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Configuration Troubleshooting Is Difficult
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What To Do With Misconfiguration?
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config file
Ask colleagues

Search manual, FAQ,
online forums

Look at the code
if available
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What To Do With Misconfiguration?

A tool that automatically finds the root cause 
of the misconfiguration in applications?
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ConfAid

Application code has enough information 
to lead us to the root cause

Insight

Dynamic information flow analysis on 
application binaries

How?
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How to Use ConfAid?

error

……
……
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config
file Application
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• Motivation

• How ConfAid runs

• Information flow analysis algorithms

• Embracing imprecise analysis

• Evaluation

• Conclusion
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Outline
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How Developers Find Root Cause

ExecCGI

Config file
file = open(config file)

token = read_token(file)

if (token  equals  “ExecCGI”) 
execute_cgi = 1    

…

if (execute_cgi == 1)
ERROR()

Application
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How ConfAid Finds Root Cause
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How to Avoid Error?

if (b)

if (c)

if (a)
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Outline
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Data Flow Analysis

x = y + z , Ty = {    ,    }

Tz = {    ,    }
Tx = {    ,    ,    }

Ty  Tz

value of x might change, 
if tokens      or      change

Tx = {    ,    }        

Taint propagates via data flow and control flow
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Control Flow Analysis

/* c = 0 */
/* x is read from file*/

if (c == 0) {
x = a

}

Ta = {   }

Tx = {

Tc = {   }

Tx = {   }

What could cause
x to be different?

},

Data flow Control flow

,( Ʌ )
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Alternate Path Exploration

y depends on c

if(c)

/* c = 1*/
/* y is read from file*/

if (c) {
/*taken path*/
…

} else {
y = a

}
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Alternate Path Exploration

y depends on c

if(c)
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Effect of Alternate Path Exploration

/* c = 1*/
/* y is from file*/

if (c) {
…

} else {
y = a

}
What could cause
y to be different?

Ta = {   }

Ty = {

Tc = {   }

Ty = {   }

},

Alternate path 
exploration

,( Ʌ )

Alternate path 
+ Data flow
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Outline
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Embracing Imprecise Analysis

• Complete and sound analysis leads to:

– poor performance

– high false positive rate

• To improve performance

• To reduce false positives

Bounded horizon heuristic

Single mistake heuristic

Weighting heuristic



• Bounded horizon prevents path explosion

• Alternate path runs a fixed # of instructions

37

Bounded Horizon Heuristic

if (b)

if (c)max reached,
abort exploration

likely root 
causes



• Configuration file contains a single mistake

• Reduces amount of taint and # of explored paths
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Single Mistake Heuristic

/* x=1, c=0*/

if (c == 0) {
x = a

}
Ta = {   }

Tx = {    ,    , (    Ʌ    )}Tc = {   }

Tx = {   }



• Configuration file contains a single mistake

• Reduces amount of taint and # of explored paths
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Single Mistake Heuristic

/* x=1, c=0*/

if (c == 0) {
x = a

}
Ta = {   }

Tx = {    ,    , (    Ʌ    )}Tc = {   }

Tx = {   }
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Weighting Heuristic

• Insufficient to treat all taint propagations equally

– Data flow introduces stronger dependency than ctrl flow

– Branches closer to error stronger than farther branches

• Assign weights to taints to represent strength level

– Data flow taint gets a higher weight than ctrl flow taint

– Branches closer to error get higher weight than farther



Mona Attariyan - University of Michigan 41

Example of Weighting Heuristic

if (x)  {
…
if (y) {

…
if (z) {

ERROR()
}

}
}       

likely root 
causes
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Heuristics: Pros and Cons

Bounded 
horizon

Single mistake Weighting

Simplify control 
flow analysis



Improve
performance

 

Reduce FP  

Increase FP

Increase FN

FP = False Positive, FN = False Negative
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ConfAid and Multi-process Apps

• ConfAid propagates taints between processes

– Intercepts IPC system calls

– Sends taint along with the data

• ConfAid currently supports communication via:

– Unix sockets, pipes, TCP and UDP sockets

– Regular files



• Motivation

• How ConfAid runs

• Information flow analysis algorithms

• Embracing imprecise analysis

• Evaluation

• Conclusion
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Outline



• ConfAid debugs misconfiguration in:

– OpenSSH 5.1 (2 processes)

– Apache HTTP server 2.2.14 (1 process)

– Postfix mail transfer agent 2.7 (up to 6 processes)

• Manually inject errors to configuration files

• Evaluation metrics:

– The ranking of the correct root cause

– The time to execute the application with ConfAid
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Evaluation



• Real-world misconfigurations:

– total of 18 bugs from manuals, forums and FAQs

• Randomly generated bugs:

– 60 bugs using ConfErr [Keller et al. DSN 08]
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Data Sets
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How Effective is ConfAid ?

Total
tokens

First
First
tied 
w/1

Second
Second
tied w/1

Worse 
than 

second

OpenSSH 47-49 2 2 2 1 0

Apache 88-93 3 1 0 2 0

Postfix 27-29 5 5 0 0 0

Correct root caused ranked first or second
for all 18 real-world bugs
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How Effective is ConfAid ?

Total
tokens

First
First
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w/1

Second
Second
tied w/1
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OpenSSH 47 17 1 1 0 1
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Postfix 27 15 0 2 0 3

Correct root caused ranked first or second for
55 out of 60 randomly-generated bugs
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How Fast is ConfAid?

Average Execution Time

OpenSSH 52 seconds

Apache 2 minutes 48 seconds

Postfix 57 seconds

OpenSSH 7 seconds

Apache 24 seconds

Postfix 38 seconds

Average execution time for real-world bugs: 1m 32s

Average time for randomly-generated bugs: 23s



• ConfAid automatically finds root cause of problems

• ConfAid uses dynamic information flow analysis

• ConfAid ranks the correct root cause as first or 
second in:

– 18 out of 18 real-world bugs 

– 55 out of 60 random bugs

• ConfAid takes only a few minutes to run
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Conclusion



Mona Attariyan - University of Michigan 57

Questions?



• ConAid may or may not report all

• For independent mistakes, ConfAid first 
finds the one that led to the first failure

• For dependent mistakes, ConfAid may 
report all based on their effect on program
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What if there are multiple mistakes?
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Effect of Bounded Horizon Heuristic
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Effect of Weighting Heuristic
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