
© 2004 Cigital

Exploiting Software:
How to Break Code

Gary McGraw, Ph.D.
CTO, Cigital

http://www.cigital.com

© 2004 Cigital

Pop quiz
What do wireless devices, cell phones, PDAs,
browsers, operating systems, servers, personal
computers, public key infrastructure systems, and
firewalls have in common?

Software

© 2004 Cigital

So what’s the problem?

© 2004 Cigital

Commercial security is reactive
Defend the perimeter with a
firewall

To keep stuff out
Over-rely on crypto

“We use SSL”
“Review” products when
they’re done

Why your code is bad
Promulgate “penetrate and
patch”
Disallow advanced
technologies

Extensible systems (Java
and .NET) are dangerous

The “ops guy with keys” does
not really understand software
development.

© 2004 Cigital

Builders versus operators
Most security people are
operations people

Network administrators
Firewall rules
manipulators
COTS products
glommers
These people need
training

Security means different
things to different people

Most builders are not
security people

Software development
remains a black art
How well are we doing
teaching students to
engineer code?
Emergent properties like
security are hard for
builders to grok
These people need
academic education

© 2004 Cigital

Making software behave is hard
Can you test in quality?
How do you find (adaptive) bugs in code?
What about bad guys doing evil on purpose?

What’s the difference between security testing and
functional testing?
How can you teach security design?
How can you codify non-functional, emergent
requirements like security?
Can you measure security?

© 2004 Cigital

Attaining software security is even harder

This simple interface……is this complex program.NET

The network is
the computer.

The Trinity of Trouble
Connectivity

The Internet is everywhere
and most software is on it

Complexity
Networked, distributed,
mobile code is hard

Extensibility
Systems evolve in
unexpected ways and are
changed on the fly

© 2004 Cigital

Software complexity growth

Windows Complexity

0
5

10
15
20
25
30
35
40
45

Win
3.1

(1990)

Win
NT

(1995)

Win 95
(1997)

NT 4.0
(1998)

Win 98
(1999)

NT 5.0
(2000)

Win
2K

(2001)

XP
(2002)

M
ill

io
ns

 o
f L

in
es

© 2004 Cigital

Software vulnerability growth

© 2004 Cigital

Normalized (and slightly shifted) data from Geer

© 2004 Cigital

Science please
Basic understanding of complexity and its impact on
security problems is sorely needed
Do the LOC and vulnerability graphs really
correlate?

What are software security problems really like?
How common are basic categories?
How can we teach students something that now
takes years of fieldwork to merely intuitively
grasp?

© 2004 Cigital

Who is the bad guy?
Hackers

“Full disclosure” zealots
“Script kiddies”
Criminals

Lone guns or organized
Malicious insiders

Compiler wielders
Business competition
Police, press, terrorists, intelligence agencies

© 2004 Cigital

History is quirky
1995

Dan Geer fired from Silicon
Graphics for releasing
SATAN with Wietse
Venema
FUD: possible attack tool!

2004
Any system administrator
not using a port scanner to
check security posture runs
the risk of being fired

Fall 2004
John Aycock at University of
Calgary publicly criticized
for malware course
FUD: possible bad guy
factory

Should we talk about
attacking systems?

© 2004 Cigital

The good news and the bad news
Good news

The world loves to talk
about how stuff breaks

This kind of work
sparks lots of interest in
computer security

Bad news

The world would rather
not focus on how to
build stuff that does not
break

It’s harder to build good
stuff than to break
junky stuff

© 2004 Cigital

Know your enemy: How stuff
breaks

© 2004 Cigital

Security problems are complicated
IMPLEMENTATION BUGS
Buffer overflow

String format
One-stage attacks

Race conditions
TOCTOU (time of check to
time of use)

Unsafe environment variables
Unsafe system calls

System()
Untrusted input problems

ARCHITECTURAL FLAWS
Misuse of cryptography
Compartmentalization
problems in design
Privileged block protection
failure (DoPrivilege())
Catastrophic security failure
(fragility)
Type safety confusion error
Insecure auditing
Broken or illogical access
control (RBAC over tiers)
Method over-riding problems
(subclass issues)
Signing too much code

© 2004 Cigital

Attackers do not distinguish bugs and flaws
Both bugs and flaws
lead to vulnerabilities
that can be exploited

Attackers write code to
break code
Defenders are network
operations people

Code?! What code?

© 2004 Cigital

The attacker’s toolkit
The standard attacker’s toolkit has lots of (software
analysis) stuff

Disassemblers and decompilers
Control flow and coverage tools
APISPY32
Breakpoint setters and monitors
Buffer overflow
Shell code
Rootkits

© 2004 Cigital

Attacker’s toolkit: dissasemblers and decompilers

Source code is not a necessity for software exploit
Binary is just as easy to understand as source code
Disassemblers and decompilers are essential tools
Reverse engineering is common and must be
understood (not outlawed)
IDA allows plugins to be created
Use bulk auditing

© 2004 Cigital

Attacker’s toolkit: control flow and coverage
Tracing input as it flows through
software is an excellent method
Exploiting differences between
versions is also common
Code coverage tools help you
know where you have gotten in a
program

dyninstAPI (Maryland)
Figure out how to get to
particular system calls
Look for data in shared buffers

© 2004 Cigital

Attacker’s toolkit: buffer overflow foo
Trampolining past a canaryFind targets with static analysis

Change program control flow
Heap attacks
Stack smashing
Trampolining
Arc injection

Particular examples
Overflow binary resource files
(used against Netscape)
Overflow variables and tags
(Yamaha MidiPlug)
MIME conversion fun
(Sendmail)
HTTP cookies (apache)

Local Variable: Buffer B

Local Variable: Pointer A

Local Variable: Buffer A

Function arguments

Return Address

Canary Value

Frame Pointer

© 2004 Cigital

Attacker’s toolkit: shell code and other payloads

Common payloads in buffer overflow
attacks
Size matters (small is critical)
Avoid zeros
XOR protection (also simple crypto)

Payloads exist for
X86 (win32)
RISC (MIPS and sparc)
Multiplatform payloads

© 2004 Cigital

Attacker’s toolkit: rootkits
The apex of software exploit…complete control of
the machine
Live in the kernel

XP kernel rootkit in the book
See http://www.rootkit.com

Hide files and directories by controlling access to
process tables
Provide control and access over the network

Get into the EEPROM (hardware viruses)

http://www.rootkit.com/

© 2004 Cigital

Attacker’s toolkit: other miscellaneous tools
Debuggers (user-mode)
Kernel debuggers

SoftIce
Fault injection tools

FUZZ
Failure simulation tool
Hailstorm
Holodeck

Boron tagging
The “depends” tool
Grammar rewriters

© 2004 Cigital

How attacks unfold
The standard process

Scan network
Build a network map
Pick target system
Identify OS stack
Port scan
Determine target
components
Choose attack patterns
Break software
Plant backdoor

Attacking a software system is
a process of discovery and
exploration

Qualify target (focus on
input points)
Determine what
transactions the input
points allow
Apply relevant attack
patterns
Cycle through observation
loop
Find vulnerability
Build an exploit

© 2004 Cigital

Knowledge: 48 Attack Patterns
Make the Client Invisible
Target Programs That Write to Privileged OS Resources
Use a User-Supplied Configuration File to Run
Commands That Elevate Privilege
Make Use of Configuration File Search Paths
Direct Access to Executable Files
Embedding Scripts within Scripts
Leverage Executable Code in Nonexecutable Files
Argument Injection
Command Delimiters
Multiple Parsers and Double Escapes
User-Supplied Variable Passed to File System Calls
Postfix NULL Terminator
Postfix, Null Terminate, and Backslash
Relative Path Traversal
Client-Controlled Environment Variables
User-Supplied Global Variables (DEBUG=1, PHP
Globals, and So Forth)
Session ID, Resource ID, and Blind Trust
Analog In-Band Switching Signals (aka “Blue Boxing”)
Attack Pattern Fragment: Manipulating Terminal Devices
Simple Script Injection
Embedding Script in Nonscript Elements
XSS in HTTP Headers
HTTP Query Strings

User-Controlled Filename
Passing Local Filenames to Functions That Expect a
URL
Meta-characters in E-mail Header
File System Function Injection, Content Based
Client-side Injection, Buffer Overflow
Cause Web Server Misclassification
Alternate Encoding the Leading Ghost Characters
Using Slashes in Alternate Encoding
Using Escaped Slashes in Alternate Encoding
Unicode Encoding
UTF-8 Encoding
URL Encoding
Alternative IP Addresses
Slashes and URL Encoding Combined
Web Logs
Overflow Binary Resource File
Overflow Variables and Tags
Overflow Symbolic Links
MIME Conversion
HTTP Cookies
Filter Failure through Buffer Overflow
Buffer Overflow with Environment Variables
Buffer Overflow in an API Call
Buffer Overflow in Local Command-Line Utilities
Parameter Expansion
String Format Overflow in syslog()

© 2004 Cigital

Attack pattern 1:
Make the client invisible

Remove the client from the
communications loop and
talk directly to the server

Leverage incorrect trust
model (never trust the
client)

Example: hacking browsers
that lie (opera cookie foo)

© 2004 Cigital

Breaking stuff is important
Learning how to think like
an attacker is essential
Do not shy away from
teaching attacks

Engineers learn from
stories of failure

Attacking group projects can
be the most fun part of a
course
Fun is good! Software
engineering is too boring!

© 2004 Cigital

Great, now what do we
do about this?

© 2004 Cigital

Software security critical lessons
Software security is more than a set of security
functions

Not magic crypto fairy dust
Not silver-bullet security mechanisms
Not application of very simple tools

Non-functional aspects of design are essential
Security is an emergent property of the entire
system (just like quality)
To end up with secure software, deep integration
with the SDLC is necessary

© 2004 Cigital

Ten guiding principles for secure design
1. Secure the weakest link
2. Practice defense in depth
3. Fail securely
4. Follow the principle of least

privilege
5. Compartmentalize

– Keep it simple
– Promote privacy
– Remember that hiding

secrets is hard
– Be reluctant to trust
– Use your community

resources

© 2004 Cigital

The antidote: Software security in the SDLC

Static
analysis
(tools)

Security
requirements

External
review

Penetration
testing

Risk
analysis

Risk-based
security tests

Abuse
cases

Risk
analysis

Security
breaks

Requirements
and use cases

Design Test plans Code Test
results

Field
feedback

© 2004 Cigital

Software security best practices
Security best practices
should be applied
throughout the dev lifecycle
Tendency is to “start right”
(penetration testing) and
declare victory

Not cost effective
Hard to fix problems

Start as early as possible

Abuse cases
Security requirements
analysis
Architectural risk analysis
Risk analysis at design
External review
Test planning based on
risks
Security testing (malicious
tests)
Code review with static
analysis tools

© 2004 Cigital

Where to learn more

© 2004 Cigital

IEEE Security & Privacy Magazine

See the department on Software
Security best practices called
“Building Security In”

Also see this month’s special
issue on breaking stuff

http://http://www.computer.orgwww.computer.org/security/security

© 2004 Cigital

Pointers
Cigital’s Software Security Group
invents and practices Software
Quality Management

WE NEED PEOPLE

http://www.cigital.com/presentations/
exploit04

Use Exploiting Software and Building
Secure Software

Send e-mail:
gem@cigital.com

	Exploiting Software:How to Break Code
	Pop quiz
	Commercial security is reactive
	Builders versus operators
	Making software behave is hard
	Attaining software security is even harder
	Software complexity growth
	Software vulnerability growth
	Normalized (and slightly shifted) data from Geer
	Science please
	Who is the bad guy?
	History is quirky
	The good news and the bad news
	Security problems are complicated
	Attackers do not distinguish bugs and flaws
	The attacker’s toolkit
	Attacker’s toolkit: dissasemblers and decompilers
	Attacker’s toolkit: control flow and coverage
	Attacker’s toolkit: buffer overflow foo
	Attacker’s toolkit: shell code and other payloads
	Attacker’s toolkit: rootkits
	Attacker’s toolkit: other miscellaneous tools
	How attacks unfold
	Knowledge: 48 Attack Patterns
	Attack pattern 1: Make the client invisible
	Breaking stuff is important
	Software security critical lessons
	Ten guiding principles for secure design
	The antidote: Software security in the SDLC
	Software security best practices
	IEEE Security & Privacy Magazine
	Pointers

