

# Exploiting Software: How to Break Code

Gary McGraw, Ph.D. CTO, Cigital

http://www.cigital.com





### Pop quiz

What do wireless devices, cell phones, PDAs, browsers, operating systems, servers, personal computers, public key infrastructure systems, and firewalls have in common?

# Software





### Commercial security is reactive

- Defend the perimeter with a firewall
  - To keep stuff out
- Over-rely on crypto
  - "We use SSL"
- "Review" products when they're done
  - Why your code is bad
- Promulgate "penetrate and patch"
- Disallow advanced technologies
  - Extensible systems (Java and .NET) are dangerous



The "ops guy with keys" does not really understand software development.



- Most security people are operations people
  - Network administrators
  - Firewall rules manipulators
  - COTS products glommers
  - These people need training

Security means different things to different people

### Builders versus operators

- Most builders are not security people
  - Software development remains a black art
  - How well are we doing teaching students to engineer code?
  - Emergent properties like security are hard for builders to grok
  - These people need academic education



# Making software behave is hard

- Can you test in quality?
- How do you find (adaptive) bugs in code?
- What about bad guys doing evil on purpose?
- What's the difference between security testing and functional testing?
- How can you teach security design?
- How can you codify non-functional, emergent requirements like security?
- Can you measure security?



# Attaining software security is even harder

#### **The Trinity of Trouble**

#### Connectivity

The Internet is everywhere and most software is on it

#### Complexity

 Networked, distributed, mobile code is hard

#### Extensibility

 Systems evolve in unexpected ways and are changed on the fly





# Software complexity growth





# Software vulnerability growth





### Normalized (and slightly shifted) data from Geer





# Science please

- Basic understanding of complexity and its impact on security problems is sorely needed
- Do the LOC and vulnerability graphs really correlate?
- What are software security problems really like?
  - How common are basic categories?
  - How can we teach students something that now takes years of fieldwork to merely intuitively grasp?



# Who is the bad guy?

- Hackers
  - "Full disclosure" zealots
- "Script kiddies"
- Criminals
  - Lone guns or organized
- Malicious insiders
  - Compiler wielders
- Business competition
- Police, press, terrorists, intelligence agencies





# History is quirky

#### <u>1995</u>

- Dan Geer fired from Silicon Graphics for releasing SATAN with Wietse Venema
- FUD: possible attack tool!

### <u> 2004</u>

 Any system administrator not using a port scanner to check security posture runs the risk of being fired

#### Fall 2004

- John Aycock at University of Calgary publicly criticized for malware course
- FUD: possible bad guy factory

Should we talk about attacking systems?





# The good news and the bad news

#### Good news

- The world loves to talk about how stuff breaks
- This kind of work sparks lots of interest in computer security

#### Bad news

- The world would rather not focus on how to build stuff that does not break
- It's harder to build good stuff than to break junky stuff





# Security problems are complicated

#### **IMPLEMENTATION BUGS**

- Buffer overflow
  - String format
  - One-stage attacks
- Race conditions
  - TOCTOU (time of check to time of use)
- Unsafe environment variables
- Unsafe system calls
  - System()
- Untrusted input problems

#### ARCHITECTURAL FLAWS

- Misuse of cryptography
- Compartmentalization problems in design
- Privileged block protection failure (DoPrivilege())
- Catastrophic security failure (fragility)
- Type safety confusion error
- Insecure auditing
- Broken or illogical access control (RBAC over tiers)
- Method over-riding problems (subclass issues)
- Signing too much code



# Attackers do not distinguish bugs and flaws

- Both bugs and flaws lead to vulnerabilities that can be exploited
- Attackers write code to break code
- Defenders are network operations people
  - Code?! What code?





### The attacker's toolkit

- The standard attacker's toolkit has lots of (software analysis) stuff
  - Disassemblers and decompilers
  - Control flow and coverage tools
  - APISPY32
  - Breakpoint setters and monitors
  - Buffer overflow
  - Shell code
  - Rootkits



### Attacker's toolkit: dissasemblers and decompilers

- Source code is not a necessity for software exploit
- Binary is just as easy to understand as source code
- Disassemblers and decompilers are essential tools
- Reverse engineering is common and must be understood (not outlawed)
- IDA allows plugins to be created
- Use bulk auditing





### Attacker's toolkit: control flow and coverage

- Tracing input as it flows through software is an excellent method
- Exploiting differences between versions is also common
- Code coverage tools help you know where you have gotten in a program
  - dyninstAPI (Maryland)
  - Figure out how to get to particular system calls
  - Look for data in shared buffers





### Attacker's toolkit: buffer overflow foo

- Find targets with static analysis
- Change program control flow
  - Heap attacks
  - Stack smashing
  - Trampolining
  - Arc injection
- Particular examples
  - Overflow binary resource files (used against Netscape)
  - Overflow variables and tags (Yamaha MidiPlug)
  - MIME conversion fun (Sendmail)
  - HTTP cookies (apache)

Trampolining past a canary





### Attacker's toolkit: shell code and other payloads

- Common payloads in buffer overflow attacks
- Size matters (small is critical)
- Avoid zeros
- XOR protection (also simple crypto)
- Payloads exist for
  - X86 (win32)
  - RISC (MIPS and sparc)
  - Multiplatform payloads

get bearings

fixup jump table

other code

jump table

data



### Attacker's toolkit: rootkits

- The apex of software exploit...complete control of the machine
- Live in the kernel
  - XP kernel rootkit in the book
  - See <a href="http://www.rootkit.com">http://www.rootkit.com</a>
- Hide files and directories by controlling access to process tables
- Provide control and access over the network
- Get into the EEPROM (hardware viruses)



### Attacker's toolkit: other miscellaneous tools

- Debuggers (user-mode)
- Kernel debuggers
  - SoftIce
- Fault injection tools
  - FUZZ
  - Failure simulation tool
  - Hailstorm
  - Holodeck
- Boron tagging
- The "depends" tool
- Grammar rewriters





#### The standard process

- Scan network
- Build a network map
- Pick target system
- Identify OS stack
- Port scan
- Determine target components
- Choose attack patterns
- Break software
- Plant backdoor

### How attacks unfold

- Attacking a software system is a process of discovery and exploration
  - Qualify target (focus on input points)
  - Determine what transactions the input points allow
  - Apply relevant attack patterns
  - Cycle through observation loop
  - Find vulnerability
  - Build an exploit



### Knowledge: 48 Attack Patterns

- Make the Client Invisible
- Target Programs That Write to Privileged OS Resources
- Use a User-Supplied Configuration File to Run Commands That Elevate Privilege
- Make Use of Configuration File Search Paths
- Direct Access to Executable Files
- Embedding Scripts within Scripts
- Leverage Executable Code in Nonexecutable Files
- Argument Injection
- Command Delimiters
- Multiple Parsers and Double Escapes
- User-Supplied Variable Passed to File System Calls
- Postfix NULL Terminator
- Postfix, Null Terminate, and Backslash
- Relative Path Traversal
- Client-Controlled Environment Variables
- User-Supplied Global Variables (DEBUG=1, PHP Globals, and So Forth)
- Session ID, Resource ID, and Blind Trust
- Analog In-Band Switching Signals (aka "Blue Boxing")
- Attack Pattern Fragment: Manipulating Terminal Devices
- Simple Script Injection
- Embedding Script in Nonscript Elements
- XSS in HTTP Headers
- HTTP Query Strings

- User-Controlled Filename
- Passing Local Filenames to Functions That Expect a URL
- Meta-characters in E-mail Header
- File System Function Injection, Content Based
- Client-side Injection, Buffer Overflow
- Cause Web Server Misclassification
- Alternate Encoding the Leading Ghost Characters
- Using Slashes in Alternate Encoding
- Using Escaped Slashes in Alternate Encoding
- Unicode Encoding
- UTF-8 Encoding
- URL Encoding
- Alternative IP Addresses
- Slashes and URL Encoding Combined
- Web Logs
- Overflow Binary Resource File
- Overflow Variables and Tags
- Overflow Symbolic Links
- MIME Conversion
- HTTP Cookies
- HITP Cookles
- Filter Failure through Buffer Overflow
- Buffer Overflow with Environment Variables
- Buffer Overflow in an API Call
- Buffer Overflow in Local Command-Line Utilities
- Parameter Expansion
- String Format Overflow in syslog()





# Attack pattern 1: Make the client invisible

- Remove the client from the communications loop and talk directly to the server
- Leverage incorrect trust model (never trust the client)
- Example: hacking browsers that lie (opera cookie foo)







### Breaking stuff is important

- Learning how to think like an attacker is essential
- Do not shy away from teaching attacks
  - Engineers learn from stories of failure
- Attacking group projects can be the most fun part of a course
- Fun is good! Software engineering is too boring!





# Software security critical lessons

- Software security is more than a set of security functions
  - Not magic crypto fairy dust
  - Not silver-bullet security mechanisms
  - Not application of very simple tools
- Non-functional aspects of design are essential
- Security is an emergent property of the entire system (just like quality)
- To end up with secure software, deep integration with the SDLC is necessary



# Ten guiding principles for secure design

- 1. Secure the weakest link
- 2. Practice defense in depth
- 3. Fail securely
- 4. Follow the principle of least privilege
- 5. Compartmentalize

- Keep it simple
- Promote privacy
- Remember that hiding secrets is hard
- Be reluctant to trust
- Use your community resources











### The antidote: Software security in the SDLC







# Software security best practices

- Security best practices should be applied throughout the dev lifecycle
- Tendency is to "start right" (penetration testing) and declare victory
  - Not cost effective
  - Hard to fix problems
- Start as early as possible

- Abuse cases
- Security requirements analysis
- Architectural risk analysis
- Risk analysis at design
- External review
- Test planning based on risks
- Security testing (malicious tests)
- Code review with static analysis tools





# IEEE Security & Privacy Magazine

- See the department on Software Security best practices called "Building Security In"
- Also see this month's special issue on breaking stuff

http://www.computer.org/security





### **Pointers**

- Cigital's Software Security Group invents and practices Software Quality Management
  - WE NEED PEOPLE
- http://www.cigital.com/presentations/ exploit04

- Use <u>Exploiting Software</u> and <u>Building</u> Secure Software
- Send e-mail: gem@cigital.com

