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Failures cause undesired behavior
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We have a conflict

Much to like
Geographic 
replication

Professional 
management

Low cost

Much to give pause
Black box

Complex 

Error-prone

Our approach: 
A radical fault-tolerance stance
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Rest of the talk

I. How does Depot work?

II. What properties does it provide?

III. How much does it cost?
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Depot in a nutshell

Ensuring high availability
Multiple servers
Don’t enforce sequential (CAP tradeoff)
Fall back on client-client communication

Storage 
Provider
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Protecting Consistency

(1) Update metadata
{nodeID, key, H(value), LocalClock, History}nodeID

(2) Nodes store update metadata 
Logically: Store all previous updates
[See paper for garbage collection]
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(3) Local checks
Accept an update u created by N if

No omissions
All updates in u’s History are also in local state

Don’t modify history
u is newer than any prior update by N

Protecting Consistency
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Faults can cause forks

Fork: 
Expose inconsistent views to different nodes
Each node’s view locally consistent

F BA
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Forks partition correct nodes
Correct nodes’ future updates tainted
Receiver’s update checks fail

   Forks prevent eventual consistency
Inconsistently tainted nodes cannot communicate

Faults can cause forks
F BA
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Join forks for eventual consistency

Convert faults into concurrency
Faulty node --> Two (correct) virtual nodes
Correct nodes can accept subsequent updates
Correct nodes can evict faulty node

BA F’

F’’
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Faults v. Concurrency
Converting faults into concurrency

Allows correct nodes to converge

Concurrency can introduce conflicts
Conflict: Concurrent updates to same object

Problem not introduced by Depot
Already possible due to decentralized server

Applications built for high availability (such as Amazon 
S3) allow concurrent writes

Depot exposes conflicts to applications
GET returns set of most recent concurrent updates
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Summary: Basic Protocol

Protect safety
Local checks

Protect liveness
Joining forks
Reduce failures to concurrency

Fork-join-causal consistency
A novel consistency semantics 
Suitable for environments with minimal trust
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Rest of the talk

I. How does Depot work?

II. What properties does Depot provide?

III. How much does it cost?
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Depot Properties
Dimension

Safety/
Liveness Property Correct Nodes 

Required

Consistency Safety
Safety
Safety

Fork-Join Causal
Bounded Staleness

Eventual Consistency (s)

Any Subset
Any Subset
Any Subset

Availability Liveness
Liveness
Liveness
Liveness

Eventual consistency (l)
Always write

Always exchange
Read availability/

durability

Any Subset
Any Subset
Any Subset

A correct node 
has data

Integrity Safety Only auth. PUT Any Subset

Eviction Safety Valid eviction Any Subset
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GET Availability, Durability

Ideal “Trust Only Yourself”
Can’t reach that goal

Depot 
1. Minimize required number of correct nodes

Data can safely flow via any path
If any correct node has data, GET eventually succeeds

2. Make it likely a correct node has data
SSP replicates to multiple servers
Additional replication to protect against total SSP failure
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Contingency Plan
Protect against correlated SSP failure

Availability event or permanent failure

Key: Storage servers are untrusted
Pick any node with low correlation to SSP
Prototype: 

Client that issues PUT keeps copy of data
Gossiped update metadata sufficient to route GET requests 
when SSP unavailable

Alternatives:
Private cloud storage node (e.g., Eucalyptus/Walrus)
Another external SSP
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Depot Tolerates SSP Failure

Complete cloud failure at 300s
Depot’s GET, PUT continue
Depot’s staleness increases
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Rest of the talk

I. How does Depot work?

II. What properties does Depot provide?

III. How much does Depot cost?
Latency, resources, dollars
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How much does it cost?

Latency cost
Compare GET and PUT latencies

Resource cost
Processing (client and server) 
Network (client-server and server-server)
Storage (client and server)

Dollar cost
Weighted Processing + Network + Storage
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Sources of overhead in Depot

SSP
PUT

GET
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Sources of overhead in Depot

SSP
PUT

GET

metadata check = 
SHA256 check
+ RSA verify

+ history check

metadata =   
signature 

+ partial VV 
+ history hash

data check = 
SHA256 check
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Setup
12 nodes on local Emulab 

8 clients + 4 servers
Quad core Intel Xeon X3220 2.40 GHz  processor 
8 GB RAM 
two local 7200 RPM disk

1 Gbps link

Each client issues 1 request/sec
Measure latency, per-request cost

Emulate traditional cloud storage
Servers implemented Depot without any checks
Clients don’t receive any metadata
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Depot adds little latency

Depot overheads on GETs are very small
Overheads on PUTs are modest
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Depot GET overheads
are modest
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Depot PUT overheads
are modest

Metrics that didn’t change are omitted. 
E.g. Storage(S), NW(S-S) 

Metadata transfer=>NW cost 
Metadata verification=>CPU cost
Metadata store=>Storage cost
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Cost Model

Based (loosely) on current cloud pricing

Client-Server 
NW Bandwidth $0.10/GB

Server-Server 
NW Bandwidth $0.01/GB

Disk Storage $0.025 GB/month

CPU Processing $0.10/hour

Monday, October 11, 2010



Depot dollar costs are small
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Related Work
Fork-based systems

SUNDR [Li et al. OSDI 2004]
BFT2F [Li and Mazieres NSDI 2007]
SPORC [Feldman et al. OSDI 2010]
Venus [Shraer et al. CCSW 2010]

Quorums and state machines
BQS [Malkhi and Reiter Dist. Comp. 1998] 
PBFT [Castro and Liskov TOCS 2002] 
Q/U [El-Malek et al. SOSP 2005] 
HQ [Cowling and Liskov OSDI 2006]
Zyzzyva [Kotla et al. SOSP 2007]

Many others 
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Conclusion

Depot: Cloud storage with minimal trust

Radical fault tolerance
Any node could fail in any way
Eliminate trust for consistency, staleness, 
update exchange, eviction, ...

Any subset of correct clients get these properties

Minimize trust for GET availability, durability
GET succeeds if any correct, reachable node has data
Protocol hooks to make this likely
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