_"l‘.
.
.‘."

cigital) !

Exploiting Software:
How to Break Code

Gary McGraw, Ph.D.
CTO, Cigital

http://www.cigital.com

© 2004 Cigital

.'..‘-
.I

.‘."

cigital L]

Pop quiz

m \What do wireless devices, cell phones, PDAs,
browsers, operating systems, servers, personal
computers, public key infrastructure systems, and
firewalls have in common?

Software

_"l..
.

.‘."

cigital) l

Commercial security Is reactive

m Defend the perimeter with a
firewall

To keep stuff out
m Over-rely on crypto
“We use SSL”

m “Review” products when
they’re done

Why your code is bad
m Promulgate “penetrate and

patch” _ i
: The “ops guy with keys” does
m Disallow qdvanced not really understand software
technologies development.

Extensible systems (Java
and .NET) are dangerous

© 2004 Cigital

.I
.‘."
cigital .

m Most security people are
operations people

m Network administrators

m Firewall rules
manipulators

m COTS products
glommers

m These people need
training

Security means different
things to different people

||

Builders versus operators

m Most builders are not
security people

m Software development
remains a black art

m How well are we doing
teaching students to
engineer code?

m Emergent properties like
security are hard for
builders to grok

m These people need
academic education

oA 4 1 | | I

Making software behave Is hard

m Can you test in quality?
m How do you find (adaptive) bugs in code?
m \What about bad guys doing evil on purpose?

m \What's the difference between security testing and
functional testing?

m How can you teach security design?

m How can you codify non-functional, emergent
requirements like security?

m Can you measure security?

_"l..
H,
.‘."

cigital)

Attaining software security Is even harder

The Trinity of Trouble

m Connectivity

The Internet is everywhere
and most software is on it

m Complexity
Networked, distributed,
mobile code is hard

m Extensibility

Systems evolve in
unexpected ways and are
changed on the fly

Thisisitli

mmmmmm

EEEEEEEE

© 2004 Cigital

r L
.

T
cigital

Software complexity growth

Millions of Lines

Windows Complexity

Win Win Win 95 NT4.0 Win 98 NT5.0 Win XP
3.1 NT (1997) (1998) (1999) (2000) 2K (2002)

(1990) (1995)

(2001)

.'..‘-

.I

.‘."

cigital .

Software vulnerabllity growth

Vulnerabilities Reported to CERT/CC

4500 Total winerabilities reported (1995-2002). 9,162

4000 ENELY

3,500
7500

™ | |
000 | : i R B U FE S R i BSeRE g

500 | ik R 1 :
V] _rmeeil = ; P

SRR it i iy e e e e e e et v -
1993 96 o % b man ol n

."I‘-
.I

.‘."
cigital

||

Normalized (and slightly shifted) data from Geer

Normalized (median, 2yr lag)

o MLOC o Vulns

o Incidents

Vi

g

90 91 92 93 94 95 96 97 98 99 oo or oz

&
-'-._I.

."I‘.
.I

.‘."

cigital .

Science please

m Basic understanding of complexity and its impact on
security problems is sorely needed

m Do the LOC and vulnerability graphs really
correlate?

m \What are software security problems really like?
m How common are basic categories?

m How can we teach students something that now
takes years of fieldwork to merely intuitively
grasp?

oA 4 1 | | I

Who is the bad guy?

m Hackers
m “Full disclosure” zealots
m “Script kiddies”
m Criminals o G (9
= Lone guns or organized %ﬁﬁﬁmﬁﬁ% 1\
m Malicious insiders
m Compiler wielders
m Business competition
m Police, press, terrorists, intelligence agencies

Abmra UEpl.I‘l‘_I,l' Attorney Genaral

£]

cigital "

1995

m Dan Geer fired from Silicon
Graphics for releasing
SATAN with Wietse
Venema

m FUD: possible attack tool!

2004

m Any system administrator
not using a port scanner to
check security posture runs
the risk of being fired

History Is quirky

Fall 2004

John Aycock at University of
Calgary publicly criticized
for malware course

FUD: possible bad guy
factory

Should we talk about
attacking systems?

Attacking
Systems

.
e 4IEEE

."I‘-
.I

.‘.f'

cigital .

The good news and the bad news

Good news Bad news

m The world loves to talk m The world would rather
about how stuff breaks not focus on how to
build stuff that does not

m This kind of work break

sparks lots of interest In

computer security m [t's harder to build good
stuff than to break
junky stuff

."I‘-
.I

.‘."

cigital .

|

Security problems are complicated

IMPLEMENTATION BUGS
m Buffer overflow

m String format

m One-stage attacks
m Race conditions

m TOCTOU (time of check to
time of use)

m Unsafe environment variables
Unsafe system calls
m System()
m Untrusted input problems

ARCHITECTURAL FLAWS
Misuse of cryptography

Compartmentalization
problems in design

Privileged block protection
failure (DoPrivilege())

Catastrophic security failure
(fragility)

Type safety confusion error
Insecure auditing

Broken or illogical access
control (RBAC over tiers)

Method over-riding problems
(subclass issues)

Signing too much code

_"l..
m.

.‘."

cigital) .

Attackers do not distinguish bugs and flaws

m Both bugs and flaws
lead to vulnerabillities
that can be exploited

m Attackers write code to
break code

m Defenders are network
operations people

Code?! What code?

© 2004 Cigital

T
.I a
Ny i
cigital ‘
-

The attacker’s toolkit

m The standard attacker’s toolkit has lots of (software
analysis) stuff

m Disassemblers and decompilers
m Control flow and coverage tools
m APISPY32

m Breakpoint setters and monitors
= Buffer overflow

m Shell code

m Rootkits

1 4 1 L

Attacker’s toolkit: dissasemblers and decompilers

Source code is not a necessity for software exploit
Binary is just as easy to understand as source code
Disassemblers and decompilers are essential tools

Reverse engineering is common and must be
understood (not outlawed)

IDA allows plugins to be created
m Use bulk auditing

oA 4 1 | | I

Attacker’s toolkit: control flow and coverage

m Tracing input as it flows through | g‘@g ~>®
software is an excellent method

m Exploiting differences between
versions Is also common

m Code coverage tools help you
know where you have gotten in a
program

m dyninstAPI (Maryland)

m Figure out how to get to
particular system calls

m Look for data in shared buffers

."I‘-

.I

.‘."

cigital .

Attacker’s toolkit: buffer overflow foo

m Find targets with static analysis m Trampolining past a canary
m Change program control flow
m Heap attacks Function arguments

m Stack smashing

m Trampolining

m Arc injection Canary Value
m Particular examples

m Overflow binary resource files
(used against Netscape)

m Overflow variables and tags

Return Address

Frame Pointer

Local Variable: Buffer A

(Yamaha MidiPIug) cal Variable: Pointer A
m MIME conversion fun
(Sendmail) Local Variable: Buffer B

m HTTP cookies (apache)

" BEW

Attacker’s toolkit: shell code and other payloads

Common payloads in buffer overflow
attacks

Size matters (small is critical)
Avoid zeros
XOR protection (also simple crypto)

Payloads exist for

m X86 (win32)

m RISC (MIPS and sparc)
= Multiplatform payloads

B

fixup
Jjump
table

Jjump
table

oA 4 1 | | I

Attacker’s toolkit: rootkits

m The apex of software exploit...complete control of
the machine

m Live In the kernel
m XP kernel rootkit in the book
m See

m Hide files and directories by controlling access to
process tables

m Provide control and access over the network

m Get into the EEPROM (hardware viruses)

http://www.rootkit.com/

."I.-
[
.‘."

cigital E

Debuggers (user-mode)
Kernel debuggers
m Softlce
m Fault injection tools
m FUZZ
m Failure simulation tool
m Hailstorm
m Holodeck
Boron tagging
The “depends” tool
Grammar rewriters

|

Attacker’s toolkit: other miscellaneous tools

- L ¥ - -
e

! Jﬁ“"‘.

=

TR
I -

.'..‘-
.I

.‘."
cigital

m The standard process
m Scan network
m Build a network map

Pick target system
ldentify OS stack
Port scan

Determine target
components

m Choose attack patterns
m Break software
m Plant backdoor

1

How attacks unfold

m Attacking a software system is
a process of discovery and
exploration

m Qualify target (focus on
iInput points)
m Determine what

transactions the input
points allow

m Apply relevant attack
patterns

m Cycle through observation
loop

m Find vulnerability
m Build an exploit

cigital .

|

Knowledge: 48 Attack Patterns

Make the Client Invisible
Target Programs That Write to Privileged OS Resources

Use a User-Supplied Configuration File to Run
Commands That Elevate Privilege

Make Use of Configuration File Search Paths
Direct Access to Executable Files

Embedding Scripts within Scripts

Leverage Executable Code in Nonexecutable Files
Argument Injection

Command Delimiters

Multiple Parsers and Double Escapes
User-Supplied Variable Passed to File System Calls
Postfix NULL Terminator

Postfix, Null Terminate, and Backslash

Relative Path Traversal

Client-Controlled Environment Variables

User-Supplied Global Variables (DEBUG=1, PHP
Globals, and So Forth)

Session ID, Resource ID, and Blind Trust

Analog In-Band Switching Signals (aka “Blue Boxing”)
Attack Pattern Fragment: Manipulating Terminal Devices
Simple Script Injection

Embedding Script in Nonscript Elements

XSS in HTTP Headers

HTTP Query Strings

User-Controlled Filename

Passing Local Filenames to Functions That Expect a
URL

Meta-characters in E-mail Header

File System Function Injection, Content Based
Client-side Injection, Buffer Overflow

Cause Web Server Misclassification

Alternate Encoding the Leading Ghost Characters
Using Slashes in Alternate Encoding

Using Escaped Slashes in Alternate Encoding
Unicode Encoding

UTF-8 Encoding

URL Encoding

Alternative IP Addresses

Slashes and URL Encoding Combined

Web Logs

Overflow Binary Resource File

Overflow Variables and Tags

Overflow Symbolic Links

MIME Conversion

HTTP Cookies

Filter Failure through Buffer Overflow e
Buffer Overflow with Environment Variables
Buffer Overflow in an API Call

Buffer Overflow in Local Command-Line Utilities
Parameter Expansion

String Format Overflow in syslog()

GREG HOGLUKD = GRAY HcGRAL
Frvmed by bl £ Bk

_"l‘.
H,
.‘."

cigital)

m Remove the client from the
communications loop and
talk directly to the server

m Leverage incorrect trust
model (never trust the
client)

m Example: hacking browsers
that lie (opera cookie foo)

Attack pattern 1.
Make the client invisible

3 United Airlines - Create itinerary - Netscape K

File Edt “iew Go Communicator Help

< » A X o <+ 8 8 @
Back Fanward: Heload Hame Search Metscape Print Security Shop Stop
w6 Bookmarks A Location: |UZdMuGitn?2Fod? 3D 980883486, 480025 2Cin 2F air% 2F unitedbair 0=0%air 1=0 = | EI” what's Related

Contact United | Site search

Travel support/ Mileage Plus / About United /’

Create itinerary @ e

Modify or purchase your itinerary.

Clear itinerary |

W Crzate itinerary

Special deals

s Flights Modify Flight E-fares | Award Travel
Fequest upgrade Washington {lAD) to Paris (CDG) Monday, Mar 12
Route maps Flight info Dates Mise Fares
Wacation padiages Urited Airlines |Mar12 5:35 pm | stops: Non-stop Class: Coash | [ajate
S 914 depart LAD Fare Rules |~
pdate p y
Jlepron’e Bosing 777 Mar 13 7.00 am
Electronic timetabl arive CDG
Paris (CDG) to Washington {lAD) Tuesday, Mar 13
Flight info Dates Mise Fares
Urited Airlines |Mar13 100 pm | stops: Non-stop Class: Goash | [ajate
915 depart COG Fare Rules |~
Boeing 777 Mar13 330 pm
arive [AD
. L 3 g Click to
Total Airfare {including taxes): USD 2000.76 Select Your Seats
| I—— v
iy [=b=| |Document: Done

© 2004 Cigital

_"l'.
H.

.‘."
cigital

Shellcoders
| |:'|.n(|h(_ml»:

Breaking stuff is important

m Learning how to think like
an attacker is essential

m Do not shy away from
teaching attacks

Engineers learn from
stories of failure

m Attacking group projects can
be the most fun part of a
course

m Funis good! Software
engineering is too boring!

© 2004 Cigital

o 4 1 | | I

Software security critical lessons

m Software security is more than a set of security
functions

= Not magic crypto fairy dust
= Not silver-bullet security mechanisms
= Not application of very simple tools
m Non-functional aspects of design are essential

m Security iIs an emergent property of the entire
system (just like quality)

m To end up with secure software, deep integration
with the SDLC Is necessary

oA 4 1 | | I

Ten guiding principles for secure design

1. Secure the weakest link - Keep it simple
2. Practice defense in depth — Promote privacy
3. Fail securely — Remember that hiding
4. Follow the principle of least secrets Is hard
privilege — Be reluctant to trust
5. Compartmentalize — Use your community
resources

Buﬂdl“o ~ WIWILEY \
Secure Software | Se(ul‘lty
\W Engmeermg

e
Gary McGraw

|

A Guide to Building
I)pelil
Dil ed

oA 4 1 | | I

The antidote: Software security in the SDLC

G

Security External Static Penetration
requirements review analysis testing
\ I (tools)
Abuse Risk Risk-based Risk Security
cases analysis security tests analysis breaks
| \ \ / |\ \2 \ v |\ v
I I I I I I
Requirements Design Test plans Code Test Field
and use cases results feedback

oA 4 1 | | I

Software security best practices

m Security best practices m Abuse cases
should be applied m Security requirements
throughout the dev lifecycle analysis

m Tendency is to “start right”
(penetration testing) and
declare victory

m Not cost effective
m Hard to fix problems
m Start as early as possible

Architectural risk analysis
Risk analysis at design
External review

Test planning based on
risks

m Security testing (malicious
tests)

m Code review with static
analysis tools

_"l..
m,

.‘."

cigital)

|
IEEE Security & Prlvacy Magazme

e Witty Wor Q

IEEE
" Security best practices called SEGURITY&PRWAGY

Building Confiden: rked World
“Building Security In” L1

m Also see this month’s special
Issue on breaking stuff

Htt/aclgng

=) gsEerns

http://www.computer.org/security N\ s~ ,. i

© 2004 Cigital

.
.‘."
cigital)

Cigital’s Software Security Group
Invents and practices Software
Quality Management

WE NEED PEOPLE

http://www.cigital.com/presentations/
exploit04

Use Exploiting Software and Building
Secure Software

Send e-mail:
gem@cigital.com

Pointers

GREG HOGLUND = GARY McGRAL

Foreword by Auiel 0. Rubin

A How to Avoid Secy

Problems the Right Way

Gary McGraw

SIS ONILNIWOD TYNOISSIIO¥d

© 2004 Cigital

	Exploiting Software:How to Break Code
	Pop quiz
	Commercial security is reactive
	Builders versus operators
	Making software behave is hard
	Attaining software security is even harder
	Software complexity growth
	Software vulnerability growth
	Normalized (and slightly shifted) data from Geer
	Science please
	Who is the bad guy?
	History is quirky
	The good news and the bad news
	Security problems are complicated
	Attackers do not distinguish bugs and flaws
	The attacker’s toolkit
	Attacker’s toolkit: dissasemblers and decompilers
	Attacker’s toolkit: control flow and coverage
	Attacker’s toolkit: buffer overflow foo
	Attacker’s toolkit: shell code and other payloads
	Attacker’s toolkit: rootkits
	Attacker’s toolkit: other miscellaneous tools
	How attacks unfold
	Knowledge: 48 Attack Patterns
	Attack pattern 1: Make the client invisible
	Breaking stuff is important
	Software security critical lessons
	Ten guiding principles for secure design
	The antidote: Software security in the SDLC
	Software security best practices
	IEEE Security & Privacy Magazine
	Pointers

