
Depot
Cloud storage with minimal trust

Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement,
Lorenzo Alvisi, Mike Dahlin, Michael Walfish

The University of Texas at Austin

Monday, October 11, 2010

Cloud storage is appealing

()

“add to
album”

“show album”

Prince

Mike

CloudPic

Storage
Provider

PUT(k,)

GET(k)

Monday, October 11, 2010

Cloud storage is appealing

()

“add to
album”

“show album”

Prince

Mike

CloudPic

Storage
Provider

PUT(k,)

GET(k)

Monday, October 11, 2010

Failures cause undesired behavior

Storage
Provider

Risks of cloud storage

()

Prince

Mike

PUT(k,)

GET(k)

CloudPic

Monday, October 11, 2010

Failures cause undesired behavior

Storage
Provider

Risks of cloud storage

()

Prince

Mike

Op1: “revoke Mike’s
access to album”

PUT(k,)

GET(k)

CloudPic

Monday, October 11, 2010

Failures cause undesired behavior

Storage
Provider

Risks of cloud storage

()

Prince

Mike

Op1: “revoke Mike’s
access to album” Op2:“add to album”

PUT(k,)

GET(k)

CloudPic

Monday, October 11, 2010

Failures cause undesired behavior

Storage
Provider

Risks of cloud storage

()
“show album”

Prince

Mike

Op1: “revoke Mike’s
access to album” Op2:“add to album”

PUT(k,)

GET(k)

CloudPic

Monday, October 11, 2010

Failures cause undesired behavior

Storage
Provider

Risks of cloud storage

()
“show album”

Prince

Mike

Op1: “revoke Mike’s
access to album” Op2:“add to album”

PUT(k,)

GET(k)

CloudPic

Monday, October 11, 2010

We have a conflict

Much to like
Geographic
replication

Professional
management

Low cost

Much to give pause
Black box

Complex

Error-prone

Our approach:
A radical fault-tolerance stance

Monday, October 11, 2010

Cloud storage with minimal trust

Eliminates trust for

PUT availability
Eventual consistency
Staleness detection
Dependency
preservation

Minimizes trust for
GET availability
Durability

Storage
Provider

Monday, October 11, 2010

Cloud storage with minimal trust

Eliminates trust for

PUT availability
Eventual consistency
Staleness detection
Dependency
preservation

Minimizes trust for
GET availability
Durability

Storage
Provider

Monday, October 11, 2010

Cloud storage with minimal trust

Eliminates trust for

PUT availability
Eventual consistency
Staleness detection
Dependency
preservation

Minimizes trust for
GET availability
Durability

Storage
Provider

Monday, October 11, 2010

Cloud storage with minimal trust

Eliminates trust for

PUT availability
Eventual consistency
Staleness detection
Dependency
preservation

Minimizes trust for
GET availability
Durability

Storage
Provider

Monday, October 11, 2010

Rest of the talk

I. How does Depot work?

II. What properties does it provide?

III. How much does it cost?

Monday, October 11, 2010

Depot in a nutshell

Ensuring high availability
Multiple servers
Don’t enforce sequential (CAP tradeoff)
Fall back on client-client communication

Storage
Provider

Monday, October 11, 2010

Depot in a nutshell

GET(k)

()

PUT(k,)

Preventing omission, reordering
Add metadata to PUTs
Add local state to nodes
Add checks on received metadata

Storage
Provider

Monday, October 11, 2010

Depot in a nutshell

GET(k)

()

PUT(k,)

Preventing omission, reordering
Add metadata to PUTs
Add local state to nodes
Add checks on received metadata

Storage
Provider

Monday, October 11, 2010

Depot in a nutshell

GET(k)

()

PUT(k,)

Preventing omission, reordering
Add metadata to PUTs
Add local state to nodes
Add checks on received metadata

Storage
Provider

Monday, October 11, 2010

Depot in a nutshell

GET(k)

()

PUT(k,)

Preventing omission, reordering
Add metadata to PUTs
Add local state to nodes
Add checks on received metadata

Storage
Provider

Monday, October 11, 2010

Depot in a nutshell

GET(k)

()

PUT(k,)

Preventing omission, reordering
Add metadata to PUTs
Add local state to nodes
Add checks on received metadata

Storage
Provider

Monday, October 11, 2010

Depot in a nutshell

GET(k)

()

PUT(k,)

Preventing omission, reordering
Add metadata to PUTs
Add local state to nodes
Add checks on received metadata

Storage
Provider

Monday, October 11, 2010

Depot in a nutshell

GET(k)

()

PUT(k,)

Preventing omission, reordering
Add metadata to PUTs
Add local state to nodes
Add checks on received metadata

Storage
Provider

Monday, October 11, 2010

Depot in a nutshell

GET(k)

()

PUT(k,)

Preventing omission, reordering
Add metadata to PUTs
Add local state to nodes
Add checks on received metadata

Storage
Provider

Monday, October 11, 2010

Depot in a nutshell

GET(k)

()

PUT(k,)

Preventing omission, reordering
Add metadata to PUTs
Add local state to nodes
Add checks on received metadata

Storage
Provider

Monday, October 11, 2010

Protecting Consistency

(1) Update metadata
{nodeID, key, H(value), LocalClock, History}nodeID

(2) Nodes store update metadata
Logically: Store all previous updates
[See paper for garbage collection]

Monday, October 11, 2010

(3) Local checks
Accept an update u created by N if

No omissions
All updates in u’s History are also in local state

Don’t modify history
u is newer than any prior update by N

Protecting Consistency

Monday, October 11, 2010

(3) Local checks
Accept an update u created by N if

No omissions
All updates in u’s History are also in local state

Don’t modify history
u is newer than any prior update by N

Protecting Consistency

Monday, October 11, 2010

Faults can cause forks

Fork:
Expose inconsistent views to different nodes
Each node’s view locally consistent

F BA

Monday, October 11, 2010

Forks partition correct nodes
Correct nodes’ future updates tainted
Receiver’s update checks fail

 Forks prevent eventual consistency
Inconsistently tainted nodes cannot communicate

Faults can cause forks
F BA

Monday, October 11, 2010

Forks partition correct nodes
Correct nodes’ future updates tainted
Receiver’s update checks fail

 Forks prevent eventual consistency
Inconsistently tainted nodes cannot communicate

Faults can cause forks
F BA

Monday, October 11, 2010

Join forks for eventual consistency

Convert faults into concurrency
Faulty node --> Two (correct) virtual nodes
Correct nodes can accept subsequent updates
Correct nodes can evict faulty node

BA F’

F’’

Monday, October 11, 2010

Faults v. Concurrency
Converting faults into concurrency

Allows correct nodes to converge

Concurrency can introduce conflicts
Conflict: Concurrent updates to same object

Problem not introduced by Depot
Already possible due to decentralized server

Applications built for high availability (such as Amazon
S3) allow concurrent writes

Depot exposes conflicts to applications
GET returns set of most recent concurrent updates

Monday, October 11, 2010

Summary: Basic Protocol

Protect safety
Local checks

Protect liveness
Joining forks
Reduce failures to concurrency

Fork-join-causal consistency
A novel consistency semantics
Suitable for environments with minimal trust

Monday, October 11, 2010

Rest of the talk

I. How does Depot work?

II. What properties does Depot provide?

III. How much does it cost?

Monday, October 11, 2010

Depot Properties
Dimension

Safety/
Liveness Property Correct Nodes

Required

Consistency Safety
Safety
Safety

Fork-Join Causal
Bounded Staleness

Eventual Consistency (s)

Any Subset
Any Subset
Any Subset

Availability Liveness
Liveness
Liveness
Liveness

Eventual consistency (l)
Always write

Always exchange
Read availability/

durability

Any Subset
Any Subset
Any Subset

A correct node
has data

Integrity Safety Only auth. PUT Any Subset

Eviction Safety Valid eviction Any Subset

Monday, October 11, 2010

GET Availability, Durability

Ideal “Trust Only Yourself”
Can’t reach that goal

Depot
1. Minimize required number of correct nodes

Data can safely flow via any path
If any correct node has data, GET eventually succeeds

2. Make it likely a correct node has data
SSP replicates to multiple servers
Additional replication to protect against total SSP failure

Monday, October 11, 2010

Contingency Plan
Protect against correlated SSP failure

Availability event or permanent failure

Key: Storage servers are untrusted
Pick any node with low correlation to SSP
Prototype:

Client that issues PUT keeps copy of data
Gossiped update metadata sufficient to route GET requests
when SSP unavailable

Alternatives:
Private cloud storage node (e.g., Eucalyptus/Walrus)
Another external SSP

Monday, October 11, 2010

Depot Tolerates SSP Failure

Complete cloud failure at 300s
Depot’s GET, PUT continue
Depot’s staleness increases

 0
 5

 10
 15
 20
 25
 30
 35

 0 100 200 300 400 500 600

S
ta

le
n
e
ss

 (
se

c)

Time (sec)

Depot
SSP

Monday, October 11, 2010

Rest of the talk

I. How does Depot work?

II. What properties does Depot provide?

III. How much does Depot cost?
Latency, resources, dollars

Monday, October 11, 2010

How much does it cost?

Latency cost
Compare GET and PUT latencies

Resource cost
Processing (client and server)
Network (client-server and server-server)
Storage (client and server)

Dollar cost
Weighted Processing + Network + Storage

Monday, October 11, 2010

Sources of overhead in Depot

SSP
PUT

GET

Monday, October 11, 2010

Sources of overhead in Depot

SSP
PUT

GET

metadata check =
SHA256 check
+ RSA verify

+ history check

metadata =
signature

+ partial VV
+ history hash

data check =
SHA256 check

Monday, October 11, 2010

Setup
12 nodes on local Emulab

8 clients + 4 servers
Quad core Intel Xeon X3220 2.40 GHz processor
8 GB RAM
two local 7200 RPM disk

1 Gbps link

Each client issues 1 request/sec
Measure latency, per-request cost

Emulate traditional cloud storage
Servers implemented Depot without any checks
Clients don’t receive any metadata

Monday, October 11, 2010

Depot adds little latency

Depot overheads on GETs are very small
Overheads on PUTs are modest

 0

 5

 10

 15

GET (10KB) PUT (10KB)

L
a
te

n
cy

 (
m

s)

B
a
se

B
a
se

 +
 H

a
sh

B
a
se

 +
 H

a
sh

 +
 S

ig
n

D
e
p
o
t

Monday, October 11, 2010

Depot GET overheads
are modest

0.0

1.0

2.0

3.0

NW (C-S)
(KB)

CPU (C)
(ms)

CPU (S)
(ms)

C
o

st
/(

D
e

p
o

t
C

o
st

)

B
a

se
B

 +
 H

a
sh

B
 +

 H
 +

 S
ig

n
D

e
p

o
t

Monday, October 11, 2010

Depot PUT overheads
are modest

Metrics that didn’t change are omitted.
E.g. Storage(S), NW(S-S)

Metadata transfer=>NW cost
Metadata verification=>CPU cost
Metadata store=>Storage cost

0.0

1.0

2.0

3.0

NW (C-S)
(KB)

Stor/Ver (C)
(KB)

CPU (C)
(ms)

CPU (S)
(ms)

C
o
st

/(
D

e
p
o
t
C

o
st

)

B
a
se

B
 +

 H
a
sh

B
 +

 H
 +

 S
ig

n
D

e
p
o
t

Monday, October 11, 2010

Cost Model

Based (loosely) on current cloud pricing

Client-Server
NW Bandwidth $0.10/GB

Server-Server
NW Bandwidth $0.01/GB

Disk Storage $0.025 GB/month

CPU Processing $0.10/hour

Monday, October 11, 2010

Depot dollar costs are small

 0

 50

 100

 150

 200

 250

GET (TB) PUT (TB) Store (TB-mo.)

C
o
st

 (
$
/T

B
)

B
a
se

B
 +

 H
a
sh

B
 +

 H
 +

 S
ig

n
D

e
p
o
t

Monday, October 11, 2010

Related Work
Fork-based systems

SUNDR [Li et al. OSDI 2004]
BFT2F [Li and Mazieres NSDI 2007]
SPORC [Feldman et al. OSDI 2010]
Venus [Shraer et al. CCSW 2010]

Quorums and state machines
BQS [Malkhi and Reiter Dist. Comp. 1998]
PBFT [Castro and Liskov TOCS 2002]
Q/U [El-Malek et al. SOSP 2005]
HQ [Cowling and Liskov OSDI 2006]
Zyzzyva [Kotla et al. SOSP 2007]

Many others
Monday, October 11, 2010

Conclusion

Depot: Cloud storage with minimal trust

Radical fault tolerance
Any node could fail in any way
Eliminate trust for consistency, staleness,
update exchange, eviction, ...

Any subset of correct clients get these properties

Minimize trust for GET availability, durability
GET succeeds if any correct, reachable node has data
Protocol hooks to make this likely

Monday, October 11, 2010

