
Measurement and Analysis of a Streaming-Media Workload
Maureen Chesire, Alec Wolman, Geoffrey M. Voelker

�
, and Henry M. Levy

Department of Computer Science and Engineering
University of Washington

�
University of California, San Diego

Abstract

The increasing availability of continuous-media data
is provoking a significant change in Internet workloads.
For example, video from news, sports, and entertainment
sites, and audio from Internet broadcast radio, telephony,
and peer-to-peer networks, are becoming commonplace.
Compared with traditional Web workloads, multimedia
objects can require significantly more storage and trans-
mission bandwidth. As a result, performance optimiza-
tions such as streaming-media proxy caches and multi-
cast delivery are attractive for minimizing the impact of
streaming-media workloads on the Internet. However,
because few studies of streaming-media workloads ex-
ist, the extent to which such mechanisms will improve
performance is unclear.

This paper (1) presents and analyzes a client-based
streaming-media workload generated by a large or-
ganization, (2) compares media workload characteris-
tics to traditional Web-object workloads, and (3) ex-
plores the effectiveness of performance optimizations on
streaming-media workloads. To perform the study, we
collected traces of streaming-media sessions initiated by
clients from a large university to servers in the Internet.
In the week-long trace used for this paper, we monitored
and analyzed RTSP sessions from 4,786 clients access-
ing 23,738 distinct streaming-media objects from 866
servers. Our analysis of this trace provides a detailed
characterization of streaming-media for this workload.

1 Introduction

Today’s Internet is increasingly used for transfer of
continuous-media data, such as video from news, sports,
and entertainment Web sites, and audio from Internet
broadcast radio and telephony. As evidence, a large 1997
Web study from U.C. Berkeley [10] found no apprecia-
ble use of streaming media, but a study three years later
at the University of Washington found that RealAudio
and RealVideo had become a considerable component of
Web-related traffic [30]. In addition, new peer-to-peer
networks such as Napster have dramatically increased
the use of digital audio over the Internet. A 2000 study
of the IP traffic workload seen at the NASA Ames In-
ternet Exchange found that traffic due to Napster rose

from 2% to 4% over the course of 10 months [13], and a
March 2000 study of Internet traffic at the University of
Wisconsin-Madison found that 23% of its traffic was due
to Napster [20].

Streaming-media content presents a number of new
challenges to systems designers. First, compared to
traditional Internet applications such as email and Web
browsing, multimedia streams can require high data rates
and consume significant bandwidth. Second, stream-
ing data is often transmitted over UDP [14], placing
responsibility for congestion control on the application
or application-layer protocol. Third, the traffic gener-
ated tends to be bursty [14] and is highly sensitive to
delay. Fourth, streaming-media objects require signif-
icantly more storage than traditional Web objects, po-
tentially increasing the storage requirements of media
servers and proxy caches, and motivating more com-
plex cache replacement policies. Fifth, because me-
dia streams have long durations compared to the re-
quest/response nature of traditional Web traffic, multiple
simultaneous requests to shared media objects introduce
the opportunity for using multicast delivery techniques
to reduce the network utilization for transmitting popular
media objects. Unfortunately, despite these new char-
acteristics and the challenges of a rapidly growing traf-
fic component, few detailed studies of multimedia work-
loads exit.

This paper presents and analyzes a client-based
streaming-media workload. To capture this workload,
we extended an existing HTTP passive network moni-
tor [30] to trace key events from multimedia sessions ini-
tiated inside the University of Washington to servers in
the Internet. For this analysis, we use a week-long trace
of RTSP sessions from 4,786 university clients to 23,738
distinct streaming-media objects from 866 servers in the
Internet, which together consumed 56 GB of bandwidth.

The primary goal of our analysis is to characterize
this streaming-media workload and compare it to well-
studied HTTP Web workloads in terms of bandwidth uti-
lization, server and object popularity, and sharing pat-
terns. In particular, we wish to examine unique aspects
of streaming-media workloads, such as session duration,
session bit-rate, and the temporal locality and degree of
overlap of multiple requests to the same media object.
Finally, we wish to consider the effectiveness of perfor-

mance optimizations, such as proxy caching and multi-
cast delivery, on streaming-media workloads.

Our analysis shows that, for our trace, most streaming-
media objects accessed by clients are encoded at low bit-
rates (����� Kb/s), are modest in size (��� MB), and tend
to be short in duration (���	� mins). However, a small
percentage of the requests (3%) are responsible for al-
most half of the total bytes downloaded. We find that the
distributions of client requests to multimedia servers and
objects are somewhat less skewed towards the popular
servers and objects than with traditional Web requests.
We also find that the degree of multimedia object sharing
is smaller than for traditional Web objects for the same
client population. Shared multimedia objects do exhibit
a high degree of temporal locality, with 20–40% of active
sessions during peak loads sharing streams concurrently;
this suggests that multicast delivery can potentially ex-
ploit the multimedia object sharing that exists.

The rest of the paper is organized as follows. In Sec-
tion 2 we provide an overview of previous related work.
Section 3 provides a high-level description of streaming-
media protocols for background. Section 4 describes
the trace collection methodology. Section 5 presents the
basic workload characteristics, while Section 6 focuses
on our cache simulation results. Section 7 presents our
stream merging results. Finally, Section 8 concludes.

2 Related Work

While Web client workloads have been studied exten-
sively [3, 5, 10, 8, 29], relatively little research has been
done on multimedia traffic analysis. Acharya et al. [1]
analyzed video files stored on Web servers to charac-
terize non-streaming multimedia content on the Internet.
Their study showed that these files had a median size of
1.1 MB and most of them contained short videos (��
��

seconds). However, since their study was based upon a
static analysis of stored content, it is unclear how that
content is actually accessed by Web clients.

Mena et al. [14] analyzed streaming audio traffic using
traces collected from a set of servers at Broadcast.com, a
major Internet audio site. The focus of their study was on
network-level workload characteristics, such as packet
size distributions and other packet flow characteristics.
From their analyses, they derive heuristics for identifying
and simulating audio flows from Internet servers. Their
study showed that most of the streaming-media traffic
(60–80%) was transmitted over UDP, and most clients re-
ceived audio streams at low bit-rates (16–20 Kb/s). The
most striking difference between results obtained from
their trace and our analysis is that most of their stream-
ing sessions were long-lived; 75% of the sessions ana-
lyzed lasted longer than one hour. We attribute this dif-
ference to the fact that they studied server-based audio

traces from a single site, while we study a client-based
trace of both audio and video streams to a large number
of Internet servers.

Van der Merwe et al. [15] extended the functionality of
tcpdump (a popular packet monitoring utility) to include
support for monitoring multimedia traffic. Although the
primary focus of their work was building the multimedia
monitoring utility, they also reported preliminary results
from traces collected from WorldNet, AT&T’s commer-
cial IP network. As in [14], their study of over 3,000
RTSP flows also focused on network-level characteris-
tics, such as packet length distributions and packet arrival
times. In addition, they characterized the popularity of
object accesses in the trace and similarly found that they
matched a Zipf-like distribution. In contrast to our uni-
versity client trace, the WorldNet workload peaks later in
the evening and has relatively larger weekend workloads.
We attribute this difference to the time-of-day usage pat-
terns of the two different client populations; WorldNet
users are not active until after work, while the university
users are active during their work day.

There has been significant commercial activity re-
cently (by companies such as FastForward Networks,
Inktomi, and Akamai) on building caching and multicast
infrastructure for the delivery of both on-demand and live
multimedia content. However, little has been published
about these efforts.

Our paper builds upon this previous work in a num-
ber of significant ways. First, we study a trace with an
order of magnitude more sessions. Second, we focus
on application-level characteristics of streaming-media
workloads – such as session duration and sizes, server
and object popularity, sharing patterns, and temporal lo-
cality – and compare and contrast those characteristics
with those of non-streaming Web workloads. Lastly, we
explore the potential benefits of performance optimiza-
tions such as proxy caching and multicast delivery on
streaming-media workloads.

3 Streaming Media Background

This section defines a number of terms and concepts
that are used throughout the paper. We use the term
streaming media to refer to the transfer of live or stored
multimedia data that the media player can render as soon
as it is received (rather than waiting for the full download
to complete before rendering begins). Although stream-
ing techniques are typically used to transfer audio and
video streams, they are sometimes used to deliver tradi-
tional media (such as streaming text or still images). A
wide variety of streaming-media applications are in use
today on the Internet. They employ a wide variety of
protocols and algorithms that can generally be classified
into five categories:

1. Stream control protocols enable users to inter-
actively control the media stream, e.g., pausing,
rewinding, forwarding or stopping stream playback.
Examples include RTSP[26], PNA[21], MMS[16]
and XDMA[31]. These protocols typically rely on
TCP as the underlying transport protocol.

2. Media packet protocols support real-time data de-
livery and facilitate the synchronization of multiple
streams. These protocols define how a media server
encapsulates a media stream into data packets, and
how a media player decodes the received data. Most
media packet protocols rely on UDP to transport
the packets. Examples include RDT[22], RTP[25],
PNA[21], MMSU and MMST[16].

3. Encoding formats dictate how a digitized media
stream is represented in a compact form suitable for
streaming. Examples of encoding schemes com-
monly used include WMA[16], MP3[19], MPEG-
2[18], RealAudio G2 and RealVideo G2 [23].

4. Storage formats define how encoded media
streams are stored in “container” files, which hold
one or more streams. Headers in the container
files can be used to specify the properties of a
stream such as the encoding bit-rate, the object du-
ration, the media content type, and the object name.
ASF[9] and RMFF[2] are examples of container file
formats.

5. Metafile formats provide primitives that can be
used to identify the components (URLs) in a media
presentation and define their temporal and spatial
attributes. SDP[11], SMIL[28] and ASX[17] are
examples of metafile formats.

4 Methodology

We collected a continuous trace of RTSP traffic flow-
ing across the border routers serving the University
of Washington campus over a one week period be-
tween April 18th and April 25th, 2000. In addition
to monitoring RTSP streams, the trace tool also main-
tained connection counts for other popular stream con-
trol protocols: PNA[21] used by Real Networks’ servers,
MMS[16] used by Microsoft Windows Media servers,
and XDMA[31], used by Xing’s StreamWorks servers.
Our trace data was collected using a DEC Alpha work-
station connected to four Ethernet switches at the Univer-
sity network border. The software used to monitor and
log streaming-media packets is described in Section 4.2.

Web
Server

Client
Browser

Player
Media Media

Server

Contents
4. Media Metafile

5. Media Metafile
Contents

3. Media Metafile
 Download Request

2. Page Contents

1. Page Download Request

6. Stream Control

7. Stream Control/Data

Figure 1: Streaming media communication.

4.1 Protocol Processing

Capturing streaming-media traffic is challenging be-
cause applications may use a variety of protocols. More-
over, while efforts have been made to develop com-
mon standardized protocols, many commercial appli-
cations continue to use proprietary protocols. Given
the diversity of protocols, we decided to focus initially
on the standardized and well documented RTSP proto-
col [26]. Widely used media players that support RTSP
include Real Networks’ RealPlayer and Apple’s Quick-
Time Player. A high level description of the RTSP pro-
tocol is presented below.

4.1.1 RTSP Overview

The RTSP protocol is used by media players and stream-
ing servers to control the transmission of media streams.
RTSP is a request-response protocol that uses a MIME
header format, similar to HTTP. Unlike HTTP, the RTSP
protocol is stateful and requests may be initiated by ei-
ther clients or servers. In practice, the RTSP control traf-
fic is always sent over TCP. The media data is often sent
over UDP, but it may also be interleaved with the control
traffic on the same TCP connection. RTSP uses sequence
numbers to match requests and responses. Media objects
are identified by an RTSP URL, with the prefix “rtsp:”.

Figure 1 illustrates a common streaming media usage
scenario. First, a user downloads a Web page that con-
tains a link to a media presentation. This link points to
a metafile hosted by the media server. The Web browser
then downloads the metafile that contains RTSP URLs
for all the multimedia objects in the presentation (e.g., a
music clip and streaming text associated with the audio).
Next, the browser launches the appropriate media player
and passes the metafile contents to the player. The media
player in turn parses the metafile and initiates an RTSP
connection to the media server.

Many of our analysis results will refer to an RTSP
“session.” An RTSP session is similar to an HTTP
“GET” request, in that typically there will be one session
for each access to the object. A session begins when the
media player first accesses the object, and it ends when
the media player sends a TEARDOWN message, though
there may be a number of intervening PAUSE and PLAY
events. There is not a one-to-one mapping between ses-
sions and RTSP control connections; instead, the pro-
tocol relies on session identifiers to distinguish among
different streams. In order to make our results easier to
understand, when a single RTSP session accesses multi-
ple objects, we consider it to be multiple sessions – one
for each object.

4.2 Trace Collection and Analysis Software

We extended our existing HTTP passive network mon-
itor [30] to support monitoring the RTSP streaming-
media protocol. Our trace collection application has
three main components: a packet capture and analysis
module that extracts packet payloads and reconstructs
TCP flows and media sessions; a protocol parsing mod-
ule that parses RTSP headers; and a logging module that
writes the parsed data to disk. After the traces are pro-
duced, we analyze the collected trace data in an off-line
process. We now provide a brief overview of the opera-
tion of the trace collection software.

The packet capture module uses the Berkeley packet
filter [12] to extract packets from the kernel and then
performs TCP reassembly for each connection. Simple
predicates are used on the first data bytes of each connec-
tion to classify TCP connections as RTSP control con-
nections. This module also maintains a session state ta-
ble that is used to map control messages to client stream-
ing sessions; each table entry models the state machine
for a client’s multimedia session. In addition to main-
taining the session table, this module provides support
for: handling responses that arrive earlier than the cor-
responding requests due to asymmetric routing; merging
control messages that cross packet boundaries; and ex-
tracting messages from connections transmitting control
data interleaved with media stream data.

Data in the control connections is used to determine
which UDP datagrams to look at. We record timing and
size information about the UDP data transfers, but we do
not attempt to process the contents of media stream pack-
ets because almost all commonly used encoding formats
and packet protocols are proprietary.

The protocol parsing module extracts pertinent infor-
mation from RTSP headers such as media stream object
names, transport parameters and stream play ranges. All
sensitive information extracted by the parser, such as IP
addresses and URLs, is anonymized to protect user pri-

Attribute Values
Connection counts 58808 (RTSP); 44878 (MMS);

35230 (PNA); 3930 (XDMA)
RTSP Servers 866 (External)
RTSP Total Bytes 56 GB (Continuous media)
RTSP Clients 4786 (UW clients)
RTSP Sessions 40070 (Continuous media)
RTSP Objects 23738 (Continuous media);

3760 (Other)

Table 1: Trace statistics.

vacy. Finally, the logging module converts the data to a
compact binary representation and then saves it to stable
storage.

5 Workload Characterization

This section analyzes the basic characteristics of our
streaming-media workload; when appropriate we com-
pare these characteristics to those of standard Web object
workloads. The analysis ignores non-continuous media
data (e.g., streaming text and still images). Since we
were interested in the access patterns of the UW client
population, we ignored sessions initiated by clients ex-
ternal to UW that accessed servers inside the campus net-
work.

Table 1 summarizes the high-level characteristics of
the trace. During this one-week period, 4,786 UW clients
accessed 23,738 distinct RTSP objects from 866 servers,
transferring 56 GB of streaming media data. Using the
connection counts from Table 1, we estimate that RTSP
accounts for approximately 40% of all streaming media
usage by UW clients.

The detailed analyses in the following sections exam-
ine various attributes of the traffic workload, such as
popularity distributions, object size distributions, shar-
ing patterns, bandwidth utilization, and temporal local-
ity. Overall, our analysis shows that:

� Most of the streaming data accessed by clients is
transmitted at low bit-rates: 81% of the accesses are
transmitted at a bit-rate less that 56 Kb/s.

� Most of the media streams accessed have a short
duration (� � � minutes) and a modest size (� �

MB).

� A small percentage of the sessions (3%) are respon-
sible for almost half of the bytes downloaded.

� The distribution of client requests to objects is Zipf-
like, with an � parameter of 0.47.

� While clients do share streaming-media objects, the
degree of object sharing is not as high as that ob-
served in Web traffic traces [5, 30].

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

500

1000

1500

2000

2500

B
an

d
w

id
th

 (
K

b
it

s/
s)

Figure 2: Bandwidth utilization over time (in Kbits/sec).

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

Seconds

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

o

f
S

es
si

o
n

s

1 10 100 1000 10000 100000

Seconds

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

tr
ea

m
s

Figure 3: Advertised stream length. (a) Normal and (b) CDF.

� There is a high degree of temporal locality in client
requests to repeatedly accessed objects.

5.1 Bandwidth Utilization

Figure 2 shows a time-series plot of the aggregate
bandwidth consumed by clients streaming animations,
audio, and video data. We see that the offered load on
the network follows a diurnal cycle, with peaks gener-
ally between 11 AM and 4 PM. The volume of traffic
is significantly lower during weekends; peak bandwidth
over a five-minute period was 2.8 Mb/s during weekdays,
compared to 1.3 Mb/s on weekends. We found that, on
average, clients received streaming content at the rate of
66 Kb/s. This bit-rate is much lower than the capacity of
the high-bandwidth links of the clients and the UW ISP
links. We conclude from the prevalence of these low-
bit-rate sessions that the sites that clients are accessing
encode streaming content at modem bit-rates, the lowest
common denominator.

5.2 Advertised Stream Length

In this section, we provide a detailed analysis of the
advertised duration of continuous media streams refer-
enced during the trace. Note that the advertised du-
ration of a stream is different from the length of time
that the client actually downloads the stream (e.g., if the
user hits the stop button before the stream is finished).
Since media servers generally do not advertise the dura-
tion of live streams, we limit our analysis to on-demand
(stored) media streams. Sessions accessing these on-
demand streams account for 85% of all sessions.

Figure 3a is a histogram of all streams lasting less
than seven minutes, and Figure 3b plots the cumulative
distribution of all stream lengths advertised by media
servers. The peaks in the histogram in Figure 3a indi-
cate that many streams are extremely short (less than a
minute), but the most common stream lengths are be-
tween 2.5 and 4.5 minutes. These results suggest that
clients have a stronger preference for viewing short mul-
timedia streams. One important observation from Fig-

ure 3b is that the stream-length distribution has a long
tail. Although the vast majority of the streams (93%)
have a duration of less than 10 minutes, the remaining
7% of the objects have advertised lengths that range be-
tween 10 minutes and 6 weeks.

5.3 Session Characteristics

In this section, we examine two closely related prop-
erties of sessions: the amount of time that a client spends
accessing a media stream, and the number of bytes down-
loaded during a stream access. In Figure 4 we present the
relationship between the duration of a streaming-media
session and the number of bytes transferred. In Figure 5
we look at the distinguishing characteristics between ses-
sions accessing shared objects and sessions accessing un-
shared objects. Finally, in Figure 6 we compare the size
and duration characteristics of sessions from clients in
the campus modem pool to sessions from clients con-
nected by high-speed department LANs.

A number of important trends emerge from these
graphs. First, we see that client sessions tend to be short.
From Figure 5a we see that 85% of all sessions (the solid
black line) lasted less than 5 minutes, and the median ses-
sion duration was 2.2 minutes. The bandwidth consumed
by most sessions was also relatively modest. From Fig-
ure 5b we see that 84% of the sessions transferred less
than 1 MB of data and only 5% accessed more than 5
MB. In terms of bytes downloaded, the median session
size was 0.5 MB. Both the session duration and the ses-
sion size distributions have long tails: 20 sessions ac-
cessed more than 100 MB of data each, while 57 sessions
remained active for at least 6 hours, and one session was
active for 4 days. Although the long-lived sessions (� �

hour) account for only 3% of all client sessions, these
sessions account for about half of the bandwidth con-
sumed by the workload. From Figure 4 we see that these
long sessions account for 47% of all bytes downloaded.

Most of the media objects accessed are downloaded at
relatively low bit-rates despite the fact that most of the
clients are connected by high-speed links. Using the raw
data from Figure 4, we calculated that 81% of the streams
are downloaded at bit-rates less than 56 Kb/s (the peak
bandwidth supported by most modems today). In Fig-
ure 6, we separate all the trace sessions into those made
from clients in the modem pool and those made from
LAN clients. Although it does appear that the duration
of modem sessions is shorter than the duration of LAN
sessions (Figure 6a), the difference is not large. On the
other hand, the difference in bytes downloaded between
modem sessions and LAN sessions (Figure 6b) appears
to be much more pronounced. For modem users, the me-
dian session size is just 97 KB, whereas for LAN users it
is more than 500 KB.

0.0 0.1 1.0 10.0 100.0 1000.0 10000.0

Session Length (Minutes)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
B

yt
es

 S
tr

ea
m

ed

Figure 4: Session duration vs. session size.

Figures 5a and 5b also distinguish between accesses
to shared objects (the dashed lines) and accesses to un-
shared objects (the grey lines). A shared object is one
that is accessed by more than one client in the trace; an
unshared object is accessed by only one client, although
it may be accessed multiple times. Overall, sessions that
request shared objects tend to be shorter than sessions
accessing unshared objects. For example, 46% of shared
sessions lasted less than one minute, compared with only
30% of the unshared sessions. Furthermore, we found
that most of the sessions accessing shared objects trans-
ferred less data than unshared sessions. For example,
44% of shared sessions transferred less than 200 KB of
data compared to only 24% of unshared sessions. How-
ever, Figure 5 shows that the situation changes for ses-
sions on the tails of both curves, where the sessions ac-
cessing shared objects are somewhat longer and larger
than sessions accessing unshared objects.

5.4 Server Popularity

In this section we examine the popularity of media
servers and objects. Figure 7 plots (a) the cumulative
distribution of continuous media objects across the 866
distinct servers referenced, as well as (b) the cumulative
distribution of requests to these servers. These graphs
show that client load is heavily skewed towards the pop-
ular servers. For example, 80% of the streaming-media
sessions were served by the top 58 (7%) media servers,
and 80% of the streaming-media objects originated from
the 33 (4%) most popular servers. This skew to popular
servers is slightly less pronounced than for requests to
non-streaming Web objects. From a May 1999 trace of
the same client population, 80% of the requests to non-
streaming Web objects were served by the top 3% of Web
servers [30].

0.1 1.0 10.0 100.0 1000.0

Session Length (Minutes)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

es
si

o
n

s

All
Shared
Unshared

1 10 100 1000 10000 100000

Session Size (KB)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

es
si

o
n

s

Figure 5: Shared and unshared session characteristics. (a) Time and (b) Size.

0.1 1.0 10.0 100.0 1000.0

Session Length (Minutes)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

es
si

o
n

s

Modem
LAN

1 10 100 1000 10000 100000

Session Size (KB)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

es
si

o
n

s

Figure 6: Modem and LAN session characteristics. (a) Time and (b) Size.

5.5 Object Popularity

One of the goals of our analysis was to understand how
client requests were distributed over the set of multime-
dia streams accessed during the trace period. To deter-
mine this, we ranked multimedia objects by popularity
(based on the number of accesses to each stream) and
plotted the results on the log-scale graph shown in Fig-
ure 8. Our analysis found that of the 23,738 media ob-
jects referenced, 78% were accessed only once. Only
1% of the objects were accessed by ten or more sessions,
and the 12 most popular objects were accessed more than
100 times each. From Figure 8, one can see that the pop-
ularity distribution fits a straight line fairly well, which
implies that the distribution is Zipf-like [4]. Using the
least squares method, we calculated the � parameter to
be 0.47. In contrast, the � parameters reported in [4] for
HTTP proxies ranged from 0.64 to 0.83. The implication
is that accesses to streaming-media objects are somewhat
less concentrated on the popular objects in comparison
with previously reported Web object popularity distribu-
tions.

5.6 Sharing patterns

In this section we explore the sharing patterns of
streaming-media objects among clients. We first exam-
ine the most popular objects to determine whether the
repeated accesses come from a single client, or whether
those popular objects are widely shared. In Figure 9, we
compute the number of unique clients that access each
of the 200 most popular streaming-media objects. This
figure shows that the most popular streams are widely
shared, and that as the popularity declines, so does the
number of unique clients that access the stream.

Figure 10 presents per-object sharing statistics. Of the
streaming-media objects requested, only 1.6% were ac-
cessed by five or more clients, while 84% were viewed
by only one client. Only 16% of the objects were shared
(i.e., accessed by two or more clients), yet requests for
these shared objects account for 40% of all sessions
recorded. From this data, we conclude that the shared
objects are also more frequently accessed and can there-
fore benefit from caching. Note, however, that the de-
gree of object sharing is low compared to the sharing
rate for web documents [5, 30]. Consequently, multi-

0 100 200 300 400 500 600 700 800

Server Number

0

10

20

30

40

50

60

70

80

90

100
%

 o
f

O
b

je
ct

s/
S

es
si

o
n

s
S

er
ve

d

Objects
Sessions

Figure 7: Server popularity by object and session.

1 10 10
0

10
00

10
00

0

Object Number (log)

1

10

100

1000

o

f
A

cc
es

se
s

(l
o

g
)

Figure 8: Object popularity by number of sessions (note
log scale).

media caching may not be as effective as Web caching in
improving performance.

Figure 11 shows the overlap among accesses to the
shared media objects by plotting the number of sessions
that access unshared objects (black) and the number of
sessions that access shared objects (grey) over time for
the entire trace. During peak load periods between 11
AM and 4 PM (weekdays), we see that 20%–40% of the
active sessions share streams concurrently. This tempo-
ral locality suggests that (1) caching will work best when
it is needed the most (during peak loads), and that (2)
multicast delivery has the opportunity to exploit tempo-
ral locality and considerably reduce network utilization.

6 Caching

Caching is an important performance optimization for
standard Web objects. It has been used effectively to re-
duce average download latency, network utilization, and
server load. Given the large sizes of streaming-media
objects and the significant network bandwidth that they
can consume, caching will also be important for improv-

0 25 50 75 100 125 150 175

Object Number

0

50

100

150

o

f
U

n
iq

u
e

C
lie

n
ts

Figure 9: Number of clients accessing popular objects.

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Object Number

1

10

100

1000

o

f
U

n
iq

u
e

C
lie

n
ts

Figure 10: Object sharing.

ing the performance of streaming-media objects. In this
section, we study the potential benefits of proxy caching
for streaming-media objects. In particular, we determine
cache hit rates and bandwidth savings for our workload,
explore the tradeoff of cache storage and hit rate, and ex-
amine the sensitivity of hit rate to eviction timeouts.

We use a simulator to model a streaming media
caching system for our analyses. The simulator caches
the entire portion of any on-demand stream retrieved
by a client, making the simplifying assumption that it
is allowed to cache all stored media objects. For live
streams, the simulator assumes that the cache can ef-
fectively merge multiple client accesses to the same live
stream by caching a fixed-size sliding interval of bytes
from that stream [7]. The simulator assumes unlimited
cache capacity, and it uses a timeout-based cache evic-
tion policy to expire cached objects. For Figures 12
through 14, an object is removed from the cache two
hours after the end of the most recent access.

The results of the simulation are presented in the set
of graphs below. Figure 12 is a time-series plot show-
ing cache size growth over time, while Figure 13 shows

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

50

100

150

S
es

si
o

n
s

p
er

 1
0

se
co

n
d

s

Sessions Accessing Shared Objects
Sessions Accessing Unshared Objects

Figure 11: Concurrent sharing over time.

potential bandwidth savings due to caching. The to-
tal height of each bar in the stacked bar graph in Fig-
ure 14 reflects the total number of client accesses started
within a one-hour time window. The lightest area of the
graph shows the number of accesses that requested fully-
cached objects; the medium-grey section represents the
number of accesses that resulted in partial cache hits.
Partial cache hits are recorded when a later request re-
trieves a larger portion of the media stream than was pre-
viously accessed. The height of the darkest part of the
graph represents the number of accesses that resulted in
cache misses.

Since streaming objects are comparatively large in
size, the replacement policy for streaming proxy caches
may be an important design decision. Many proposed
designs for streaming proxy caches assume that multi-
media streams are too large to be cached in their en-
tirety [24, 27]. As a result, specialized caches are de-
signed to cache only selected portions of a media stream;
uncached portions of the stream have to be retrieved from
the server (or neighboring caches) to satisfy client re-
quests.

To determine the need for these complex caching
strategies, we explored the sensitivity of hit rate to cache
replacement eviction policies by varying the timeout for
cached objects. Using the default two hour expiration
of our simulator, we found that the simulated cache
achieved an aggregate request hit rate of 24% (includ-
ing partial cache hits) and a byte hit rate of 24% using
less than 940 MB of cache storage. Because the required
cache size is relatively small (when compared to the total
56 GB of data transferred), it appears that conventional
caching techniques and short expiration times might be
just as effective as specialized streaming media caching
schemes for client populations similar to this.

Figure 15 plots request and byte hit rates as object
eviction time is increased from 5 minutes to 7 days (the
entire trace duration). Notice that reducing the caching
window to 5 minutes still yields reasonably high request
hit rates (20%). By keeping objects in the cache for only
two hours after the last access, we achieve 90% of the
maximum possible byte hit rate for this workload while
saving significant storage overhead. From this data, we
can infer that requests to streaming-media objects that
are accessed at least twice have a high degree of tempo-
ral locality.

7 Stream Merging

Stream merging is a recently developed technique that
uses multicast to reduce the bandwidth requirements for
delivering on-demand streaming media. The details of
stream merging are covered extensively in [6, 7]. In this
section we provide a high level overview of stream merg-
ing to motivate our measurements.

Stream merging occurs when a new client requests
a stream that is already in transmission. In this case,
the server begins sending the client two streams simul-
taneously: (1) a “patch stream” starting at the begin-
ning of the client’s request, and (2) a multicast stream
of the existing transmission in progress. The new client
buffers the multicast stream while displaying the patch
stream. When the patch stream is exhausted, the client
displays the multicast stream from its buffer while it con-
tinues to receive and buffer the simultaneous multicast
stream ahead of the display. At the merge point, only one
stream, via multicast, is being transmitted to both clients.
The cost of stream merging is that clients must be able to
receive data faster than the required stream playback rate
and must buffer the additional data.

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

100

200

300

400

500

600

700

800

900

C
ac

h
e

S
iz

e
(M

B
)

Figure 12: Cache size growth over time.

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

500

1000

1500

2000

2500

B
an

d
w

id
th

 (
K

b
it

s/
s)

Bandwidth Saved
Bandwidth Used

Figure 13: Bandwidth saved over time due to caching.

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

200

400

600

800

A
cc

es
se

s
P

er
 H

o
u

r Partial Hits
Cache Hits
Cache Misses

Figure 14: Cache accesses: Hits, partial hits, and misses.

5
m

in
ut

es

15
 m

in
ut

es

30
 m

in
ut

es

1
ho

ur
s

2
ho

ur
s

4
ho

ur
s

1
da

ys

2
da

ys

4
da

ys

7
da

ys

Object Eviction Time

0

10

20

30

40

50

60

H
it

 R
at

e

Request Hit Rate
Byte Hit Rate

Figure 15: Effect of eviction time on cache hit rates.

To evaluate the effectiveness of stream merging for our
workload, we consider consecutive overlapping accesses
to each stream object in our trace and calculate the time
it takes to reach the merge point based on [7]. Given the
time of the merge point, we then calculate what percent-
age of the overlap period occurs after the merge point.
This corresponds to the percentage of time that only one
stream is being transmitted via multicast to both clients.
The results of this analysis are shown as a cumulative
distribution in Figure 16. Because this stream merging
technique is only needed for on-demand streams, live
streams are not included in Figure 16. This figure shows
that stream merging is quite effective for this workload
– for more than 50% of the overlapping stream accesses,
shared multicast can be used for at least 80% of the over-
lap period. This result indicates strong temporal locality
in our trace, which is consistent with our concurrent shar-
ing and cache simulation results.

8 Conclusion

We have collected and analyzed a one-week trace of
all RTSP client activity originating from a large univer-
sity. In our analyses, we characterized our streaming
multimedia workload and compared it to well-studied
HTTP Web workloads in terms of bandwidth utiliza-
tion, server and object popularity, and sharing patterns.
In particular, we examined aspects unique to streaming-
media workloads, such as session duration, session bit-
rate, temporal locality, and the degree of overlap of mul-
tiple requests to the same media object. We also explored
the effectiveness of performance optimizations, such as
proxy caching and multicast delivery, on streaming-
media workloads.

We have observed a number of properties (e.g., de-
gree of object sharing and lower Zipf � parameter for
the object-popularity distribution) indicating that multi-

0.00 0.20 0.40 0.60 0.80 1.00

Fraction of Time Merged

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
O

ve
rl

ap
p

in
g

 S
tr

ea
m

s

Figure 16: Effectiveness of stream merging.

media workloads may benefit less from proxy caching,
on average, than traditional Web workloads. On the
other hand, we have found that multimedia workloads
exhibit stronger temporal locality than we expected, es-
pecially during peak hours. This suggests that multicast
and stream-merging techniques may prove to be useful
for these workloads.

Our results are fundamentally based upon the work-
load that we captured and observed. It is clear that us-
age of streaming media in our environment is still rel-
atively small, and our results could change as the use
of streaming media becomes more prevalent. Our one-
week trace contains only 40,000 sessions from fewer
than 5,000 clients. A one-week trace of Web activity for
the same population about a year earlier showed more
than 22,000 active clients, and more than 80 million web
requests during one week. Shifts in technology use, such
as the widespread use of DSL and cable modems, will
likely increase the use of streaming media and change
underlying session characteristics. As the use of stream-
ing media matures in the Internet environment, further
client workload studies will be required to update our un-
derstanding of the impact of streaming-media data.

9 Acknowledgments

We would like to thank David Richardson, Terry Gray,
Art Dong, and others at the UW Computing and Commu-
nications organization for supporting our effort to collect
traces. We would also like to thank the USITS referees
for their comments and suggestions. This research was
supported in part by DARPA Grant F30602-97-2-0226,
National Science Foundation Grant EIA-9870740, Com-
paq’s Systems Research Center, and a Microsoft Gradu-
ate Research Fellowship.

References

[1] S. Acharya and B. Smith. An experiment to characterize
videos stored on the web. In Proc. of ACM/SPIE Multi-
media Computing and Networking 1998, January 1998.

[2] R. Agarwal, J. Ayars, B. Hefta-Gaub, and D. Stammen.
RealMedia File Format. Internet Draft: draft-heftagaub-
rmff-00.txt, March 1998.

[3] V. Almeida, A. Bestavros, M. Crovella, and
A. de Oliveira. Characterizing reference locality in
the www. In Proc. of IEEE Intl. Conference on Parallel
and Distributed Information Systems ’96, Dec 1996.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web Caching and Zipf-like Distributions: Evidence and
Implications. In Proc. of IEEE INFOCOM 1999, March
1999.

[5] B. M. Duska, D. Marwood, and M. J. Feeley. The Mea-
sured Access Characteristics of World-Wide-Web Client
Proxy Caches. In Proc. of the 1st USENIX Symposium on
Internet Technologies and Systems, December 1997.

[6] D. Eager, M. Vernon, and J. Zahorjan. Minimizing band-
width requirements for on-demand data delivery. In Proc.
of the 5th Int’l Workshop on Multimedia Information Sys-
tems, October 1999.

[7] D. Eager, M. Vernon, and J. Zahorjan. Bandwidth skim-
ming: A technique for cost-effective video-on-demand.
In Proc. of ACM/SPIE Multimedia Computing and Net-
working 2000, January 2000.

[8] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and
M. Rabinovich. Performance of web proxy caching in
heterogeneous bandwidth environments. In Proc. of IEEE
INFOCOM 1999, March 1999.

[9] E. Fleischman. Advanced Streaming Format (ASF)
Specification. Internet-Draft: draft-fleischman-asf-01.txt,
February 1998.

[10] S. D. Gribble and E. A. Brewer. System Design Issues for
Internet Middleware Services: Deductions from a Large
Client Trace. In Proc. of the 1st USENIX Symposium on
Internet Technologies and Systems, December 1997.

[11] M. Handley and V. Jacobson. RFC 2327: SDP: Session
Description Protocol, April 1998.

[12] S. McCanne and V. Jacobson. The BSD Packet Filter: A
new architecture for user-level packet capture. In Proc. of
the Winter 1993 USENIX Technical Conference, 1993.

[13] S. McCreary and K. Claffy. Trends in Wide Area IP
Traffic Patterns: A View from Ames Internet Exchange.
http://www.caida.org/outreach/pa pers/AIX0005/, May
2000.

[14] A. Mena and J. Heidemann. An empirical study of real
audio traffic. In Proc. of IEEE INFOCOM 2000, March
2000.

[15] J. V. D. Merwe, R. Caceres, Y. hua Chu, and C. Sreenan.
mmdump - a tool for monitoring multimedia usage on the
internet. Technical Report 00.2.1, AT&T Labs, February
2000.

[16] Microsoft. Windows Media Development Center.
http://msdn.microsoft.com/windowsmedia/.

[17] Microsoft. All About Windows Media Metafiles.
http://msdn.microsoft.com/workshop/imedia/windows
media/crcontent/asx.asp, April 2000.

[18] MPEG-2 Standard. ISO/IEC Document 13818-2. Generic
Coding of Moving Pictures and Associated Audio Infor-
mation, Part 2: Video, 1994.

[19] MPEG-2 Standard. ISO/IEC Document 13818-3. Generic
Coding of Moving Pictures and Associated Audio Infor-
mation, Part 3: Audio, 1994.

[20] D. Plonka. UW-Madison Napster Traffic Measurement.
http://net.doit.wisc.edu/data/Napster, March 2000.

[21] RealNetworks. Firewall PNA Proxy Kit.
http://www.service.real.com/firewall/pnaproxy.html.

[22] RealNetworks. RealNetworks Documentation Library.
http://service.real.com/help/library/.

[23] RealNetworks. Realsystem production and author-
ing guides. http://service.real.com/help/library/en-
coders.html.

[24] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy
caching mechanism for multimedia playback streams in
the internet. In Proc. of the Fourth Int. Web Caching
Workshop, March 1999.

[25] H. Schulzrinne, S. Casner, R. Fredrick, and V. Jacobson.
RFC 1889: RTP: A Transport Protocol for Real-Time Ap-
plications, April 1996.

[26] H. Schulzrinne, A. Rao, and R. Lanphier. RFC 2326: Real
Time Streaming Protocol (RTSP), April 1998.

[27] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching
for multimedia streams. In Proc. of IEEE INFOCOM
1999, March 1999.

[28] W3C. Synchronized Multimedia Integration Lan-
guage (SMIL) 1.0 Specification. http://www.w3.org/
TR/1998/REC-smil-19980615/, June 1998.

[29] C. E. Wills and M. Mikhailov. Towards a better under-
standing of web resources and server responses for im-
proved caching. In Proc. of the Eighth Int. World Wide
Web Conference, pages 153–165, May 1999.

[30] A. Wolman, G. Voelker, N. Sharma, N. Cardwell,
M. Brown, T. Landray, D. Pinnel, A. Karlin, and H. Levy.
Organization-based analysis of web-object sharing and
caching. In Proc. of the 2nd USENIX Symposium on In-
ternet Technologies and Systems, October 1999.

[31] Xingtech. Streamworks documentation. http://www.
xingtech.com/support/docs/streamworks/.

