
Automating Configuration Troubleshooting
with Dynamic Information Flow Analysis

Mona Attariyan

Jason Flinn

University of Michigan

Mona Attariyan - University of Michigan 2

Configuration Troubleshooting Is Difficult

Software systems
difficult to configure

Users make mistakes

Mona Attariyan - University of Michigan 3

Configuration Troubleshooting Is Difficult

Software systems
difficult to configure

Users make mistakes

Misconfigurations happen

Mona Attariyan - University of Michigan 4

Configuration Troubleshooting Is Difficult

Mona Attariyan - University of Michigan 5

What To Do With Misconfiguration?

……
……

&$%#!
…..
…..

config file
Ask colleagues

Search manual, FAQ,
online forums

Look at the code
if available

Mona Attariyan - University of Michigan 6

What To Do With Misconfiguration?

A tool that automatically finds the root cause
of the misconfiguration in applications?

Mona Attariyan - University of Michigan 7

ConfAid

Application code has enough information
to lead us to the root cause

Insight

Dynamic information flow analysis on
application binaries

How?

Mona Attariyan - University of Michigan 8

How to Use ConfAid?

error

……
……
……

config
file Application

Mona Attariyan - University of Michigan 9

How to Use ConfAid?

error

……
……
……

config
file Application

ConfAid

Mona Attariyan - University of Michigan 10

How to Use ConfAid?

error

……
……
……

config
file Application

ConfAid

Mona Attariyan - University of Michigan 11

How to Use ConfAid?

error

……
……
……

config
file

likely root
causes
1)…
2)…
3)…
……

Application

ConfAid

• Motivation

• How ConfAid runs

• Information flow analysis algorithms

• Embracing imprecise analysis

• Evaluation

• Conclusion

Mona Attariyan - University of Michigan 12

Outline

Mona Attariyan - University of Michigan 13

How Developers Find Root Cause

ExecCGI

Config file
file = open(config file)

token = read_token(file)

if (token equals “ExecCGI”)
execute_cgi = 1

…

if (execute_cgi == 1)
ERROR()

Application

Mona Attariyan - University of Michigan 14

How Developers Find Root Cause

ExecCGI

Config file
file = open(config file)

token = read_token(file)

if (token equals “ExecCGI”)
execute_cgi = 1

…

if (execute_cgi == 1)
ERROR()

Application

Mona Attariyan - University of Michigan 15

How ConfAid Finds Root Cause

Config file
file = open(config file)

token = read_token(file)

if (token equals “ExecCGI”)
execute_cgi = 1

…

if (execute_cgi == 1)
ERROR()

• ConfAid uses taint tracking

ExecCGI

Mona Attariyan - University of Michigan 16

How ConfAid Finds Root Cause

Config file
file = open(config file)

token = read_token(file)

if (token equals “ExecCGI”)
execute_cgi = 1

…

if (execute_cgi == 1)
ERROR()

• ConfAid uses taint tracking

ExecCGI

17

How to Avoid Error?

if (b)

if (c)

if (a)

18

How to Avoid Error?

if (b)

if (c)

if (a)

19

How to Avoid Error?

if (b)

if (c)

if (a)

This path ends before
the error happens

20

How to Avoid Error?

if (b)

if (c)

This path leads to
some other error

if (a)

This path ends before
the error happens

21

How to Avoid Error?

if (b)

if (c)

This path leads to
some other error

if (a)

This path ends before
the error happens

This path successfully
avoids the error

22

How to Avoid Error?

if (b)

if (c)

This path leads to
some other error

likely root
cause

if (a)

This path ends before
the error happens

This path successfully
avoids the error

23

How to Avoid Error?

if (b)

if (c)

This path leads to
some other error

likely root
cause

if (a)

This path ends before
the error happens

This path successfully
avoids the error

• Motivation

• How ConfAid runs

• Information flow analysis algorithms

• Embracing imprecise analysis

• Evaluation

• Conclusion

Mona Attariyan - University of Michigan 24

Outline

Mona Attariyan - University of Michigan 25

Data Flow Analysis

x = y + z , Ty = { , }

Tz = { , }
Tx = { , , }

Ty Tz

value of x might change,
if tokens or change

Tx = { , }

Taint propagates via data flow and control flow

Mona Attariyan - University of Michigan 26

Control Flow Analysis

/* c = 0 */
/* x is read from file*/

if (c == 0) {
x = a

}

Ta = { }

Tx = {

Tc = { }

Tx = { }

What could cause
x to be different?

},

Data flow Control flow

,(Ʌ)

Mona Attariyan - University of Michigan 27

Alternate Path Exploration

y depends on c

if(c)

/* c = 1*/
/* y is read from file*/

if (c) {
/*taken path*/
…

} else {
y = a

}

Mona Attariyan - University of Michigan 28

Alternate Path Exploration

y depends on c

if(c)

/* c = 1*/
/* y is read from file*/

if (c) {
/*taken path*/
…

} else {
y = a

}

Mona Attariyan - University of Michigan 29

Alternate Path Exploration

y depends on c

if(c)if(!c)ckpt

/* c = 1*/
/* y is read from file*/

if (c) {
/*taken path*/
…

} else {
y = a

}

Mona Attariyan - University of Michigan 30

Alternate Path Exploration

y depends on c

if(c)

y = a

if(!c)ckpt

/* c = 1*/
/* y is read from file*/

if (c) {
/*taken path*/
…

} else {
y = a

}

Mona Attariyan - University of Michigan 31

Alternate Path Exploration

y depends on c

if(c)if(!c)ckpt

/* c = 1*/
/* y is read from file*/

if (c) {
/*taken path*/
…

} else {
y = a

}

Mona Attariyan - University of Michigan 32

Alternate Path Exploration

y depends on c

if(c)

/* c = 1*/
/* y is read from file*/

if (c) {
/*taken path*/
…

} else {
y = a

}

Mona Attariyan - University of Michigan 33

Alternate Path Exploration

y depends on c

if(c)

/* c = 1*/
/* y is read from file*/

if (c) {
/*taken path*/
…

} else {
y = a

}

Mona Attariyan - University of Michigan 34

Effect of Alternate Path Exploration

/* c = 1*/
/* y is from file*/

if (c) {
…

} else {
y = a

}
What could cause
y to be different?

Ta = { }

Ty = {

Tc = { }

Ty = { }

},

Alternate path
exploration

,(Ʌ)

Alternate path
+ Data flow

• Motivation

• How ConfAid runs

• Information flow analysis algorithms

• Embracing imprecise analysis

• Evaluation

• Conclusion

Mona Attariyan - University of Michigan 35

Outline

Mona Attariyan - University of Michigan 36

Embracing Imprecise Analysis

• Complete and sound analysis leads to:

– poor performance

– high false positive rate

• To improve performance

• To reduce false positives

Bounded horizon heuristic

Single mistake heuristic

Weighting heuristic

• Bounded horizon prevents path explosion

• Alternate path runs a fixed # of instructions

37

Bounded Horizon Heuristic

if (b)

if (c)max reached,
abort exploration

likely root
causes

• Configuration file contains a single mistake

• Reduces amount of taint and # of explored paths

Mona Attariyan - University of Michigan 38

Single Mistake Heuristic

/* x=1, c=0*/

if (c == 0) {
x = a

}
Ta = { }

Tx = { , , (Ʌ)}Tc = { }

Tx = { }

• Configuration file contains a single mistake

• Reduces amount of taint and # of explored paths

Mona Attariyan - University of Michigan 39

Single Mistake Heuristic

/* x=1, c=0*/

if (c == 0) {
x = a

}
Ta = { }

Tx = { , , (Ʌ)}Tc = { }

Tx = { }

Mona Attariyan - University of Michigan 40

Weighting Heuristic

• Insufficient to treat all taint propagations equally

– Data flow introduces stronger dependency than ctrl flow

– Branches closer to error stronger than farther branches

• Assign weights to taints to represent strength level

– Data flow taint gets a higher weight than ctrl flow taint

– Branches closer to error get higher weight than farther

Mona Attariyan - University of Michigan 41

Example of Weighting Heuristic

if (x) {
…
if (y) {

…
if (z) {

ERROR()
}

}
}

likely root
causes

42

Heuristics: Pros and Cons

Bounded
horizon

Single mistake Weighting

Simplify control
flow analysis

Improve
performance

Reduce FP

Increase FP

Increase FN

FP = False Positive, FN = False Negative

Mona Attariyan - University of Michigan 43

ConfAid and Multi-process Apps

• ConfAid propagates taints between processes

– Intercepts IPC system calls

– Sends taint along with the data

• ConfAid currently supports communication via:

– Unix sockets, pipes, TCP and UDP sockets

– Regular files

• Motivation

• How ConfAid runs

• Information flow analysis algorithms

• Embracing imprecise analysis

• Evaluation

• Conclusion

Mona Attariyan - University of Michigan 44

Outline

• ConfAid debugs misconfiguration in:

– OpenSSH 5.1 (2 processes)

– Apache HTTP server 2.2.14 (1 process)

– Postfix mail transfer agent 2.7 (up to 6 processes)

• Manually inject errors to configuration files

• Evaluation metrics:

– The ranking of the correct root cause

– The time to execute the application with ConfAid

Mona Attariyan - University of Michigan 45

Evaluation

• Real-world misconfigurations:

– total of 18 bugs from manuals, forums and FAQs

• Randomly generated bugs:

– 60 bugs using ConfErr [Keller et al. DSN 08]

Mona Attariyan - University of Michigan 46

Data Sets

Mona Attariyan - University of Michigan 47

How Effective is ConfAid ?

Total
tokens

First
First
tied
w/1

Second
Second
tied w/1

Worse
than

second

OpenSSH 47-49 2 2 2 1 0

Apache 88-93 3 1 0 2 0

Postfix 27-29 5 5 0 0 0

Correct root caused ranked first or second
for all 18 real-world bugs

Mona Attariyan - University of Michigan 48

How Effective is ConfAid ?

Total
tokens

First
First
tied
w/1

Second
Second
tied w/1

Worse
than

second

OpenSSH 47-49 2 2 2 1 0

Apache 88-93 3 1 0 2 0

Postfix 27-29 5 5 0 0 0

Correct root caused ranked first or second
for all 18 real-world bugs

72%

Mona Attariyan - University of Michigan 49

How Effective is ConfAid ?

Total
tokens

First
First
tied
w/1

Second
Second
tied w/1

Worse
than

second

OpenSSH 47-49 2 2 2 1 0

Apache 88-93 3 1 0 2 0

Postfix 27-29 5 5 0 0 0

Correct root caused ranked first or second
for all 18 real-world bugs

72% 28%

Mona Attariyan - University of Michigan 50

How Effective is ConfAid ?

Total
tokens

First
First
tied
w/1

Second
Second
tied w/1

Worse
than

second

OpenSSH 47-49 2 2 2 1 0

Apache 88-93 3 1 0 2 0

Postfix 27-29 5 5 0 0 0

Correct root caused ranked first or second
for all 18 real-world bugs

72% 28% 0%

Mona Attariyan - University of Michigan 51

How Effective is ConfAid ?

Total
tokens

First
First
tied
w/1

Second
Second
tied w/1

Worse
than

second

OpenSSH 47 17 1 1 0 1

Apache 88 17 1 0 1 1

Postfix 27 15 0 2 0 3

Correct root caused ranked first or second for
55 out of 60 randomly-generated bugs

Mona Attariyan - University of Michigan 52

How Effective is ConfAid ?

Total
tokens

First
First
tied
w/1

Second
Second
tied w/1

Worse
than

second

OpenSSH 47 17 1 1 0 1

Apache 88 17 1 0 1 1

Postfix 27 15 0 2 0 3

Correct root caused ranked first or second for
55 out of 60 randomly-generated bugs

85%

Mona Attariyan - University of Michigan 53

How Effective is ConfAid ?

Total
tokens

First
First
tied
w/1

Second
Second
tied w/1

Worse
than

second

OpenSSH 47 17 1 1 0 1

Apache 88 17 1 0 1 1

Postfix 27 15 0 2 0 3

Correct root caused ranked first or second for
55 out of 60 randomly-generated bugs

85% 7%

Mona Attariyan - University of Michigan 54

How Effective is ConfAid ?

Total
tokens

First
First
tied
w/1

Second
Second
tied w/1

Worse
than

second

OpenSSH 47 17 1 1 0 1

Apache 88 17 1 0 1 1

Postfix 27 15 0 2 0 3

Correct root caused ranked first or second for
55 out of 60 randomly-generated bugs

85% 7% 8%

Mona Attariyan - University of Michigan 55

How Fast is ConfAid?

Average Execution Time

OpenSSH 52 seconds

Apache 2 minutes 48 seconds

Postfix 57 seconds

OpenSSH 7 seconds

Apache 24 seconds

Postfix 38 seconds

Average execution time for real-world bugs: 1m 32s

Average time for randomly-generated bugs: 23s

• ConfAid automatically finds root cause of problems

• ConfAid uses dynamic information flow analysis

• ConfAid ranks the correct root cause as first or
second in:

– 18 out of 18 real-world bugs

– 55 out of 60 random bugs

• ConfAid takes only a few minutes to run

Mona Attariyan - University of Michigan 56

Conclusion

Mona Attariyan - University of Michigan 57

Questions?

• ConAid may or may not report all

• For independent mistakes, ConfAid first
finds the one that led to the first failure

• For dependent mistakes, ConfAid may
report all based on their effect on program

Mona Attariyan - University of Michigan 58

What if there are multiple mistakes?

Mona Attariyan - University of Michigan 59

Effect of Bounded Horizon Heuristic

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800

E
x

e
c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Maximum # of explored instructions

OpenSSH Server Postfix

Mona Attariyan - University of Michigan 60

Effect of Weighting Heuristic

0

20

40

60

80

100

OpenSSH Apache Postfix

F
a

ls
e

 P
o

s
it

iv
e

s

Max # tokens: 49

Max # tokens: 93

Max # tokens: 5

