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Abstract matter of augmenting packets with more expressive
forwarding directives that routers execute. Rather, in ad-

We present a network design that provides ﬂexibledition for each forwarding directive that enhances flex
and policy-compliant forwarding. Our proposal centers ' i
policy - warding. Lur prop ibility, the parties involved in forwarding should be able

around a new architectural concept: that of pacikds " . L .
A rule is a simple if-then-else construct that described® Set policies that constrain that directivy the policy

the manner in which the network should — or should notOf entity A (host, middlebox operator or ISP) we refer to

— forward packets. A packet identifies the rule by whic:hthe decision whether to approve or reject a forwarding

it is to be forwarded and routers forward each packe |rect|v§ baged Qms busmess.or techmcal 90"?"5- By
in accordance with its associated rule. Each packet rul orwar_dmg directive we refgr to instructions provided by
is certified, guaranteeing that all parties involved inendpomts to routers and middleboxes on how to forward

forwarding a packet agree with the packet’s rule. Packetéheir _?acrljets. FO(; e;ampl? a for(;/vgrding iirecti;]/e Co?_]ld
containing uncertified rules are simply dropped in theSPecify that sendeb can forward its packets throug

network. We present the design, implementation an iddlgbobeefore reach_ing destinatidh An example
evaluation of a Rule-Based Forwarding (RBF) archi—Of policy would beMrefusing to accept packets fro

tecture. We demonstrate flexibility by illustrating how 1o better illustrate our thesis, consider its applicatmn t
caching, middlebox selection and DDoS protection.for sendesSto send packets to destinatibnDshould be

the overhead RBF imposes is within the capabilities ofi-€-,€ither by explicitly allowing or denying packets from
modern network equipment. D. Unfortunately, IP does not provide such functionality,

effectively leaving the end-hosts vulnerable to DoS
attacks. Unsurprisingly, this lack of functionality has
been identified as one of the main security vulnerabilities
A central component of a network design is its forward- of the Internet, and several solutions have been proposed
ing architecture that determines the manner in whichyo address this limitation [51, 52, 21, 32, 37, 22)].

packets are transported between two endpoints. Today’s ot coyrse, forwarding directives and policies are only

Internet offers users a simple forwarding model: a usefq 04 as the ability of the network to enforce them and

hands the network a packet with a destination addresg, g arantee their authenticity. What complicates policy
and the network makes a best-effort attempt to delivelntorcement is the involvement of multiple parties in

the packet to the destination. Although simple, this archi-

f R achieving the packet’s flexible behavior—the network
tecture is also fairly limited and there have been repeatedgpyjice providers along the path, potential middlebox

calls to extend the Internet’s forwarding architecture foroperators and. of course, the source and destination. As

greaterflexibility—allowing, for example, the user to se- g, the network must ensure that a packet's forwarding
lect the path his packets should traverse [20, 44, 47, 49;irective complies with the policies ddll parties in-

or to specify whether packets can/should be processegeq. in our previous middlebox example, the network
by middleboxes and active routers [47, 49, 29, 48, 25]. ,ust ensure tha¥lis willing to relay packets frons
Achieving a flexible forwarding architecture has thusi, p |t Mdoes not approve, the network should simply

been a long-held, if elusive, goal of Internet researchdropthe packets before reachikg
[47, 49, 29, 20, 48, 25, 40]. Our work in this paper shares

this goal. Our point of divergence from prior efforts
starts with the observation that forwarding flexibility is
inherently coupled with issues pblicy.

Our thesis is that achieving flexibility is not just a

1 Introduction

In this paper, we propose a neule-basedorwarding
architecture, RBF, that treats flexibility and policy
enforcement as equal design goals. RBF is based on a
new architectural concept — that of packgles In RBF,
instead of sending packets to a destination (IP) address,

*University of California, Berkeley end-hosts send packets to a rule. Rules are created by
fICSlI, Berkeley destinations. A sender fetches the destination’s rule from
fLancaster University a DNS-like infrastructure and inserts it in the packets
SIntel Labs, Berkeley sent to that destination.



A rule is a simplei f -t hen- el se construct that RBF relates to an extensive body of work on both for-
describes the manner in which the network should — owarding flexibility and policy enforcement. We discuss
should not — forward packets. For example, a destinatiomelated work in detail later in this paper and here only
A can receive packets only from souig@sing the rule:  note that, at a high level, we believe what distinguishes

Ra: if(pkt.source # S) drop pkt RBF is its focus orsimultaneouslgupporting flexibility
and the multi-party policy requirements that such
flexibility implies. As we shall see, this goal leads us to
a design that differs significantly from prior proposals.

Finally, we note up-front that RBF is more complex

The above examples are anecdotal (we present preciskan the existing IP forwarding architecture, which is
syntax and additional examples §B) but serve to frequently cited for its simplicity. In addition, RBF
illustrate how destinations can control and customizerelies on strong assumptions such as anti-spoofing, the
how the network forwards their packets in a manner noexistence of rule-certifying authorities and a DNS-like
easily accommodated by current IP. In effect, with rules,infrastructure to distribute rules. The gain, relative to
a receiving host must specify botthich packets it is  today’s IP forwarding, is significantly improved flexibil-
willing to receive as well akiow it wants these packets ity and security; we posit that the greater complexity of
forwarded and processed by the network. our solution is a perhaps inevitable consequence of this

The rule-based architecture we develop offers theicher service model.
following properties:

Rules are mandatory: routers drop packets without 2 Design Rationale and Overview
rules We start with the goal of network flexibility and allowing
users control over how the network processes their pack-

Rules are provably authorized: all recipients (end- & -
hosts, middleboxes and/or routers) named in the rults. The abstraction that perhaps best supports flexibility
{s simply that of aprogram leading to an architecture

must explicitly agree to receive the associated packet(s}

Routers, middleboxes and end-users can verify a rule’¥/N€re users write packet-processing programs that
authorization. routers execute. This vision of code-carrying packets is,

of course, the cornerstone of active networking [48, 50]
and we borrow this as our starting point in designing
RBF. However, as we shall see, RBF severely dials
back on the full-fledged generality of the original active
Rules allow flexible forwarding: rules are a (con- networks’ vision to arrive at a significantly simpler and
strained) program that allows a user to “customize” howsafer architecture.
the network forwards its packets. Rules are thus a form of program. The challenge then is
The first two properties assist in policy enforcement byto appropriately constrain these programs/rules to ensure
ensuring a packet is only forwarded if explicitly cleared that they cannot harm the network or other hosts. The key
by all recipientsi(e., if it conforms with the policies of insight behind RBF is that these constraints must extend
all recipients) specified in the rule. Since RBF definesalongtwodimensions. First, rules must bafei.e.,guar-
policies on rules, any recipient will have the ultimate sayanteed not to corrupt or exhaust network resources. In
on whether to accept any rule that contains forwardingaddition, however, we must constrain rules to respect
directives sending packets to it. Since all forwardingthe policiesof all stakeholders involved—source, desti-
directives are encoded into rules, we achieve our goal ohation, middleboxes and ISPs. This latter requirement is
enabling any entity affected by a forwarding directive to unique and yet critical to networking contexts but was
constrain that directive. under appreciated in early active networking proposals.
The third property ensures rules cannot be (mis)used to To address policy safety, RBF incorporates two key
attack the network itself. As we shall show, the last prop-design decisions:
erty provides flexibility since users can give the network(D1) Layering: we believe network operators will be
fine-grained instructions on how to handle their packetspnwilling to relinquish control of route discovery and
enabling: explicit use of in-network functionality at computation and hence we layer RBF above current IP
middleboxes and routers, loose path forwarding, multi-forwarding and do not allow rules to modify the IP-layer
path forwarding, anycast, multicast, mobility, filterinfy o forwarding information base (FIB).
undesired senders/ports/protocols, recording of on-patfD2) Verifiable stakeholder agreement:we require
information, etc. In the remainder of this paper, we that a rule be authorized by all entities it explicitly
present the design, implementation and evaluation of @aames €.g.,destination, middleboxes or routers). This
forwarding architecture that meets the above propertigsensures agreement of the stakeholders’ policies with

Or a mobile clientB might route certain video content
through a 3rd-party transcoding proxy with:
Rp: if(pkt.URL = hulu.com) sendPktTo trnscdPrxy

Rules are provably safe:rules cannot exhaust net-
work resourcese.g.,rules cannot compromise or corrupt
routers nor cause forwarding loops.



the rule’s intent; in particular it also ensures that rules - specialized
. . .. . . c

cannot violate ISPs’ routing policies, since providers = forwarding
.. . . © i

must explicitly agree to have their routers named in © functions

. - . e (optional)
rules. To achieve this property, in RBF rules are certified ~ - -- . opriona
by trusted third parties, which in turn gather proofs of -

. . .. Rule Router
policy compliance from each of the rule participants. P Forwarding | | Attributes | | REF
To address rule safety, we impose strict constraints
on rule syntax, such that safety can be verified through e
simple static analysis:

(C1) Rules cannot directly modify router state.This
avoids corruption of router state. However, this can be
a limiting restriction, particularly to network operators
who wish to expose in-network services such as caching[  Rule [ Attributes1 | [ Rule [ Attributes2 |
or monitoring to end users. To accommodate this, RBF
allows operators to deploy specialized packet-processing
functions at their routers and allows rulesigokethese ) ) ,
functions. Such “router-defined functions” do allow rules _ '€ design of a rule-based architecture involves the
to update router state, but only indirectly via code in_de5|gn of rules themselves as well as the surrounding

stalled, and hence presumably trusted, by operators. Thigfrastru_cture require_d to support the distribution,
model for router-defined functions thus represents a migProcessing and securing of rules. Consequently, the RBF

dle ground in the tradeoff between flexibility and safety. architecture consists of four main components:
(C2) The rule “instruction set” is limited to only four o The specification of packetiles— their syntax, packet

Figure 1: RBF router and rule forwarding

possibleaction statements: (& or war d the packet to encoding, constraints on what rules can and cannot do.
the underlying IP layer, (b) nvoke a router-defined o Certificate authorities calleBule Certification Enti-
function, (c)modi fy the packet header and (dy op ties (RCEs) that certify rules after checking that they

the paCket, plUS conditionals that determine whether an are well formed, and that every destination Specified
action should be taken based on reading packet headersin the rule agrees with.g., has signed) the rule.

and router state. Note that there is no action that allows Modified IP routersthat verify rule certificates and
backward jumps across rule statements. This prevents process packets as described above.

looping or resource exhaustion at routers and ensures A modified DNS infrastructurehat either directly
execution time is linear in program size. resolves a host D’s domain name to D’s rule, or
The above constraints represent a stark departure from resolves D’s domain name to another rule resolution
the rich generality of the active networks vision. Indeed, server which in turn provides D’s rule.
rules are more a sequence of packet steering directives,
rather than a full-fledged program. The benefives-  Assumptions:RBF builds on three major assumptions.
ifiable rule and policy safetyMoreover we find that,  First, RBF assumes the existence of an anti-spoofing
despite these constraints, rules suffice to express a wid@echanism. This is required because rules may use
variety of forwarding behaviors as we will later illustrate source and destination IP addresses in their decision pro-
cess and hence addresses must be legitimate, otherwise
policy compliance cannot be enforckth this paper we
We now provide a brief overview of the main compo- assume the use of ingress filtering, although RBF can
nents and assumptions of an RBF architecture. Figure @ccommodate alternate solutioresg., Passports [36].
illustrates the forwarding architecture of an RBF-enabledlhe rationale behind our choice of ingress filtering is
router. On receiving a packet, the router hands it to thelescribed ir4.
rule forwarding engine which processes the packet's Second, we assume routers know the public keys of
rule. Such processing may involve reading router statd/RCEs and can thus verify rule certificates. We assume
that the network operator has opted to expose; we terrfhe number of RCE organizations is relatively small and
such stateouter attributes Based on information in the these keys can be statically configured at routers, akin to

packet headerpéa_cket attr_lbute)sand router attributes, , !Note that any solution for blocking undesired traffic inside
the_ rule for_""ard'r_]g e_ng'ne m_ay _updat_e the packet Sthe network requires a way to identify sources. Anti-spapfin
attributes  (including its destination), invoke router jgengifies users based on their addresses. An alternasite, i
functions, drop the packet and/or hand the packet to th@jentify users by their access path [51, 52], but this apgroa
underlying IP forwarding engine. Recall that for safety ties communications to a specific path restricting flexipili
reasons the rule is not allowed to update router state.3 (e.g.,for mobility, traffic engineering, multi-path forwarding)

2.1 Architecture Overview and Assumptions




how browsers today are configured with the list of majorimplements a specific functiore(.,a rule can check
certificate authoritie$.Note that although we assume a rout er . | ocal _cache to discover whether the router
small number of RCE organizations, we envisage eaclmaintains a local content cache). Rules are allowed to
organization will run geographically replicated instamice update packet attributes, but not router attributes.
of their service for improved scalability and robustness. Each rule has an associatedsethat ensures the rule
Finally, we assume that the rule resolution infras-.5, only be used for a limited period of timé4(3).
tructure (whether DNS or the resolution servers theaso every rule has an identifier (ID) defined as the con-
DNS points to) is well provisioned, akin to how major catenation of a hash of the rule owner’s public key and
Internet services (Google, DNS, Amazon) operate todaygp, index unique to the ownérash(PKowner):index In
relying on engineering approaches such as maintainingection 7 we present an optimization to reduce packet
a presence at major ISPs, IP anycasting, bandwidth prosyerhead and identify most rules by using a hash over
visioning, and so forth. As describedja, we make this  {hejr content. This optimization can be used in the
assumption to protect against “denial of rule” attacks.  ~ommon case when there is no need for multiple rules
Clearly, these assumptions are significant and may imgiith the same identifier; for example, mobile hosts may

pede an immediate deployment of RBF in practice. Andequire different rules with the same identifier (§8e4).
even with these assumptions, the resulting RBF design is

far from trivial (for this reason, we in fact offload some L . .
of the details to an extended technical report [42]). How-2 packet to qut'n.at'.OD via a W‘?‘ypo'”‘ routeRl.;
ever, we hope through the design presented in this pap& packet attributevi ?'.t edRl indicates whether the
to start a focused discussion about how best to practipaCket has already visitedl.:

cally introduce flexibility and security into the Internet ;

The following is an example of a rule that forwards

if(packet.visitede == FALSE) //from src. to R1

and about what set of primitives routers must support to if(rOEteréiddress '= R1)
achieve this goal. In this paper we present one solution to clse packet. visitedR1 = TRUE //t0 D
this problem; in510 we succinctly discuss the arguments if (packet. visitedR1)

that have led us to these specific assumptions and design. sendto D

wheresendt o involves setting the IP destination ad-
3 The RBF Data Plane dress tdD and then handing the packet to the underlying
In this section we describe the key components of thdP forwarding engine (assuming, of course, tiiais
RBF data plane: rule syntax and how routers verify andnot the local address). Rule execution terminates at a
execute rules. We then present examples of how rulesendt o or dr op action; the packet is dropped if the
are used. rule does not arrive at an expliciendt o. Finally,
rules cari nvoke local functions at the router; after the
invocation the packet is returned to the forwarding layer.
RBF represents a rule as a sequence of actions that can
be conditioned byf-then-elsenstructions: 3.2 Distributing Rules to Routers

if (<CONDITION>) ACTION1
else ACTION2

3.1 Rule Specification

To forward a packet, a router must first obtain its rule.

Conditions arecomparison operatorapplied to packet There are two potential approaches: (1) rules are carried
and router attributes. An action can be one of: in packets, (2) routers use an out-of-band mechanism to
obtain rules. In RBF, we choose to carry rules in packets

1. forward the packet to the underlying IP engine; since the second approach would require complex rule

2. i nvoke a local function available at the router; distribution and storage protocols, and would incur extra
3. updat e the value of the packet attributes; delays in communication setup (in fact this approach
4. dr op the packet. would likely require special “rule-less” traffic to install

. ) ] rules). The tradeoff is higher overhead on the data path
(IP addresses, ports, protocol type) and, optionally, gyacket's certificate; our evaluation §V suggests this

number of custom attributes with user-defined semanticsyyerhead is acceptable given the capabilities of modern
For simplicity, RBF does not allow rules to dynamically network equipment.

add new attributes. Router attributes may include, for
example, the router's IP address, AS number, link
congestion levels, and flags indicating whether the route

A packet with sourcé& and destinatio® must include
if;\destination rule R.D, which is the rule specified and
owned byD. In addition, a packet may includeraturn

2Some may regard this model of security unsatisfactory, werule; this is the rule specified and owned Byand is
discuss alternatives to this deploymentih 4 used for return traffic fronDto S.




3.3 Rule Verification R_mbox_port:

. . . if (packet.dst_port == 80)
As mentioned earlier, rules are certified by a Rule Cer- Isendto ) Il directly to D
e ; ; - else
tification Entity (RCE) and all pa_c_ket§ carry a signature if (packet . scrubbed == FALSE) //before scrubber
that routers must verify. The verification load at routers if(rot;ter-sadgress != Scrb)
is eased by two factors. First, only routers at trust bound- ojoendto. Ser I at serubber
aries need to verify rules. Second, routers can cache ver- _packlft : sscrut?bed = TRUE ;;markb scrubbed
ification results by maintaining a hash of the rule and its else | OKE Derb-service ser
signature. With caching, the full signature verification is sendto D Il after scrubber

only required for the first packet forwarded on anew rule Thys, similar to previous proposals [47, 49], RBF
(as long as the verification result is cached). Thus, verifi-pro\,ides explicit support for middleboxes such as

cations can be limited only to border routers and, assumyaN optimizers, proxies, caches, encryption engines,
ing a large enough cache, the verification rate is given byranscoders, SSL offloaders, intrusion detectéa,

:E: ;rr;]v:tluztli :f tﬁzcdkdesfstovmz :\(/a(\a/\r/hréjlels. nBy ;:kn;traSt’Secure Middlebox Traversal:In the previous example,
9 Y P " an attacker can directly send a packet with the attribute

Different cryptographic solutions offer different trade- , 5,04 set 50 as to appear that the packet has already vis-

offs between signature length, signing time (incurredited the middlebox. More generally, one should be able
only at RCEs), verification time (incurred at routers)L

d . O desi lioti o enforce that rule directives are respected when the rule
and security. Our current RBF design assumes Elliptica articipants (sources, middleboxes) are not trusted.
Curve Cryptography (ECC) because ECC signatures are

. o - .~ One approach to protect against this behavior is to
shorter than RSA ones, while exhibiting similar Secu”tyleveragepFF){BF’s assSmption t?lat sources cannot spoof
properties. At the same time, verification time in ECC

. . . ~~their add .M ifically, aft h middleb
is typically longer than RSAs. However, in practice elr adcresses. ore specifically, atier each middiebox

iticati b lerated using ASIC-based | the rule can verify that the packet has indeed been sent by
verilication can be accelerated using -based 1My, o required middlebox, since middleboxes/waypoints
plementations or dedicated specialized co-processor

Such implementations are already commerciall availﬁeed to set the (non-spoofable) source address attribute
able 5 ? 81 and incoroorated intg network a )Iliancesin packets (for brevity we omit this in the presented
[5. 7. 8] P ! PP examples); see [42] for more details on this approach.
and routers. Furthermore, traffic measurements [4] show . .
In an alternate approach, special cryptographic func-

that new flow arrivals represent less than 1% of theions deployed at middleboxes and destinations can be
link capacity on average and less than 5% of the totaf ploy

number of packets, a volume that can be accommodate%sgd to crea?e/venfy proofs guar.anteemg the packet has

) . visited the middlebox, as follows:
using commercial ECC modules [5, 7] or recent research
R_mbox_port_crypto :

proposals [53, 34]. We evaluate different signature it (packet. dst_port == 80) _
mechanisms briefly i§ 7 and in greater detail in [42]. lsendto D Il directly to D
else
if (packet.proven == FALSE)
3.4 Examples of RBF usage if (router.address != Scrb) //before scrubber
: o . dto Scrb
To illustrate the application of rules, we present a series ot /lat scrubber
of example usage scenarios; the rule syntax in these if(paﬁktet-scrggbgd =;RLFJ/ELSE)
. . . . acket.scrubbe =
examples is largely identical to the high-level rule e oke Serb sarvice /1(1) scrub
language supported by our RBF prototype routd),( else et RUE /1 scrubbed
. . . . . : acket.proven =
with simplifications for readability as appropriate. e oke Prove /1(2) create proof
; RS : else /1 proven
Pprt—based f||ter|ng.A_web server.D, uses the following f (router . address I= D)
simple rule to ensure it only receives packets on port 80: sendto D

else

R-filter_port: invoke VerifyAndDeliver //check proof at D

if (packet.dst_port != 80) drop;

sendto D In this example, th@r ove function at the middlebox

Middlebox Support: In addition to accepting traffic di- Signs the immutable part of the packet header and/or
rectly on port 80,D might use the following rule to Payload, and adds this signature as an attribute to the
route all other incoming traffic through a packet scrub-Packet header. In turn, th&/erifyAndDeliver

ber [2’ 6] This functiona”ty can be dep'oyed either by function atD checks the middlebox Signature a.nd, if the
D's provider (as a router function), or by a third party (at check succeeds, delivers the packet to the end applica-

a middleboxScr b) as presented belofv: tion. Note that checking the signature requires that
knows the public or shared key(s) of middlebox(es); for

3Note thatScrb can represent the address of a load efficiency, the middlebox could sign the hash chain of a
balancer used with several physical middleboxes. . batch of packets.




DoS Protection: To protect against DDoS attacks, a Other Examples: Our technical report [42] provides ex-
serverD can create a custom rule for each client thatamples of applying RBF to a range of additional ap-
drops packets from any source other than the client. Bylications, including: secure loose path forwarding [44,
controlling the number of rules active at a given time, 40], multipath forwarding, network diagnostics, anycast,
D controls the maximum number of active clients (eachreverse traceroute (path recording), delay-tolerant net-
rule has an associated lease period). An example of a rulgorking and even source control over middlebox or path

similar to a network capability [52, 51] is: selection. Importantly, these individual examples can be

R_filter_src: combined as needed. For example, a content distribution
”éf’j‘fket'source 1= requester-IP) network can distribute load among multiple sites using

_..Iltest of the rule anycast and, at the same time, protect its servers with on-

Similarly to capability based architectures [52, 51], path IDS functionality provided by ISPs.

our solution is based on the premise that destination§l The RBF Control Plane

are able to grant rules on demand, and that any requester

can ask for a destination’s rule. In RBF, this task fallsIn RBF, ISPs provide their clients with rules to access
to the rule resolution infrastructure and raises the posthe local DNS server and a Rule Certification Entity
sibility of a “denial of rule” attack on this infrastructure (RCE), which can certify clients’ rules. This information

(akin to denial-of-capability attacks in capability-bdse can be provided through a modified DHCP service,
systems[41]). We present the details of rule resolutiorsimilar to the way ISPs or organizations provide the IP

and discuss denial-of-rule attacksguh address of DNS servers today.

Mobility: Host D changes its network IP address due In this section, we describe the RBF mechanisms for

to physical movement. In RBID can continue an exist- rule creation and certificationg4.1), rule dis_,tribution
ing communication without having to re-establish it. To (4.2), lease enforcemeri#(.3) and anti-spoofing;.4).
achieve thisD creates a rule for the new address with the4.1  Rule Creation and Certification

same ID as the rule used in the existing communication

o To receive traffic, a client must create a rule that allows
and places it in the packet as the return rule.

one or more sources to send traffic to it. Before distribut-
Multicast: For security reasons, RBF does not supporting this rule, the client must ask an RCE to certify it.
packet replication, and thus multicast cannot be imple-RCE certification guarantees that rules obey the policies
mented entirely at the RBF layer. Instead, multicast carof all stakeholders. In particular, certification guaraste
be implemented by invoking multicast functionality de- the following properties:

ployed by ISPs at a subset of their routers; this function- o )

ality maintains (soft) state at routers to create a (reversé: EVery destination in the rule.¢., any address that
path) multicast tree. This approach implements essen- 2PPearsas anargumentgendt o instruction) has
tially an overlay multicast solution, which leverages the ~agreed to receive packets using that rule;

IP multicast functionality at on-path routers (see [42] for 2. The operators providing router functions invoked by
details). the rule approve the rule behavior;

On-path Caching: Consider an ISP that deploys 3- The rule cannot cause infinite loops;
caching functionality at some of its (border) routers. A 4. The rule cannot bypass ISP routing policies.
web-serviceD can contract with and use this function-

ality. For this purposeD creates and publishes the fol- A client can either create rules itself and directly ask

an RCE to certify these rules, or use a trusted DHCP-like

low‘;_%;cuhlié: servi<_:e to crea_te and_ certify rules on its behalf. In the
if (router.caching_available and remainder of this section we present the former case.
packet . bt e ey adaregs 2AdTes®) As described above, the ISP provides each client with
invoke Caching a rule to access an RCE that has a contract with the ISP.
sendto D The following example shows a possible rule that allows
where the crt router attribute makes sure the aclientDto access an RCE naméd
caching functionality is called just once at each Rp—c: if (source == D) sendto C
caching-enhanced router. Before certifying a rule, an RCE verifies that the rule

In this example, the caching functionality can decidehas been authorized by each destination that appears in
to respond to the requester directly and not forwardthe rule. A client who has created a rule authorizes it by
the packets further t®, which reduces latency for the simply signing the rule with its private key. A client that
requester and traffic load Bt A similar rule can support appears in the rule as a destination, other than the rule’s
recent proposals for content-centric routing [35, 33]. 6 creator, will first verify that the content of the rule obeys



m an absolute valug4.3), the only effect of replaying rule
[R,lease] o, [IPo Kl € requests is increased traffic at the RCE. The maximum
[ Rute | lease value thaC can sign for a rule is negotiated
Payload i ﬂ/ betweerD's ISP andC. Furthermore, RCEs can limit the
ée’ R, lease] number of clients contacting them and can limit each
Figure 2: Rule Certification user’s certification rate, as we discuss in this section.

Packet Format:

’ I"ln:’ °

Certify multiple destination rules: In this case, every

its policies before signing the rule. For example, andestinationice.,any host, middlebox, or waypoint router
intrusion detection box may verify that the destinationthat appears as an argument afendt o instruction) in
indeed belongs to a client allowed to use the serviced ule must agree to receive packets on that iiide the
(e.g., based on a contract between the client and thdule must respect its policies. In particular, every such
provider of the intrusion detection service), a waypointdestination must sign the rule. One of the destinatibps,

router may verify that the final destination is allowed to collects the signatures of all the other destinations along
use source-routingtc. with their certificates binding their public keys to their

Let (Kp, K;') denote the (public, private) key pair addressed then sends this information to its RCE. In

to an RCE that the client signing the rule with private have signed the rule and sends the signed rule back to

key K5, indeed owns IP addressPp, clientD sends D- The lease signed by the RCE has the minimum du-
a certificate along with the signed rule that binds itsfation between the requested lease and the leases of all

public key K, and IP addressPp. This certificate is the (_:e_rtificates binding the addresses and the keys of the
signed by an entityl, i.e., [IPp, Kpy1, wherek ;b participants.
represents the private key @f Clearly, the RCE must Certify rules invoking functions: Operators providing
trust entityT. In fact, in our solution we will assume that router functions can restrict which rules can invoke these
T is itself an RCE. functions. The certification process is similar to certify-
Next, we present the rule certification process in detailjng multiple destination rules. The identifiers of func-
initially for the case in which the rule has a single tions whose invocation requires authorization are repre-
destination, and then for the case in which the rule hasented as hashes of public keys. RCEs certify a rule con-
multiple destinations or waypoints/middleboxes. taining such an invocation only if the rule is signed with

Certify single-destination rules: Assume destinatiod  the private key corresponding to the function identifier.

wishes to certify a rul& that forwards packets only to Bootstrapping: To certify rules, clientD needs to (1)
its addres$ Pp, e.g.,R sendto |Pp. Also,assum®  know the rule to contact an RCE; (2) provideCwith a
already has a rulBp on which it can be reached by the return rule to receive the certified rule; and (3) obtain the
RCE C. D obtains this rule as part of the bootstrapping certificate from a trusted authority that signs the binding
process, which we discuss later. betweerD's key K p and its address . We assume the
Fig. 2 shows the certification @fs rule,R, by C: ISP provide with a rule to access an RAE(similarly
to how ISPs today bootstrap clients’ access to the DNS).
Given this initial rule, we use a simple request-response
exchange between the client and the RCE to obtain both
. - . the certificate binding the client’s IP address to its key as
€., [IPD’KD]K¥1' Upon receiving this requesg well as itsfirst rule. gue to space constraints, we re):‘er

verifies the certificate as well as the signature of thethe reader to our extended technical report [42] for more
requested rule. These ensure that the request has be

GBtails on the bootstrapping process.
made by the owner okp and that the requester is ! . P.pl g . -
also the owner of Pp. In addition,C verifies thatR ~ RCE load and availability: To control its certification

is well formed (se&5). load, an RCE can rate-limit the number of certification
requests that it processes from each individual client.
Clients are identified by IP address; the anti-spoofing
mechanism prevents clients from impersonating each
other. Alternatively, clients can be identified by “person-
alized” rules provided by the ISP to the customer to ac-
cess the RCE; such rules may have a finer granularity

The certification procedure (Fig. 2) needs only tothan the anti-spoofing mechanism. RCEs can indirectly
guarantee the authenticity of the request. Since rules angrotect themselves against link-level DoS attacks by con-
public, confidentiality is not a concern. Since the Iease7i3rolling the number of clients under contract.

1. HostD signs ruleR with its private key, and sends
it to C using rule Rp_c. In addition, D sends
the certificate binding its public key and address,

2. If rule verification succeed§; signs the rule with its
private key and sends it back @ using the return
rule in its certification requesRp. At this point, host
D can distribute ruleR to other hosts directly (as a
return rule) or through DNS.



illustrates this approach. DNS will reply to a lookup
for D's name withE's rule (step 1). The DNS entry that
Gh———0——— @ containsE’s rule must belong to a new type of DNS RR.
o i This new class of entries is returned directly to clients by
(@) Regular Distribution (b) DDoS protection DNS resolvers. Upon a receipt of such an answer to its
Figure 3: Rule Distributior{solid lines = rule lookup pro- pNs query, the requester will continue the DNS lookup
cess; dashed lines = data communication; dotted lines p)setu by contactingE (step 2).E rate-limits rule requests and
forwards them td (step 3), thus protecting from DoS
RCEs must be highly available to enable rule certifi-attacks. For the authorized requestddscreates rules
cation at any time. RCEs can meet this requirement byStep 4) and replies back to the requesters (steE5).
using multiple servers and multiple sites. ISPs and destiforwards requests t conforming to a policy (se§3.4),

nations can protect themselves against RCE unavailabilvhich can be updated iyat any time. _
ity by contracting with multiple RCEs. Note that some malicious users may still get their re-
RCE Key Distribution and Revocation: In this paper quests forwarded bl and authorized bip. To alleviate
. . this attack,E can employ fair queuing across senders,
we do not explore solutions for the distribution and revo- .
and D can blacklist known attackers & Such an ap-

cation of RCE keys to routers. Here, we simply mention roach offers a protection similar to network canabilities
two possible approaches towards this goal. In one ap?hata I er-szurce f:l';\ir lIJeLIJin at rothers [3% it
proach, RCE keys could be distributed and revoked using PRIy P q 9 '

DNSSEC. For example, in text or other RR type, one 4.3 Rule Leases

DNS entry contains the number of RCESs and, for eachrhe |ease is an expiration time stamp certified along
RCE, there is one DNS entry (based on its index such agiith the rule description. A router drops a packet if

“ID24.rce”) that contains the RCE's key. Routers period-jis current time exceeds the rule expiration time. For
ically update the RCE keys. In another approach, RCEgjmpjicity, in this paper we assume that all routers and
could be deploy_ed along AS bogndarles, such that eachcEs are synchronized via NTP [14] as recommended
AS would have its own RCE. This approach has the adyy router manufacturers [19]. We present a solution that

vantage that additional security can be enforeegl,the  oes not rely on global clock synchronization in [42].
trust in some RCEs can be restricted to their own address

ranges. Secure BGP could be used to distribute RCE keys4 Anti-Spoofing Mechanism
in this case, but at the expense of extra compléity. If a source can spoof addresses on packets it sends, it can
send packets to a destinatibreven if the rule does not
allow it to, and in this way evadP's policy. Moreover,
RBF uses an extended DNS infrastructure to distributeone can mount a DDoS attack by using a single rule
rules, asillustrated in Fig. 3(a). The destinatidoreates  distributed by a malicious source to a set of colluders. To
and certifies a rule for itself (step A) and inserts it into address this problem, RBF can use a previously proposed
the DNS (step B). A sende® that wants to contadd  anti-spoofing mechanism. In this paper, we propose the
looks upD's name in the DNS; the DNS is extended use of ingress filtering, which is already deployed by
to returnD's rule rather than its address (step 1). After over 75% of today’s ASes [23]. When deploying RBF,
obtaining a rule td, S directly sends packets @(step  RBF routers could also be used to apply ingress filtering.
2). Note that for practical purposes the rules of the DNSNote that if malicious ASes do not apply ingress filter-
root servers need to have long leases (to avoid tedioui®g, DoS protection is not fully compromised as only
reconfiguration or refresh protocols), as with today’shosts in these ASes can launch attacks.
long-lived addresses. Instead of ingress filtering, RBF could leverage other

In Section 3.4 we pointed out that rules can be usednti-spoofing mechanisms such as Passport [36]. How-
to block DDoS attacks. This relies on (1) the ability to ever, Passport [36] requires a secure routing layer and
distribute customized rules to different sendeéses (give  incurs extra overhead in packets.
a sendef a rule that drops all packets not generated by The anti-spoofing mechanism requires middleboxes
S) and on (2) the ability to protect the rule distribution and routers that change a packet's destination address
itself from DoS attacks. also to change the packet’s source address attribute.

To protect against DDoS attacks, clidhtan contract ; :
with a large entityE, and redirect its DNS entry tg, 5 Security Analysis

by registeringE's rule under its DNS name. Fig. 3(b) The RBF design aims to achieve the following three
goals: (i)policy enforcement ensure that the authorized

“Note that DNSSEC could also potentially be used torules respect the policies of all participants (routersl-mi
distribute keys when RCEs are deployed along AS boundar{igesx:ileboxes, destinations), and packets with unauthorized

A 0. 0

4.2 Rule Distribution




\Mechanisms| Certifi- Lease Anti- Static 6.1 An RBF Rule Comp”er
Propertie§ cation Spoofing  Analysis
NoRue gg;)f;grmg 5 x Our prototype offers users a high-level language largely
No Rule Evasion x x identical to the syntax used in this paper in which to write
Network Safety x x rules. We wrote an RBF compiler in C++ that translates

Table 1: Properties and Defense Mechanisms this high-level language into a compact rule format
carried in packets. This compact format uses: 8B(ytes)
for public-key hashes, 3B for the user-local index, 3B to

rulest arel droppedt|rt1)5|de tgebnetw?rk; tijle egforce-d identify the RCE, 3B to identify router-defined functions
ment- rules cannot be used by malicous Senders and, W, ,¢ 44 pot require approval to be invoked and 8B for

senders or rule participants are untrusted, respect of rulﬁ"]ose that do, and 2B as the default RBF packet attribute

directives can be enforced; and (injle safety rules values® For the lease we use an absolute expiration time

cannot be U,SGd to attack the network. Next, we sume onsisting of first 4B of the NTP format, with second-
marize RBF’s security properties, the threat model an(f

. . .__level granularity and a wrap-around period of 136
?hssturlrllptlogégTderwrtut%h they holld,v?/nd the mteck(ljart1|§| ears. For efficiency, we use variable-length encoding in
a la ow d ° rfneefRBe;e goa S"t epresetp a e4a2|e epresenting the internal rule structure. The maximum
analysis and proots o s security properties in [42]. rule description size is 256B in our implementation.
Assumptions:We assume that DNS resolution is secure,
that distribution of RCE keys to routersis secure, and tha?'2 A Prototype RBF Router

RCEs are not malicious. Rationale: We implemented RBF forwarding using

Attackers: An attacker in RBF can be any host, middle- Click [39] and RouteBricks [26]. M_OSt co_mmercial
box, or router: sources can attempt to attack destination€Uters implement packet processing using ASICs
by forging, evading or tampering with their rules; des- OF specialized network processors (NPs) rather than
tinations can try to attack the network by creating rulesgeéneral-purpose CPUs and, as such, our software-based
that waste resources and slow down routers; middleboxgd0totype is not entirely representative of currently de-

and routers can attempt both of these attacks. ployed routers. To a large extent, our choice of proto-
typing platform is borne of necessity since commercial

routers are closed. Beyond necessity, however, we be-
lieve a software-based prototype is valuable for mul-
tiple reasons. First, recent research [26, 31, 27] has
1. No Rule Forging: A host S cannot manufacture a demonstrated that, with modern multi-core servers, it is
rule that sends packets to another hDsunlessD  now possible to build high-speed software routers up to
explicitly agrees with this ruld,e., destinations and edge and even core speeds. Secondly, while not directly
middleboxes control the creation of rules that sendreusable, several aspects of our implementation archi-
traffic to them. tecture such as our approach to partitioning tasks across

2. No Rule Tampering: Sources, routers and middle- multiple cores should apply to network processor-based
boxes cannot tamper with the destination’s rules. routers. Finally, several research [12, 28] and commercial
3. No Rule Evasion:HostS cannot send packets to des- SWitches [3] augment ASIC-based switches with some
tinationD, if D's rules do not accept packets frdn number of co-located general-purpose cores or servers
' ) o for greater flexibility in packet processing — our proto-
4 Netuork Safety: A destination d cannot sreale type architecture s directly applicable to such platarms
(a) cause infinite loops, (b) corrupt router state, (c)P€SI9n requirements:We build our prototype in the
DoS routers or RCEs, or (d) violate ISP policies. context of modern multi-core servers that incorporate
' multiple processors or “sockets”, each with multiple
. _ cores[17, 1]. As shown in Fig. 1, the software stack of an
Mechanisms and DefensesBF uses four mechanisms RBF router includes the following key components: (1)
to achieve the above properties: (1) rule certification, (2)an IP forwarding module, (2) the rule execution engine,
rule leases, (3) anti-spoofing, and (4) static analysis. Taand (3) some (possibly zero) number of specialized for-
ble 1 summarizes which mechanisms serve to meet th@arding function modules. All packets traverse the rule

Security Properties:We decompose the aforementioned
security goals into four specific desired properties:

four security properties. execution and IP forwarding components, while different
subsets of packets may traverse one or more specialized
6 Implementation functions. In addition, the resources required to process

_ ) _ a packet may vary widely across functiomsg.,an en-
This section describes our prototype RBF router and

rule compiler. 9 S0ur current prototype only supports this default size.
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CPU. At a high level, our design goal is to balance high F P

performancei(e.,making efficient use of resources) with

performance isolation, both across different functions,
and between functions and the rule execution engine )
(i.e.,sharing resources in a fair manner). 7 Evaluation

Figure 5: Rule Sizes

Approach: In its full generality, the above goal re- We use our prototype to evaluate the overhead RBF im-
quires contention-aware scheduling that simultaneouslposes on packet§7.1), routers{7.2) and RCEs§7.4).
takes into account the multiple resources (cores, variou _
caches, memory bandwidth, I/0 bandwidth) for which §'1 Packet Size Overhead
tasks might contend. For modern multi-core systems, thi§ig. 5 presents rule sizes (in bytes) for a range of exam-
is in itself an area of active research [24, 54] and be-ples, including those fror§3.4. The figure captures all
yond the scope of this paper. Instead, in our prototypethe RBF-related fields and presents the size broken down
we address the issue as follows. The IP forwarding modinto (a) the rule and the associated attributes’ binary
ule and the rule execution engine are the central, mostncoding; (b) the control fields used for the lease, RCE
critical, components of the router and hence we assigidentification, to specify whether the return rule is in the
these to a socket of their own and do not run specialpacket and so forth; and (c) the rule signature. We assume
ized functions at cores in this socket. This avoids havinga 41B signature obtained using ECDSA with ECC public
the IP and rule execution engines contend with specialkeys for RCEs derived from the NIST B-163 or K-163
ized functions for cache, CPU and other resources at theurves [18], offering 80 bits of security. Note that RBF is
cost of some potential inefficiency since these “reservedindependent of the exact signature scheme used and that
cores (if unused) cannot be used by specialized functionsmaller (and faster) signatures can be used. However,
(if needed). We then assign specialized functions to theshorter RCE keys may require more frequent updates to
remaining “unreserved” cores. We rely on the existingcompensate for the lower security guarantees. The rules
(Click and Linux in our implementation) system sched-in Fig. 5 do not contain an identifier, and are identified
ulers to ensure fair sharing of CPU resources betweeby endpoints and routers using a hash over their content.
functions on the same core. Rule identifiers are required for rules whose content
To achieve high performance, we run a single threadnay change during a communication (such as the rules
performing both IP forwarding and rule execution at of mobile hosts) and incurs an additional 11B overhead
each of the reserved cores; this ensures that packets thatour implementation (8B for the hash of the public key
do not invoke any specialized functions are processeénd 3B for the user-selected index). Note that the rule
entirely by a single core avoiding potentially expensiveidentifier need be unique only with respect to a single
cache misses and inter-core synchronization [26]. Packsommunication endpoini.¢., all parties that a hosX
ets that invoke specialized functions must be relayeccommunicates with should have unique rule identifiers).
across cores and hence incur corresponding performancea-rom Fig. 5 we can see that many common forwarding
overheads due to cache misses and so forth. To improv&enarios (unicast, routing via middleboxes, rules for
the efficiency of such transfers when these functiondDoS protection) can be expressed with around 60-80B
are implemented in user space, we use shared memorules while more complex rulegg.,loose source rout-
pages and event queues. In our current prototype, wheing, secure middleboxes, anycast) can take as much as
a rule invokes a user-level function, we make a singlel40B. The average rule size across all examples we have
copy of the packet to the shared memory. An example ofmplemented is 85B, representing 13% overhead for an
the resulting system architecture is depicted in Fig. 4.10 average packet of 630B[4] and 6% overhead for a 1500B



packet. By comparison, using RSA-1024 signatures B RBF over RouteBricks = RouteBricks alone
(instead of ECDSA) would incur 27% overhead on a
630B packet and 11% overhead on a 1500B packet.

Potential Optimization - Rule Caching: Per-packet

overhead can be significantly reduceddachingrules

at endpoints and routers; packets whose rules have bee¢
cached need only carry rule identifiers. There are two op:
portunities for caching. First, destinations can cache re
turn rules; this allows the return rule to be eliminated g
from all but the first packet in a source-to-destination

Gbps

2
exchange. Second, rules can also be cached at routel® 5 S ””+ ¥y
. &
Here, however, we must ensure no packet carrying only <® & 0@* z@"(’
a rule identifier arrives at a router that does not store the & &

corresponding rule description. This might occur, for ex- Figure 6: Forwarding speed for RBF over RouteBricks
ample, due to a route change or when a router deletes

the rule from its cache. In such cases, the router can sim-
ply drop the packet in question, if the endpoints includerule that fits in the packet. By “slowest” we mean the
the rule on all retransmissions and during periods of highule that takes the longest time to forward, as determined
packet loss. Of course, caching imposes additional stoy the number of conditions and actions encountered
age overhead at routers as we evaluate shortly. during forwarding. To capture the performance impact
In summary, based on our evaluation, we see that thér small packets, we profile each rule without any
per-packet overhead due to RBF can range from as lowayload and with no return rules. In the figure, packet
as 24B when using caching and up~4@50B in the bad ~ Sizes are shown next to the example name and entries
case where there is no caching and the packet carried/e sorted in order of increasing packet size; the packet
complex destination and return rules. size also includes the Ethernet and IP headers. The last
columns depict forwarding of larger packei., that
7.2 Router Overhead also contain data payload. To see the impact of the
In this section, we evaluate the overhead RBF imposetype of rule for these packets, we profiled them with
on routers for rules that do not invoke specializedthe fastest and the slowest rules. Note that all rules are
processing functions; we consider router functions in theprofiled in the worst case, meaning that the longest path
following section. The primary overhead RBF imposesthrough the rule is considered. For the slowest rule we
on routers is the additional processing required touse a 145B anycast rule which selects one out of 10
execute and authenticate rules and the additional storagkestinations based on the value of a packet attribute.
capacity required if rules are cached. In this paper we Overall, we see in Fig. 6 that the performance degrada-
do not evaluate rule authentication, which we assumeion due to RBF's more complex per-packet processing
is done by specialized hardware at trust-boundarys always modest<15%) and virtually non-existent at
routers; in [42] we present an evaluation for softwarelarger packet sizes. For small packets the CPU is the for-
rule authentication using RSA signatures, and show thawvarding bottleneck, and RBF's added processing slows
our software router is not significantly slowed down the router. For larger packets the I/O system is the bot-
when forwarding realistic traffic traces and performing tleneck, and there are enough free CPU cycles to execute
verifications (the slowdown is less than 10%). rules. A fine-grained profile of the rule execution module

Rule Forwarding: We first measure the overhead of rule showed that it uses between 120 CPU cycles per packet
processing by Comparing the performance of RBF_on_fOI' the fastest rule and 600 CPU Cycles for the slowest
RouteBricks to that of unmodified RouteBricks running rule; in comparison, the IP router used in our experi-
on a single high-end server machine. We use a dualments requires around 3000 cycles per packet without
socket server with four 2.8GHz Intel Xeon (X5560) coresrule execution. Also note that compared to the network-
per socket to (from) which we generate (sink) traffic overlevel forwarding results from Fig. 6, application-level
two dual-port 10G NICs. In this experiment, we use all 8 goodput is further reduced by the RBF header.
cores to forward packets. Router cache sizesWe earlier proposed that routers
Fig. 6 plots forwarding rates for some of the examplescache rule authentications and/or rule descriptions. In
from Fig. 5. The first column represents a packet streaneach case, the number of cache entries required depends
with sizes generated based on a packet trace collected @am the number of distinct rules the router sees. If we
the Abilene backbone [11]; since the packets from theassume that all packets in a flow share the same rule,
trace do not have rules, we add to each packet the slor/vlethen the number of distinct rules passing through a given



v Firewall only to resource exhaustion. Our test maintains constant total

O Total in O Regular out & Encryption only

® Regularin £ Snortout A Firewall shared input traffic while increasing the percentage of input
S e g | ENCHYPON sShared 52 traffic that invokes SnortX-axis). We see from Fig. 7(a)
27 7 that Snort traffic does not affect the “regular” traffic that
L35 A w2 7 does not invoke Snort, in the sense that no regular traffic
gm | g §10 J is dropped, even as a growing percentage of input Snort
, traffic is dropped. We observed the same isolation when
57 5 P ST using traces with small packets (see [42]).
0 : : : o Fig. 7(b) illustrates isolation between router functions.
0 25 50 75 100 0 5 10 15 20 25 We run three experiments: (1) all traffic invokes the
% packets invoking Snort Input Rate Gbps

firewall function and no traffic invokes encryption; (2) all
(a) Isolation of Forwarding(b) Fairness Across Functions traffic invokes encryption; and (3) equal halves of traffic

Figure 7:Isolation and Fairness of Router Functions invoking the firewall and encryption. Fig. 7(b) plots
the resulting forwarding rates under increasing input

router varies between the worst case of O(#flows) to thdraffic. In the third (shared) test the CPU is shared fairly
best case of O(#destinations) seen by the router. The foR€tween functions (we use Click-level scheduling); thus,
mer corresponds to a destination that uses a different rulif'® ratio between the maximum throughputs achieved
for every source it communicates with, the latter to a desPY €ach router function is expected to roughly match
tination that uses a single rule for all potential sources. € ratio between the throughputs of the functions when

In our implementation, each cached authenticatiorfUnNing in isolation. In Fig. 7(b) the encryption through-
is 19 bytes — 11B for the rule identifier and an 8-bytepUt is higher for a mix of firewalled and encrypted traffic

hash value used to verify whether the rule has changeﬂ1an 50% of that When_ encryption Is execut_ed alone
since it was authenticated. Each router uses its 0Wﬁ)ecause the trace contains large packets. In this case, the
secret hash function to prevent attackers from usin PU is not the bottleneck for the firewall functionality
hash collisions. Thus, one million rules would require Put i the bottleneck for encryption (since it is more
only 19MB of memory. For caching entire rules, Fig. 5 CPU-intensive), and thus encryption ends up using
reveals average and worst-case rule sizes of 85 anﬁlj‘e leftover firewall CPU cycles. If small packets are
133 bytes, respectively. If we conservatively assumd’sed, both functionalities achieve around 50% of their
traffic is uniformly distributed across these forwarding t"roughput in isolation [42]. Note that the high rates
categories, we arrive at an estimated cache size of 85M§ch|eved by running each function in isolation illustrates
(average) to 133MB (worst-case) for 1M rules, which isthe benefit of running instances of a single function at

within the scope of memory available in current routers.mu"'ple_ cores (as opposed to one function per core)
since this allows the unused resources from one function

7.3 Router Functions to be seamlessly utilized by other functions.

Our router prototype supports specialized functions7 4 RCE Load
implemented at either kernel- or user-level. We currently

support three router functions: (i) the Snort IDS [13] We use a simple back-of-the-envelope calc_ulation to
adapted to run as a user-level function, (ii) a kernel-modé&stimate the total number of RCE servers required fo_r the
firewall implemented in Click and (iii) a kernel-mode Internet. The bulk of requests to RCEs are determined

encryption engine also implemented in Click. Eachby IP address changes and per-client certifications re-

function runs as a separate process/kernel thread isoIat@D('j‘Ne;ted by sites that pr?tTct a_g_ainst DO48 E1b32/ reNdirecting
from the packet forwarding path through queues. We _requests to powerful entities, sg&454.2). Note

measure performance and faimess using the abovtgat in the latter case, requests to RCEs are made only
functions on the same hardware as before. We dedicatfé)_r approved customers. There are currently around 700

four cores to the standard forwarding path and them|IIion hosts in the Internet [9]; given the current trend
remaining four cores to custom functions of smart mobile devices we consider 1 billion hosts. We

. . . . assume a worst-case scenario in which all hosts request
Fig. 7(a) illustrates the resource isolation between q

forwarding and router functions; the function used in thiscergf'ca.tt'ﬁ nsbln hthet slar(;wle. dseﬁlontd; th?.?e reqluestsb are
experiment is Snort (running on four cores). To generaténa € either by hosts individually to certily a rule or by

traﬁ!c we use re"’_‘l traces of (mOde_rateIY) malicious 5We also measured the performance of the system with all
traffic created pa_rtlcularly for IDS testing [10, 30]. The {he eight cores running both forwarding and Snort, and &l th
average packet size of the trace used was 1065 bytes. TRckets directed to Snort. While this configuration does not
avoid biasing our results, we modify Snort not to drop provide isolation for the regular traffic, it can forward aher
any malicious packets so packets are only droppedldzutetal throughput of 22Gbps.
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Property | Explicit Multiple |Invoke Router | Use Router State in | Record Router Mobility | Policy Policy Compliant | Receiver Host Safety of Network
Middlebox | Paths Extensions (e.g. | Forwarding (e.g. State (e.g. network Compliant In-network Reachability | DDoS & Routers (e.g. loops,
Architecture Support IDS, multicast) | anycast, DTN) probing, ECN) Loose Paths | Functionality Use | Control Protection | break ISP policies)
RBF Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Active Networks Yes Yes Yes Yes Yes Yes

p
TVA, SIFF

PushBack, AITF, Stoplt
Predicate routing,
Off-by-default

Figure 8: A comparison of RBF tactive Networks [48, 50], ESP[25], i3[47], DOA[49], Platyp[44], SNAPP[40], TVA[52],
SIFF[51], NUTSS[29], PushBack[32], AITF[21], Stoplt[3Rredicate Routing[45], Off-by-default[22], ICING[46]

websites hosts are trying to access. We implementedcequire tearing down the old paths and instantiating new
RCE rule certification in software using RSA signatures,ones. These are expensive operations which have a nega-
and measured it on the same 8-core server used througtive impact on the scalability of these proposals. In con-
out our evaluation. We find a single server can achieve #&rast, with RBF, each packet contains (in its rule) enough
certification rate of over 16,000 rules per second. Base@hformation to prove to routers that it respects the poli-
on benchmarks of our implementation and assumingies of all participants involved in forwarding the packet.
an oversubscription rate of ¥0(ISPs today commonly RBF achieves this property despite the fact that neither
oversubscribe by 100), the total load due to certifying the routers nor the packet contain the policies. Thus, RBF
rules above could be accommodated by around 6,00€etains the datagram model of the IP, unlike other re-
serversg.g.,handled by 20 RCEs with 300 servers each.cent proposalse(g., network capabilities [52, 51], IC-
Hardware implementations might reduce this numbeldNG [46] and OpenFlow [12]), which are more akin
by more than an order of magnitude. For exampleto a connection-oriented model. Finally, while overlay-
using recent ECC prototypes [53, 34] a single ASICbased architectures can implement more sophisticated
could potentially perform 40,000 RCE certifications perdata plane or control plane mechanisms, they cannot
second, requiring a total of only 2500 such devices. leverage support at routers and are thus less powerful.

9 Incremental Deployment

8 Related Work

o o All the benefits of RBF shown in Fig. 8 except re-
RBF is inspired by and extends several directions in pasgejyer reachability control and DDoS protection can
research. RBF’s contribution is in offering extensive flex- po achieved with a partial deployment of RBF routers
ibility while respecting policies, where prior approachesang middleboxes. In an initial phase, RBF routers could
tent_;le@ to focus on one or the other. F|g. 8 compares thgupport both RBF and legacy (non-RBF) traffic. To also
flexibility and security features of RBF with those of pre- offer Dos protection and reachability control, individual
vious proposals. RBF is complementary to recent efforts\ges can upgrade to RBF by dropping legacy traffic.
proposing open router APIs [15, 16, 38, 12] — we offer g5 in such ASes can use multihoming to handle

an overall network design by which endpoints use thegacy traffic, although they will be vulnerable to DoS
new functionality these router architectures promise t05ti5cks on legacy interfaces.

enable. This paper extends an earlier position paper [43]
that argued the case for a rule-based architecture. 10 Discussion

A key feature that distinguishes RBF from previous
proposals and allows it to achieve both flexibility and

policy compliance is its division of functionality between ability to guarantee policy compliance of all network

the dat_a and control planes. Active Networks typically entities. We started this work with two high level goals
make little use of the control plane, as they deploy the

. . . . in mind. First, we wanted aompletearchitecture that
forwarding functionality and enforce security on the data : C
supports not only previously proposed communication

plane. This makes policy compliance hard to achieve. In” """~
rimitives, but also future ones. Second, we wanted an
contrast, more recent proposals such as OpenFlow [1

_rely heavily on the control plane and install flow state ™ 7, example, overlay architectures can only drop un-
in the network to make sure the data plane respects thganteq packets at overlay nodes and hence cannot create a
appropriate policies. This approach, while simplifies thenetwork that is fundamentally default-off; once the netkwor
data plane, results in a more rigid architecture. For ex{ayer address of a node is known, it can always be attacked at
ample, supporting host mobility and traffic engineeri1r13gthe underlying network layer.

We have presented RBF, an architecture we have argued
strikes a desirable balance between flexibility and the




efficientarchitecture in which a packet unwanted by afi9]
receiver along its path is dropped as early as possible. 2%
While completeness in this context is difficult to for- [21]
malize, intuitively we have reduced it to (1) supporting 221
arbitrary communication paths, and (2) allowing all
network entities i(e., sender, receivers, middleboxes,
and routers) to be involved in the decision process. In24]
other words, we wanted to be able to define virtually[25
any forwarding path and give all involved parties a say
in defining it. We noted that such a path can be encode&®!
by associating with each node an “if-then-else” code
shippet, which specifies the next node down the pathf?”!
We further noted that allowing different network entities
to define the communication pattern is equivalent to[28
allowing them to define these code snippets. This is
roughly what the RBF proposal is. 2]
These goals are ambitious — they subsume, unite and
extend many years of proposals for greater flexibility and>"!
security in networks — and much of RBF's complexity
follows from these goals. [31]
Finally, one might question whether a relaxation of[32]
RBF’s goals might lead to a significantly simpler design.[
This is a valid question that we leave for future work.
We believe that understanding the fundamental tradeoff§*
associated with these goals is critical and, at the veryss)
least, that RBF is a step toward arriving at such an
understanding. [36]
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