 
sensors, and more.. 
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We are continuing to evolve the testbed based on 
our experiences, and believe that it is a fertile 
environment for experimenting with a highly 
distributed, ever-changing distributed ecosystem.  
The EDDY prototype supplies both IT staff and 
researchers valuable diagnostic data to their 
analytics, in real-time and in the form that they 
need. 

The EDDY source code is freely available at 
http://www.cmu.edu/eddy, and we encourage 
other organizations to experiment, grow, and 
contribute to the toolset.  We are also actively 
encouraging industry leaders to adopt the EDDY 
diagnostic framework, which will further 
enhance its usability and acceptance, and 
ultimately improve the state of distributed 
diagnostics 
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