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Abstract
We present a network design that provides flexible
and policy-compliant forwarding. Our proposal centers
around a new architectural concept: that of packetrules.
A rule is a simple if-then-else construct that describes
the manner in which the network should – or should not
– forward packets. A packet identifies the rule by which
it is to be forwarded and routers forward each packet
in accordance with its associated rule. Each packet rule
is certified, guaranteeing that all parties involved in
forwarding a packet agree with the packet’s rule. Packets
containing uncertified rules are simply dropped in the
network. We present the design, implementation and
evaluation of a Rule-Based Forwarding (RBF) archi-
tecture. We demonstrate flexibility by illustrating how
RBF supports a variety of use cases including content
caching, middlebox selection and DDoS protection.
Using our prototype router implementation we show that
the overhead RBF imposes is within the capabilities of
modern network equipment.

1 Introduction
A central component of a network design is its forward-
ing architecture that determines the manner in which
packets are transported between two endpoints. Today’s
Internet offers users a simple forwarding model: a user
hands the network a packet with a destination address
and the network makes a best-effort attempt to deliver
the packet to the destination. Although simple, this archi-
tecture is also fairly limited and there have been repeated
calls to extend the Internet’s forwarding architecture for
greaterflexibility—allowing, for example, the user to se-
lect the path his packets should traverse [20, 44, 47, 49]
or to specify whether packets can/should be processed
by middleboxes and active routers [47, 49, 29, 48, 25].

Achieving a flexible forwarding architecture has thus
been a long-held, if elusive, goal of Internet research
[47, 49, 29, 20, 48, 25, 40]. Our work in this paper shares
this goal. Our point of divergence from prior efforts
starts with the observation that forwarding flexibility is
inherently coupled with issues ofpolicy.

Our thesis is that achieving flexibility is not just a
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matter of augmenting packets with more expressive
forwarding directives that routers execute. Rather, in ad-
dition, for each forwarding directive that enhances flex-
ibility, the parties involved in forwarding should be able
to set policies that constrain that directive. By the policy
of entityA (host, middlebox operator or ISP) we refer to
the decision whether to approve or reject a forwarding
directive based onA’s business or technical goals. By
forwarding directive we refer to instructions provided by
endpoints to routers and middleboxes on how to forward
their packets. For example, a forwarding directive could
specify that senderS can forward its packets through
middleboxM before reaching destinationD. An example
of policy would beM refusing to accept packets fromS.

To better illustrate our thesis, consider its application to
the Internet. Since the main forwarding directive in IP is
for senderS to send packets to destinationD,D should be
able to specify that the traffic fromS should not reach it,
i.e.,either by explicitly allowing or denying packets from
D. Unfortunately, IP does not provide such functionality,
effectively leaving the end-hosts vulnerable to DoS
attacks. Unsurprisingly, this lack of functionality has
been identified as one of the main security vulnerabilities
of the Internet, and several solutions have been proposed
to address this limitation [51, 52, 21, 32, 37, 22].

Of course, forwarding directives and policies are only
as good as the ability of the network to enforce them and
to guarantee their authenticity. What complicates policy
enforcement is the involvement of multiple parties in
achieving the packet’s flexible behavior—the network
service providers along the path, potential middlebox
operators and, of course, the source and destination. As
such, the network must ensure that a packet’s forwarding
directive complies with the policies ofall parties in-
volved. In our previous middlebox example, the network
must ensure thatM is willing to relay packets fromS
to D. If M does not approve, the network should simply
drop the packets before reachingM.

In this paper, we propose a newrule-basedforwarding
architecture, RBF, that treats flexibility and policy
enforcement as equal design goals. RBF is based on a
new architectural concept – that of packetrules. In RBF,
instead of sending packets to a destination (IP) address,
end-hosts send packets to a rule. Rules are created by
destinations. A sender fetches the destination’s rule from
a DNS-like infrastructure and inserts it in the packets
sent to that destination.

1



A rule is a simpleif-then-else construct that
describes the manner in which the network should – or
should not – forward packets. For example, a destination
A can receive packets only from sourceS using the rule:

RA : i f ( pk t . source 6= S) drop pkt

Or a mobile clientB might route certain video content
through a 3rd-party transcoding proxy with:

RB : i f ( pk t .URL = hulu . com) sendPktTo t rnscdPrxy

The above examples are anecdotal (we present precise
syntax and additional examples in§3) but serve to
illustrate how destinations can control and customize
how the network forwards their packets in a manner not
easily accommodated by current IP. In effect, with rules,
a receiving host must specify bothwhich packets it is
willing to receive as well ashow it wants these packets
forwarded and processed by the network.

The rule-based architecture we develop offers the
following properties:

Rules are mandatory: routers drop packets without
rules

Rules are provably authorized: all recipients (end-
hosts, middleboxes and/or routers) named in the rule
must explicitly agree to receive the associated packet(s).
Routers, middleboxes and end-users can verify a rule’s
authorization.

Rules are provably safe: rules cannot exhaust net-
work resources;e.g.,rules cannot compromise or corrupt
routers nor cause forwarding loops.

Rules allow flexible forwarding: rules are a (con-
strained) program that allows a user to “customize” how
the network forwards its packets.

The first two properties assist in policy enforcement by
ensuring a packet is only forwarded if explicitly cleared
by all recipients (i.e., if it conforms with the policies of
all recipients) specified in the rule. Since RBF defines
policies on rules, any recipient will have the ultimate say
on whether to accept any rule that contains forwarding
directives sending packets to it. Since all forwarding
directives are encoded into rules, we achieve our goal of
enabling any entity affected by a forwarding directive to
constrain that directive.

The third property ensures rules cannot be (mis)used to
attack the network itself. As we shall show, the last prop-
erty provides flexibility since users can give the network
fine-grained instructions on how to handle their packets,
enabling: explicit use of in-network functionality at
middleboxes and routers, loose path forwarding, multi-
path forwarding, anycast, multicast, mobility, filtering of
undesired senders/ports/protocols, recording of on-path
information, etc. In the remainder of this paper, we
present the design, implementation and evaluation of a
forwarding architecture that meets the above properties.

RBF relates to an extensive body of work on both for-
warding flexibility and policy enforcement. We discuss
related work in detail later in this paper and here only
note that, at a high level, we believe what distinguishes
RBF is its focus onsimultaneouslysupporting flexibility
and the multi-party policy requirements that such
flexibility implies. As we shall see, this goal leads us to
a design that differs significantly from prior proposals.

Finally, we note up-front that RBF is more complex
than the existing IP forwarding architecture, which is
frequently cited for its simplicity. In addition, RBF
relies on strong assumptions such as anti-spoofing, the
existence of rule-certifying authorities and a DNS-like
infrastructure to distribute rules. The gain, relative to
today’s IP forwarding, is significantly improved flexibil-
ity and security; we posit that the greater complexity of
our solution is a perhaps inevitable consequence of this
richer service model.

2 Design Rationale and Overview
We start with the goal of network flexibility and allowing
users control over how the network processes their pack-
ets. The abstraction that perhaps best supports flexibility
is simply that of aprogram, leading to an architecture
where users write packet-processing programs that
routers execute. This vision of code-carrying packets is,
of course, the cornerstone of active networking [48, 50]
and we borrow this as our starting point in designing
RBF. However, as we shall see, RBF severely dials
back on the full-fledged generality of the original active
networks’ vision to arrive at a significantly simpler and
safer architecture.

Rules are thus a form of program. The challenge then is
to appropriately constrain these programs/rules to ensure
that they cannot harm the network or other hosts. The key
insight behind RBF is that these constraints must extend
alongtwodimensions. First, rules must besafe, i.e.,guar-
anteed not to corrupt or exhaust network resources. In
addition, however, we must constrain rules to respect
the policiesof all stakeholders involved—source, desti-
nation, middleboxes and ISPs. This latter requirement is
unique and yet critical to networking contexts but was
under appreciated in early active networking proposals.

To address policy safety, RBF incorporates two key
design decisions:
(D1) Layering: we believe network operators will be
unwilling to relinquish control of route discovery and
computation and hence we layer RBF above current IP
forwarding and do not allow rules to modify the IP-layer
forwarding information base (FIB).
(D2) Verifiable stakeholder agreement:we require
that a rule be authorized by all entities it explicitly
names (e.g.,destination, middleboxes or routers). This
ensures agreement of the stakeholders’ policies with
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the rule’s intent; in particular it also ensures that rules
cannot violate ISPs’ routing policies, since providers
must explicitly agree to have their routers named in
rules. To achieve this property, in RBF rules are certified
by trusted third parties, which in turn gather proofs of
policy compliance from each of the rule participants.

To address rule safety, we impose strict constraints
on rule syntax, such that safety can be verified through
simple static analysis:
(C1) Rules cannot directly modify router state.This
avoids corruption of router state. However, this can be
a limiting restriction, particularly to network operators
who wish to expose in-network services such as caching
or monitoring to end users. To accommodate this, RBF
allows operators to deploy specialized packet-processing
functions at their routers and allows rules toinvokethese
functions. Such “router-defined functions” do allow rules
to update router state, but only indirectly via code in-
stalled, and hence presumably trusted, by operators. This
model for router-defined functions thus represents a mid-
dle ground in the tradeoff between flexibility and safety.
(C2) The rule “instruction set” is limited to only four
possibleaction statements: (a)forward the packet to
the underlying IP layer, (b)invoke a router-defined
function, (c)modify the packet header and (d)drop
the packet, plus conditionals that determine whether an
action should be taken based on reading packet headers
and router state. Note that there is no action that allows
backward jumps across rule statements. This prevents
looping or resource exhaustion at routers and ensures
execution time is linear in program size.

The above constraints represent a stark departure from
the rich generality of the active networks vision. Indeed,
rules are more a sequence of packet steering directives,
rather than a full-fledged program. The benefit isver-
ifiable rule and policy safety. Moreover we find that,
despite these constraints, rules suffice to express a wide
variety of forwarding behaviors as we will later illustrate.

2.1 Architecture Overview and Assumptions

We now provide a brief overview of the main compo-
nents and assumptions of an RBF architecture. Figure 1
illustrates the forwarding architecture of an RBF-enabled
router. On receiving a packet, the router hands it to the
rule forwarding engine, which processes the packet’s
rule. Such processing may involve reading router state
that the network operator has opted to expose; we term
such staterouter attributes. Based on information in the
packet header (packet attributes) and router attributes,
the rule forwarding engine may update the packet’s
attributes (including its destination), invoke router
functions, drop the packet and/or hand the packet to the
underlying IP forwarding engine. Recall that for safety
reasons the rule is not allowed to update router state.
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Figure 1: RBF router and rule forwarding

The design of a rule-based architecture involves the
design of rules themselves as well as the surrounding
infrastructure required to support the distribution,
processing and securing of rules. Consequently, the RBF
architecture consists of four main components:

• The specification of packetrules– their syntax, packet
encoding, constraints on what rules can and cannot do.

• Certificate authorities calledRule Certification Enti-
ties (RCEs) that certify rules after checking that they
are well formed, and that every destination specified
in the rule agrees with (i.e.,has signed) the rule.

• Modified IP routersthat verify rule certificates and
process packets as described above.

• A modified DNS infrastructurethat either directly
resolves a host D’s domain name to D’s rule, or
resolves D’s domain name to another rule resolution
server which in turn provides D’s rule.

Assumptions:RBF builds on three major assumptions.
First, RBF assumes the existence of an anti-spoofing

mechanism. This is required because rules may use
source and destination IP addresses in their decision pro-
cess and hence addresses must be legitimate, otherwise
policy compliance cannot be enforced.1 In this paper we
assume the use of ingress filtering, although RBF can
accommodate alternate solutions,e.g., Passports [36].
The rationale behind our choice of ingress filtering is
described in§4.

Second, we assume routers know the public keys of
RCEs and can thus verify rule certificates. We assume
the number of RCE organizations is relatively small and
these keys can be statically configured at routers, akin to

1Note that any solution for blocking undesired traffic inside
the network requires a way to identify sources. Anti-spoofing
identifies users based on their addresses. An alternative, is to
identify users by their access path [51, 52], but this approach
ties communications to a specific path restricting flexibility
(e.g.,for mobility, traffic engineering, multi-path forwarding).
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how browsers today are configured with the list of major
certificate authorities.2 Note that although we assume a
small number of RCE organizations, we envisage each
organization will run geographically replicated instances
of their service for improved scalability and robustness.

Finally, we assume that the rule resolution infras-
tructure (whether DNS or the resolution servers the
DNS points to) is well provisioned, akin to how major
Internet services (Google, DNS, Amazon) operate today,
relying on engineering approaches such as maintaining
a presence at major ISPs, IP anycasting, bandwidth pro-
visioning, and so forth. As described in§4, we make this
assumption to protect against “denial of rule” attacks.

Clearly, these assumptions are significant and may im-
pede an immediate deployment of RBF in practice. And
even with these assumptions, the resulting RBF design is
far from trivial (for this reason, we in fact offload some
of the details to an extended technical report [42]). How-
ever, we hope through the design presented in this paper
to start a focused discussion about how best to practi-
cally introduce flexibility and security into the Internet
and about what set of primitives routers must support to
achieve this goal. In this paper we present one solution to
this problem; in§10 we succinctly discuss the arguments
that have led us to these specific assumptions and design.

3 The RBF Data Plane
In this section we describe the key components of the
RBF data plane: rule syntax and how routers verify and
execute rules. We then present examples of how rules
are used.

3.1 Rule Specification

RBF represents a rule as a sequence of actions that can
be conditioned byif-then-elseinstructions:

i f (<CONDITION>) ACTION1
else ACTION2

Conditions arecomparison operatorsapplied to packet
and router attributes. An action can be one of:

1. forward the packet to the underlying IP engine;

2. invoke a local function available at the router;

3. update the value of the packet attributes;

4. drop the packet.

Packet attributes include the standard IP header five-tuple
(IP addresses, ports, protocol type) and, optionally, a
number of custom attributes with user-defined semantics.
For simplicity, RBF does not allow rules to dynamically
add new attributes. Router attributes may include, for
example, the router’s IP address, AS number, link
congestion levels, and flags indicating whether the router

2Some may regard this model of security unsatisfactory, we
discuss alternatives to this deployment in§4.

implements a specific function (e.g.,a rule can check
router.local cache to discover whether the router
maintains a local content cache). Rules are allowed to
update packet attributes, but not router attributes.

Each rule has an associatedleasethat ensures the rule
can only be used for a limited period of time (§4.3).
Also, every rule has an identifier (ID) defined as the con-
catenation of a hash of the rule owner’s public key and
an index unique to the owner,hash(PKowner):index. In
Section 7 we present an optimization to reduce packet
overhead and identify most rules by using a hash over
their content. This optimization can be used in the
common case when there is no need for multiple rules
with the same identifier; for example, mobile hosts may
require different rules with the same identifier (see§3.4).

The following is an example of a rule that forwards
a packet to destinationD via a waypoint routerR1;
a packet attributevisitedR1 indicates whether the
packet has already visitedR1:

R D :
i f ( packet . v is i tedR1 == FALSE) / / from src . to R1

i f ( rou te r . address != R1)
sendto R1

else packet . v is i tedR1 = TRUE / / to D
i f ( packet . v is i tedR1 )

sendto D

wheresendto involves setting the IP destination ad-
dress toD and then handing the packet to the underlying
IP forwarding engine (assuming, of course, thatD is
not the local address). Rule execution terminates at a
sendto or drop action; the packet is dropped if the
rule does not arrive at an explicitsendto. Finally,
rules caninvoke local functions at the router; after the
invocation the packet is returned to the forwarding layer.

3.2 Distributing Rules to Routers

To forward a packet, a router must first obtain its rule.
There are two potential approaches: (1) rules are carried
in packets, (2) routers use an out-of-band mechanism to
obtain rules. In RBF, we choose to carry rules in packets
since the second approach would require complex rule
distribution and storage protocols, and would incur extra
delays in communication setup (in fact this approach
would likely require special “rule-less” traffic to install
rules). The tradeoff is higher overhead on the data path
as rules increase packet size and routers must verify each
packet’s certificate; our evaluation in§7 suggests this
overhead is acceptable given the capabilities of modern
network equipment.

A packet with sourceS and destinationD must include
a destination rule, R D, which is the rule specified and
owned byD. In addition, a packet may include areturn
rule; this is the rule specified and owned byS and is
used for return traffic fromD to S.
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3.3 Rule Verification

As mentioned earlier, rules are certified by a Rule Cer-
tification Entity (RCE) and all packets carry a signature
that routers must verify. The verification load at routers
is eased by two factors. First, only routers at trust bound-
aries need to verify rules. Second, routers can cache ver-
ification results by maintaining a hash of the rule and its
signature. With caching, the full signature verification is
only required for the first packet forwarded on a new rule
(as long as the verification result is cached). Thus, verifi-
cations can be limited only to border routers and, assum-
ing a large enough cache, the verification rate is given by
the arrival rate of packets with new rules. By contrast,
the signature length adds to the overhead ofeverypacket.

Different cryptographic solutions offer different trade-
offs between signature length, signing time (incurred
only at RCEs), verification time (incurred at routers)
and security. Our current RBF design assumes Elliptical
Curve Cryptography (ECC) because ECC signatures are
shorter than RSA ones, while exhibiting similar security
properties. At the same time, verification time in ECC
is typically longer than RSA’s. However, in practice
verification can be accelerated using ASIC-based im-
plementations or dedicated specialized co-processors.
Such implementations are already commercially avail-
able [5, 7, 8] and incorporated into network appliances
and routers. Furthermore, traffic measurements [4] show
that new flow arrivals represent less than 1% of the
link capacity on average and less than 5% of the total
number of packets, a volume that can be accommodated
using commercial ECC modules [5, 7] or recent research
proposals [53, 34]. We evaluate different signature
mechanisms briefly in§ 7 and in greater detail in [42].

3.4 Examples of RBF usage

To illustrate the application of rules, we present a series
of example usage scenarios; the rule syntax in these
examples is largely identical to the high-level rule
language supported by our RBF prototype router (§6),
with simplifications for readability as appropriate.

Port-based filtering: A web server,D, uses the following
simple rule to ensure it only receives packets on port 80:

R f i l t e r p o r t :
i f ( packet . d s t p o r t != 80) drop ;
sendto D

Middlebox Support: In addition to accepting traffic di-
rectly on port 80,D might use the following rule to
route all other incoming traffic through a packet scrub-
ber [2, 6]. This functionality can be deployed either by
D’s provider (as a router function), or by a third party (at
a middleboxScrb) as presented below:3

3Note that Scrb can represent the address of a load
balancer used with several physical middleboxes.

R mbox port :
i f ( packet . d s t p o r t == 80)

sendto D / / d i r e c t l y to D
else

i f ( packet . scrubbed == FALSE) / / before scrubber
i f ( rou te r . address != Scrb )

sendto Scrb
e lse / / a t scrubber

packet . scrubbed = TRUE / / mark scrubbed
invoke Scrb serv ice / / scrub

e lse
sendto D / / a f t e r scrubber

Thus, similar to previous proposals [47, 49], RBF
provides explicit support for middleboxes such as
WAN optimizers, proxies, caches, encryption engines,
transcoders, SSL offloaders, intrusion detection,etc.

Secure Middlebox Traversal: In the previous example,
an attacker can directly send a packet with the attribute
values set so as to appear that the packet has already vis-
ited the middlebox. More generally, one should be able
to enforce that rule directives are respected when the rule
participants (sources, middleboxes) are not trusted.

One approach to protect against this behavior is to
leverage RBF’s assumption that sources cannot spoof
their addresses. More specifically, after each middlebox
the rule can verify that the packet has indeed been sent by
the required middlebox, since middleboxes/waypoints
need to set the (non-spoofable) source address attribute
in packets (for brevity we omit this in the presented
examples); see [42] for more details on this approach.

In an alternate approach, special cryptographic func-
tions deployed at middleboxes and destinations can be
used to create/verify proofs guaranteeing the packet has
visited the middlebox, as follows:

R mbox port crypto :
i f ( packet . d s t p o r t == 80)

sendto D / / d i r e c t l y to D
else

i f ( packet . proven == FALSE)
i f ( rou te r . address != Scrb ) / / before scrubber

sendto Scrb
e lse / / a t scrubber

i f ( packet . scrubbed == FALSE)
packet . scrubbed = TRUE
invoke Scrb serv ice / / ( 1 ) scrub

e lse / / scrubbed
packet . proven = TRUE
invoke Prove / / ( 2 ) c reate proof

e lse / / proven
i f ( rou te r . address != D)

sendto D
else

invoke Ver i fyAndDel ive r / / check proof a t D

In this example, theProve function at the middlebox
signs the immutable part of the packet header and/or
payload, and adds this signature as an attribute to the
packet header. In turn, theVerifyAndDeliver
function atD checks the middlebox signature and, if the
check succeeds, delivers the packet to the end applica-
tion. Note that checking the signature requires thatD
knows the public or shared key(s) of middlebox(es); for
efficiency, the middlebox could sign the hash chain of a
batch of packets.
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DoS Protection: To protect against DDoS attacks, a
serverD can create a custom rule for each client that
drops packets from any source other than the client. By
controlling the number of rules active at a given time,
D controls the maximum number of active clients (each
rule has an associated lease period). An example of a rule
similar to a network capability [52, 51] is:

R f i l t e r s r c :
i f ( packet . source != requester IP )

drop ;
. . . / / r e s t o f the r u l e

Similarly to capability based architectures [52, 51],
our solution is based on the premise that destinations
are able to grant rules on demand, and that any requester
can ask for a destination’s rule. In RBF, this task falls
to the rule resolution infrastructure and raises the pos-
sibility of a “denial of rule” attack on this infrastructure
(akin to denial-of-capability attacks in capability-based
systems[41]). We present the details of rule resolution
and discuss denial-of-rule attacks in§4.

Mobility: Host D changes its network IP address due
to physical movement. In RBF,D can continue an exist-
ing communication without having to re-establish it. To
achieve this,D creates a rule for the new address with the
same ID as the rule used in the existing communication,
and places it in the packet as the return rule.

Multicast: For security reasons, RBF does not support
packet replication, and thus multicast cannot be imple-
mented entirely at the RBF layer. Instead, multicast can
be implemented by invoking multicast functionality de-
ployed by ISPs at a subset of their routers; this function-
ality maintains (soft) state at routers to create a (reverse
path) multicast tree. This approach implements essen-
tially an overlay multicast solution, which leverages the
IP multicast functionality at on-path routers (see [42] for
details).

On-path Caching: Consider an ISPI that deploys
caching functionality at some of its (border) routers. A
web-serviceD can contract withI and use this function-
ality. For this purpose,D creates and publishes the fol-
lowing rule:

R caching :
i f ( rou te r . cach i ng ava i l ab l e and

packet . c r t r o u t e r != rou te r . address )
packet . c r t r o u t e r = rou te r . address
invoke Caching

sendto D

where the crt router attribute makes sure the
caching functionality is called just once at each
caching-enhanced router.

In this example, the caching functionality can decide
to respond to the requester directly and not forward
the packets further toD, which reduces latency for the
requester and traffic load atD. A similar rule can support
recent proposals for content-centric routing [35, 33].

Other Examples:Our technical report [42] provides ex-
amples of applying RBF to a range of additional ap-
plications, including: secure loose path forwarding [44,
40], multipath forwarding, network diagnostics, anycast,
reverse traceroute (path recording), delay-tolerant net-
working and even source control over middlebox or path
selection. Importantly, these individual examples can be
combined as needed. For example, a content distribution
network can distribute load among multiple sites using
anycast and, at the same time, protect its servers with on-
path IDS functionality provided by ISPs.

4 The RBF Control Plane
In RBF, ISPs provide their clients with rules to access
the local DNS server and a Rule Certification Entity
(RCE), which can certify clients’ rules. This information
can be provided through a modified DHCP service,
similar to the way ISPs or organizations provide the IP
address of DNS servers today.

In this section, we describe the RBF mechanisms for
rule creation and certification (§4.1), rule distribution
(§4.2), lease enforcement (§4.3) and anti-spoofing (§4.4).

4.1 Rule Creation and Certification

To receive traffic, a client must create a rule that allows
one or more sources to send traffic to it. Before distribut-
ing this rule, the client must ask an RCE to certify it.
RCE certification guarantees that rules obey the policies
of all stakeholders. In particular, certification guarantees
the following properties:

1. Every destination in the rule (i.e., any address that
appears as an argument of asendto instruction) has
agreed to receive packets using that rule;

2. The operators providing router functions invoked by
the rule approve the rule behavior;

3. The rule cannot cause infinite loops;

4. The rule cannot bypass ISP routing policies.

A client can either create rules itself and directly ask
an RCE to certify these rules, or use a trusted DHCP-like
service to create and certify rules on its behalf. In the
remainder of this section we present the former case.

As described above, the ISP provides each client with
a rule to access an RCE that has a contract with the ISP.
The following example shows a possible rule that allows
a clientD to access an RCE namedC:

RD→C : i f ( source == D) sendto C

Before certifying a rule, an RCE verifies that the rule
has been authorized by each destination that appears in
the rule. A client who has created a rule authorizes it by
simply signing the rule with its private key. A client that
appears in the rule as a destination, other than the rule’s
creator, will first verify that the content of the rule obeys
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Figure 2: Rule Certification

its policies before signing the rule. For example, an
intrusion detection box may verify that the destination
indeed belongs to a client allowed to use the service
(e.g., based on a contract between the client and the
provider of the intrusion detection service), a waypoint
router may verify that the final destination is allowed to
use source-routing,etc.

Let (KD, K−1

D
) denote the (public, private) key pair

of clientD, and letIPD be the IP address ofD. To prove
to an RCE that the client signing the rule with private
key K−1

D
indeed owns IP addressIPD, client D sends

a certificate along with the signed rule that binds its
public keyKD and IP addressIPD. This certificate is
signed by an entityT, i.e., [IPD, KD]

K
−1

T

, whereK−1

T

represents the private key ofT. Clearly, the RCE must
trust entityT. In fact, in our solution we will assume that
T is itself an RCE.

Next, we present the rule certification process in detail,
initially for the case in which the rule has a single
destination, and then for the case in which the rule has
multiple destinations or waypoints/middleboxes.

Certify single-destination rules: Assume destinationD
wishes to certify a ruleR that forwards packets only to
its addressIPD, e.g.,R: sendto IPD. Also, assumeD
already has a ruleRD on which it can be reached by the
RCEC. D obtains this rule as part of the bootstrapping
process, which we discuss later.

Fig. 2 shows the certification ofD’s rule,R, byC:

1. HostD signs ruleR with its private key, and sends
it to C using rule RD→C . In addition, D sends
the certificate binding its public key and address,
i.e., [IPD, KD]

K
−1

T

. Upon receiving this request,C
verifies the certificate as well as the signature of the
requested rule. These ensure that the request has been
made by the owner ofKD and that the requester is
also the owner ofIPD. In addition,C verifies thatR
is well formed (see§5).

2. If rule verification succeeds,C signs the rule with its
private key and sends it back toD using the return
rule in its certification request,RD. At this point, host
D can distribute ruleR to other hosts directly (as a
return rule) or through DNS.

The certification procedure (Fig. 2) needs only to
guarantee the authenticity of the request. Since rules are
public, confidentiality is not a concern. Since the lease is

an absolute value (§4.3), the only effect of replaying rule
requests is increased traffic at the RCE. The maximum
lease value thatC can sign for a rule is negotiated
betweenD’s ISP andC. Furthermore, RCEs can limit the
number of clients contacting them and can limit each
user’s certification rate, as we discuss in this section.

Certify multiple destination rules: In this case, every
destination (i.e.,any host, middlebox, or waypoint router
that appears as an argument of asendto instruction) in
a rule must agree to receive packets on that rule,i.e., the
rule must respect its policies. In particular, every such
destination must sign the rule. One of the destinations,D,
collects the signatures of all the other destinations along
with their certificates binding their public keys to their
addresses.D then sends this information to its RCE. In
turn, the RCE verifies that all destinations in the rule
have signed the rule and sends the signed rule back to
D. The lease signed by the RCE has the minimum du-
ration between the requested lease and the leases of all
the certificates binding the addresses and the keys of the
participants.

Certify rules invoking functions: Operators providing
router functions can restrict which rules can invoke these
functions. The certification process is similar to certify-
ing multiple destination rules. The identifiers of func-
tions whose invocation requires authorization are repre-
sented as hashes of public keys. RCEs certify a rule con-
taining such an invocation only if the rule is signed with
the private key corresponding to the function identifier.

Bootstrapping: To certify rules, clientD needs to (1)
know the rule to contact an RCE,C; (2) provideC with a
return rule to receive the certified rule; and (3) obtain the
certificate from a trusted authority that signs the binding
betweenD’s keyKD and its address IPD. We assume the
ISP providesD with a rule to access an RCEC (similarly
to how ISPs today bootstrap clients’ access to the DNS).
Given this initial rule, we use a simple request-response
exchange between the client and the RCE to obtain both
the certificate binding the client’s IP address to its key as
well as itsfirst rule. Due to space constraints, we refer
the reader to our extended technical report [42] for more
details on the bootstrapping process.

RCE load and availability: To control its certification
load, an RCE can rate-limit the number of certification
requests that it processes from each individual client.
Clients are identified by IP address; the anti-spoofing
mechanism prevents clients from impersonating each
other. Alternatively, clients can be identified by “person-
alized” rules provided by the ISP to the customer to ac-
cess the RCE; such rules may have a finer granularity
than the anti-spoofing mechanism. RCEs can indirectly
protect themselves against link-level DoS attacks by con-
trolling the number of clients under contract.
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RCEs must be highly available to enable rule certifi-
cation at any time. RCEs can meet this requirement by
using multiple servers and multiple sites. ISPs and desti-
nations can protect themselves against RCE unavailabil-
ity by contracting with multiple RCEs.

RCE Key Distribution and Revocation: In this paper
we do not explore solutions for the distribution and revo-
cation of RCE keys to routers. Here, we simply mention
two possible approaches towards this goal. In one ap-
proach, RCE keys could be distributed and revoked using
DNSSEC. For example, in thetxt or other RR type, one
DNS entry contains the number of RCEs and, for each
RCE, there is one DNS entry (based on its index such as
“ID24.rce”) that contains the RCE’s key. Routers period-
ically update the RCE keys. In another approach, RCEs
could be deployed along AS boundaries, such that each
AS would have its own RCE. This approach has the ad-
vantage that additional security can be enforced,e.g.,the
trust in some RCEs can be restricted to their own address
ranges. Secure BGP could be used to distribute RCE keys
in this case, but at the expense of extra complexity.4

4.2 Rule Distribution

RBF uses an extended DNS infrastructure to distribute
rules, as illustrated in Fig. 3(a). The destinationD creates
and certifies a rule for itself (step A) and inserts it into
the DNS (step B). A senderS that wants to contactD
looks upD’s name in the DNS; the DNS is extended
to returnD’s rule rather than its address (step 1). After
obtaining a rule toD, S directly sends packets toD (step
2). Note that for practical purposes the rules of the DNS
root servers need to have long leases (to avoid tedious
reconfiguration or refresh protocols), as with today’s
long-lived addresses.

In Section 3.4 we pointed out that rules can be used
to block DDoS attacks. This relies on (1) the ability to
distribute customized rules to different senders (i.e.,give
a senderS a rule that drops all packets not generated by
S) and on (2) the ability to protect the rule distribution
itself from DoS attacks.

To protect against DDoS attacks, clientD can contract
with a large entityE, and redirect its DNS entry toE,
by registeringE’s rule under its DNS name. Fig. 3(b)

4Note that DNSSEC could also potentially be used to
distribute keys when RCEs are deployed along AS boundaries.

illustrates this approach. DNS will reply to a lookup
for D’s name withE’s rule (step 1). The DNS entry that
containsE’s rule must belong to a new type of DNS RR.
This new class of entries is returned directly to clients by
DNS resolvers. Upon a receipt of such an answer to its
DNS query, the requester will continue the DNS lookup
by contactingE (step 2).E rate-limits rule requests and
forwards them toD (step 3), thus protectingD from DoS
attacks. For the authorized requesters,D creates rules
(step 4) and replies back to the requesters (step 5).E
forwards requests toD conforming to a policy (see§3.4),
which can be updated byD at any time.

Note that some malicious users may still get their re-
quests forwarded byE and authorized byD. To alleviate
this attack,E can employ fair queuing across senders,
andD can blacklist known attackers atE. Such an ap-
proach offers a protection similar to network capabilities
that apply per-source fair queuing at routers [37].

4.3 Rule Leases

The lease is an expiration time stamp certified along
with the rule description. A router drops a packet if
its current time exceeds the rule expiration time. For
simplicity, in this paper we assume that all routers and
RCEs are synchronized via NTP [14] as recommended
by router manufacturers [19]. We present a solution that
does not rely on global clock synchronization in [42].

4.4 Anti-Spoofing Mechanism

If a source can spoof addresses on packets it sends, it can
send packets to a destinationD even if the rule does not
allow it to, and in this way evadeD’s policy. Moreover,
one can mount a DDoS attack by using a single rule
distributed by a malicious source to a set of colluders. To
address this problem, RBF can use a previously proposed
anti-spoofing mechanism. In this paper, we propose the
use of ingress filtering, which is already deployed by
over 75% of today’s ASes [23]. When deploying RBF,
RBF routers could also be used to apply ingress filtering.
Note that if malicious ASes do not apply ingress filter-
ing, DoS protection is not fully compromised as only
hosts in these ASes can launch attacks.

Instead of ingress filtering, RBF could leverage other
anti-spoofing mechanisms such as Passport [36]. How-
ever, Passport [36] requires a secure routing layer and
incurs extra overhead in packets.

The anti-spoofing mechanism requires middleboxes
and routers that change a packet’s destination address
also to change the packet’s source address attribute.

5 Security Analysis
The RBF design aims to achieve the following three
goals: (i)policy enforcement– ensure that the authorized
rules respect the policies of all participants (routers, mid-
dleboxes, destinations), and packets with unauthorized
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\Mechanisms Certifi- Lease Anti- Static
Properties\ cation Spoofing Analysis
No Rule Forging × ×
No Rule Tampering ×
No Rule Evasion × ×
Network Safety × ×

Table 1: Properties and Defense Mechanisms

rules are dropped inside the network; (ii)rule enforce-
ment- rules cannot be used by malicous senders and, if
senders or rule participants are untrusted, respect of rule
directives can be enforced; and (iii)rule safety rules
cannot be used to attack the network. Next, we sum-
marize RBF’s security properties, the threat model and
assumptions under which they hold, and the mechanisms
that allow RBF to meet these goals. We present a detailed
analysis and proofs of RBF’s security properties in [42].

Assumptions:We assume that DNS resolution is secure,
that distribution of RCE keys to routers is secure, and that
RCEs are not malicious.

Attackers: An attacker in RBF can be any host, middle-
box, or router: sources can attempt to attack destinations
by forging, evading or tampering with their rules; des-
tinations can try to attack the network by creating rules
that waste resources and slow down routers; middleboxes
and routers can attempt both of these attacks.

Security Properties:We decompose the aforementioned
security goals into four specific desired properties:

1. No Rule Forging: A host S cannot manufacture a
rule that sends packets to another hostD, unlessD
explicitly agrees with this rule,i.e., destinations and
middleboxes control the creation of rules that send
traffic to them.

2. No Rule Tampering: Sources, routers and middle-
boxes cannot tamper with the destination’s rules.

3. No Rule Evasion:HostS cannot send packets to des-
tinationD, if D’s rules do not accept packets fromS.

4. Network Safety: A destination D cannot create
unsafe rules. In particular,D cannot create rules that
(a) cause infinite loops, (b) corrupt router state, (c)
DoS routers or RCEs, or (d) violate ISP policies.

Mechanisms and Defenses:RBF uses four mechanisms
to achieve the above properties: (1) rule certification, (2)
rule leases, (3) anti-spoofing, and (4) static analysis. Ta-
ble 1 summarizes which mechanisms serve to meet the
four security properties.

6 Implementation

This section describes our prototype RBF router and
rule compiler.

6.1 An RBF Rule Compiler

Our prototype offers users a high-level language largely
identical to the syntax used in this paper in which to write
rules. We wrote an RBF compiler in C++ that translates
this high-level language into a compact rule format
carried in packets. This compact format uses: 8B(ytes)
for public-key hashes, 3B for the user-local index, 3B to
identify the RCE, 3B to identify router-defined functions
that do not require approval to be invoked and 8B for
those that do, and 2B as the default RBF packet attribute
values.5 For the lease we use an absolute expiration time
consisting of first 4B of the NTP format, with second-
level granularity and a wrap-around period of 136
years. For efficiency, we use variable-length encoding in
representing the internal rule structure. The maximum
rule description size is 256B in our implementation.

6.2 A Prototype RBF Router

Rationale: We implemented RBF forwarding using
Click [39] and RouteBricks [26]. Most commercial
routers implement packet processing using ASICs
or specialized network processors (NPs) rather than
general-purpose CPUs and, as such, our software-based
prototype is not entirely representative of currently de-
ployed routers. To a large extent, our choice of proto-
typing platform is borne of necessity since commercial
routers are closed. Beyond necessity, however, we be-
lieve a software-based prototype is valuable for mul-
tiple reasons. First, recent research [26, 31, 27] has
demonstrated that, with modern multi-core servers, it is
now possible to build high-speed software routers up to
edge and even core speeds. Secondly, while not directly
reusable, several aspects of our implementation archi-
tecture such as our approach to partitioning tasks across
multiple cores should apply to network processor-based
routers. Finally, several research [12, 28] and commercial
switches [3] augment ASIC-based switches with some
number of co-located general-purpose cores or servers
for greater flexibility in packet processing – our proto-
type architecture is directly applicable to such platforms.

Design requirements: We build our prototype in the
context of modern multi-core servers that incorporate
multiple processors or “sockets”, each with multiple
cores [17, 1]. As shown in Fig. 1, the software stack of an
RBF router includes the following key components: (1)
an IP forwarding module, (2) the rule execution engine,
and (3) some (possibly zero) number of specialized for-
warding function modules. All packets traverse the rule
execution and IP forwarding components, while different
subsets of packets may traverse one or more specialized
functions. In addition, the resources required to process
a packet may vary widely across functions;e.g.,an en-

5Our current prototype only supports this default size.
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Figure 4: Core Allocation Example in RBF Router

cryption function would use lots of CPU but little cache,
while a caching module may use more cache and less
CPU. At a high level, our design goal is to balance high
performance (i.e.,making efficient use of resources) with
performance isolation, both across different functions,
and between functions and the rule execution engine
(i.e.,sharing resources in a fair manner).

Approach: In its full generality, the above goal re-
quires contention-aware scheduling that simultaneously
takes into account the multiple resources (cores, various
caches, memory bandwidth, I/O bandwidth) for which
tasks might contend. For modern multi-core systems, this
is in itself an area of active research [24, 54] and be-
yond the scope of this paper. Instead, in our prototype,
we address the issue as follows. The IP forwarding mod-
ule and the rule execution engine are the central, most
critical, components of the router and hence we assign
these to a socket of their own and do not run special-
ized functions at cores in this socket. This avoids having
the IP and rule execution engines contend with special-
ized functions for cache, CPU and other resources at the
cost of some potential inefficiency since these “reserved”
cores (if unused) cannot be used by specialized functions
(if needed). We then assign specialized functions to the
remaining “unreserved” cores. We rely on the existing
(Click and Linux in our implementation) system sched-
ulers to ensure fair sharing of CPU resources between
functions on the same core.

To achieve high performance, we run a single thread
performing both IP forwarding and rule execution at
each of the reserved cores; this ensures that packets that
do not invoke any specialized functions are processed
entirely by a single core avoiding potentially expensive
cache misses and inter-core synchronization [26]. Pack-
ets that invoke specialized functions must be relayed
across cores and hence incur corresponding performance
overheads due to cache misses and so forth. To improve
the efficiency of such transfers when these functions
are implemented in user space, we use shared memory
pages and event queues. In our current prototype, when
a rule invokes a user-level function, we make a single
copy of the packet to the shared memory. An example of
the resulting system architecture is depicted in Fig. 4.
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Figure 5: Rule Sizes

7 Evaluation

We use our prototype to evaluate the overhead RBF im-
poses on packets (§7.1), routers (§7.2) and RCEs (§7.4).

7.1 Packet Size Overhead

Fig. 5 presents rule sizes (in bytes) for a range of exam-
ples, including those from§3.4. The figure captures all
the RBF-related fields and presents the size broken down
into (a) the rule and the associated attributes’ binary
encoding; (b) the control fields used for the lease, RCE
identification, to specify whether the return rule is in the
packet and so forth; and (c) the rule signature. We assume
a 41B signature obtained using ECDSA with ECC public
keys for RCEs derived from the NIST B-163 or K-163
curves [18], offering 80 bits of security. Note that RBF is
independent of the exact signature scheme used and that
smaller (and faster) signatures can be used. However,
shorter RCE keys may require more frequent updates to
compensate for the lower security guarantees. The rules
in Fig. 5 do not contain an identifier, and are identified
by endpoints and routers using a hash over their content.
Rule identifiers are required for rules whose content
may change during a communication (such as the rules
of mobile hosts) and incurs an additional 11B overhead
in our implementation (8B for the hash of the public key
and 3B for the user-selected index). Note that the rule
identifier need be unique only with respect to a single
communication endpoint (i.e., all parties that a hostX
communicates with should have unique rule identifiers).

From Fig. 5 we can see that many common forwarding
scenarios (unicast, routing via middleboxes, rules for
DoS protection) can be expressed with around 60-80B
rules while more complex rules (e.g.,loose source rout-
ing, secure middleboxes, anycast) can take as much as
140B. The average rule size across all examples we have
implemented is 85B, representing 13% overhead for an
average packet of 630B[4] and 6% overhead for a 1500B
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packet. By comparison, using RSA-1024 signatures
(instead of ECDSA) would incur 27% overhead on a
630B packet and 11% overhead on a 1500B packet.

Potential Optimization - Rule Caching: Per-packet
overhead can be significantly reduced bycachingrules
at endpoints and routers; packets whose rules have been
cached need only carry rule identifiers. There are two op-
portunities for caching. First, destinations can cache re-
turn rules; this allows the return rule to be eliminated
from all but the first packet in a source-to-destination
exchange. Second, rules can also be cached at routers.
Here, however, we must ensure no packet carrying only
a rule identifier arrives at a router that does not store the
corresponding rule description. This might occur, for ex-
ample, due to a route change or when a router deletes
the rule from its cache. In such cases, the router can sim-
ply drop the packet in question, if the endpoints include
the rule on all retransmissions and during periods of high
packet loss. Of course, caching imposes additional stor-
age overhead at routers as we evaluate shortly.

In summary, based on our evaluation, we see that the
per-packet overhead due to RBF can range from as low
as 24B when using caching and up to∼250B in the bad
case where there is no caching and the packet carries
complex destination and return rules.

7.2 Router Overhead

In this section, we evaluate the overhead RBF imposes
on routers for rules that do not invoke specialized
processing functions; we consider router functions in the
following section. The primary overhead RBF imposes
on routers is the additional processing required to
execute and authenticate rules and the additional storage
capacity required if rules are cached. In this paper we
do not evaluate rule authentication, which we assume
is done by specialized hardware at trust-boundary
routers; in [42] we present an evaluation for software
rule authentication using RSA signatures, and show that
our software router is not significantly slowed down
when forwarding realistic traffic traces and performing
verifications (the slowdown is less than 10%).

Rule Forwarding: We first measure the overhead of rule
processing by comparing the performance of RBF-on-
RouteBricks to that of unmodified RouteBricks running
on a single high-end server machine. We use a dual-
socket server with four 2.8GHz Intel Xeon (X5560) cores
per socket to (from) which we generate (sink) traffic over
two dual-port 10G NICs. In this experiment, we use all 8
cores to forward packets.

Fig. 6 plots forwarding rates for some of the examples
from Fig. 5. The first column represents a packet stream
with sizes generated based on a packet trace collected on
the Abilene backbone [11]; since the packets from the
trace do not have rules, we add to each packet the slowest
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Figure 6: Forwarding speed for RBF over RouteBricks

rule that fits in the packet. By “slowest” we mean the
rule that takes the longest time to forward, as determined
by the number of conditions and actions encountered
during forwarding. To capture the performance impact
for small packets, we profile each rule without any
payload and with no return rules. In the figure, packet
sizes are shown next to the example name and entries
are sorted in order of increasing packet size; the packet
size also includes the Ethernet and IP headers. The last
columns depict forwarding of larger packets,i.e., that
also contain data payload. To see the impact of the
type of rule for these packets, we profiled them with
the fastest and the slowest rules. Note that all rules are
profiled in the worst case, meaning that the longest path
through the rule is considered. For the slowest rule we
use a 145B anycast rule which selects one out of 10
destinations based on the value of a packet attribute.

Overall, we see in Fig. 6 that the performance degrada-
tion due to RBF’s more complex per-packet processing
is always modest (<15%) and virtually non-existent at
larger packet sizes. For small packets the CPU is the for-
warding bottleneck, and RBF’s added processing slows
the router. For larger packets the I/O system is the bot-
tleneck, and there are enough free CPU cycles to execute
rules. A fine-grained profile of the rule execution module
showed that it uses between 120 CPU cycles per packet
for the fastest rule and 600 CPU cycles for the slowest
rule; in comparison, the IP router used in our experi-
ments requires around 3000 cycles per packet without
rule execution. Also note that compared to the network-
level forwarding results from Fig. 6, application-level
goodput is further reduced by the RBF header.

Router cache sizes:We earlier proposed that routers
cache rule authentications and/or rule descriptions. In
each case, the number of cache entries required depends
on the number of distinct rules the router sees. If we
assume that all packets in a flow share the same rule,
then the number of distinct rules passing through a given
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router varies between the worst case of O(#flows) to the
best case of O(#destinations) seen by the router. The for-
mer corresponds to a destination that uses a different rule
for every source it communicates with, the latter to a des-
tination that uses a single rule for all potential sources.

In our implementation, each cached authentication
is 19 bytes – 11B for the rule identifier and an 8-byte
hash value used to verify whether the rule has changed
since it was authenticated. Each router uses its own
secret hash function to prevent attackers from using
hash collisions. Thus, one million rules would require
only 19MB of memory. For caching entire rules, Fig. 5
reveals average and worst-case rule sizes of 85 and
133 bytes, respectively. If we conservatively assume
traffic is uniformly distributed across these forwarding
categories, we arrive at an estimated cache size of 85MB
(average) to 133MB (worst-case) for 1M rules, which is
within the scope of memory available in current routers.

7.3 Router Functions

Our router prototype supports specialized functions
implemented at either kernel- or user-level. We currently
support three router functions: (i) the Snort IDS [13]
adapted to run as a user-level function, (ii) a kernel-mode
firewall implemented in Click and (iii) a kernel-mode
encryption engine also implemented in Click. Each
function runs as a separate process/kernel thread isolated
from the packet forwarding path through queues. We
measure performance and fairness using the above
functions on the same hardware as before. We dedicate
four cores to the standard forwarding path and the
remaining four cores to custom functions.

Fig. 7(a) illustrates the resource isolation between
forwarding and router functions; the function used in this
experiment is Snort (running on four cores). To generate
traffic we use real traces of (moderately) malicious
traffic created particularly for IDS testing [10, 30]. The
average packet size of the trace used was 1065 bytes. To
avoid biasing our results, we modify Snort not to drop
any malicious packets so packets are only dropped due

to resource exhaustion. Our test maintains constant total
input traffic while increasing the percentage of input
traffic that invokes Snort (X-axis). We see from Fig. 7(a)
that Snort traffic does not affect the “regular” traffic that
does not invoke Snort, in the sense that no regular traffic
is dropped, even as a growing percentage of input Snort
traffic is dropped. We observed the same isolation when
using traces with small packets (see [42]).6

Fig. 7(b) illustrates isolation between router functions.
We run three experiments: (1) all traffic invokes the
firewall function and no traffic invokes encryption; (2) all
traffic invokes encryption; and (3) equal halves of traffic
invoking the firewall and encryption. Fig. 7(b) plots
the resulting forwarding rates under increasing input
traffic. In the third (shared) test the CPU is shared fairly
between functions (we use Click-level scheduling); thus,
the ratio between the maximum throughputs achieved
by each router function is expected to roughly match
the ratio between the throughputs of the functions when
running in isolation. In Fig. 7(b) the encryption through-
put is higher for a mix of firewalled and encrypted traffic
than 50% of that when encryption is executed alone
because the trace contains large packets. In this case, the
CPU is not the bottleneck for the firewall functionality
but is the bottleneck for encryption (since it is more
CPU-intensive), and thus encryption ends up using
the leftover firewall CPU cycles. If small packets are
used, both functionalities achieve around 50% of their
throughput in isolation [42]. Note that the high rates
achieved by running each function in isolation illustrates
the benefit of running instances of a single function at
multiple cores (as opposed to one function per core)
since this allows the unused resources from one function
to be seamlessly utilized by other functions.

7.4 RCE Load

We use a simple back-of-the-envelope calculation to
estimate the total number of RCE servers required for the
Internet. The bulk of requests to RCEs are determined
by IP address changes and per-client certifications re-
quested by sites that protect against DoS (by redirecting
DNS requests to powerful entities, see§3.4,§4.2). Note
that in the latter case, requests to RCEs are made only
for approved customers. There are currently around 700
million hosts in the Internet [9]; given the current trend
of smart mobile devices we consider 1 billion hosts. We
assume a worst-case scenario in which all hosts request
certifications in the same second; these requests are
made either by hosts individually to certify a rule or by

6We also measured the performance of the system with all
the eight cores running both forwarding and Snort, and all the
packets directed to Snort. While this configuration does not
provide isolation for the regular traffic, it can forward a higher
total throughput of 22Gbps.

12



                          Property 

Architecture 

Explicit

Middlebox 

Support 

Multiple

Paths

Invoke Router 

Extensions (e.g.

IDS, multicast) 

Use Router State in 

Forwarding (e.g.

anycast, DTN) 

Record  Router 

State (e.g. network 

probing, ECN) 

Mobility Policy

Compliant 

Loose Paths 

Policy Compliant 

In-network 

Functionality Use

Receiver 

Reachability

Control 

Host

DDoS

Protection 

Safety of Network 

& Routers (e.g. loops, 

break ISP policies)   

RBF Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Active Networks Yes Yes Yes Yes Yes Yes No No No No No

ESP No No Yes No Yes No No No No No Yes 

i3, DOA Yes No No No No Yes No No No No Yes

Platypus, SNAPP Yes Yes No No No No Yes No No No Yes

TVA, SIFF No No No No No No No No No Yes Yes

NUTSS Yes No No No No No Yes No Yes No Yes

PushBack, AITF, StopIt No No No No No No No No No Yes Yes

Predicate routing,  

Off-by-default 

No No No No No No No No Yes No Yes

ICING Yes No No No No No Yes No Yes No Yes

Security / Policy Compliance Flexibility Available to End-hosts 

Figure 8: A comparison of RBF to:Active Networks [48, 50], ESP[25], i3[47], DOA[49], Platypus[44], SNAPP[40], TVA[52],
SIFF[51], NUTSS[29], PushBack[32], AITF[21], StopIt[37], Predicate Routing[45], Off-by-default[22], ICING[46]

websites hosts are trying to access. We implemented
RCE rule certification in software using RSA signatures,
and measured it on the same 8-core server used through-
out our evaluation. We find a single server can achieve a
certification rate of over 16,000 rules per second. Based
on benchmarks of our implementation and assuming
an oversubscription rate of 10× (ISPs today commonly
oversubscribe by 100×), the total load due to certifying
rules above could be accommodated by around 6,000
servers;e.g.,handled by 20 RCEs with 300 servers each.
Hardware implementations might reduce this number
by more than an order of magnitude. For example,
using recent ECC prototypes [53, 34] a single ASIC
could potentially perform 40,000 RCE certifications per
second, requiring a total of only 2500 such devices.

8 Related Work

RBF is inspired by and extends several directions in past
research. RBF’s contribution is in offering extensive flex-
ibility while respecting policies, where prior approaches
tended to focus on one or the other. Fig. 8 compares the
flexibility and security features of RBF with those of pre-
vious proposals. RBF is complementary to recent efforts
proposing open router APIs [15, 16, 38, 12] – we offer
an overall network design by which endpoints use the
new functionality these router architectures promise to
enable. This paper extends an earlier position paper [43]
that argued the case for a rule-based architecture.

A key feature that distinguishes RBF from previous
proposals and allows it to achieve both flexibility and
policy compliance is its division of functionality between
the data and control planes. Active Networks typically
make little use of the control plane, as they deploy the
forwarding functionality and enforce security on the data
plane. This makes policy compliance hard to achieve. In
contrast, more recent proposals such as OpenFlow [12]
rely heavily on the control plane and install flow state
in the network to make sure the data plane respects the
appropriate policies. This approach, while simplifies the
data plane, results in a more rigid architecture. For ex-
ample, supporting host mobility and traffic engineering

require tearing down the old paths and instantiating new
ones. These are expensive operations which have a nega-
tive impact on the scalability of these proposals. In con-
trast, with RBF, each packet contains (in its rule) enough
information to prove to routers that it respects the poli-
cies of all participants involved in forwarding the packet.
RBF achieves this property despite the fact that neither
the routers nor the packet contain the policies. Thus, RBF
retains the datagram model of the IP, unlike other re-
cent proposals (e.g.,network capabilities [52, 51], IC-
ING [46] and OpenFlow [12]), which are more akin
to a connection-oriented model. Finally, while overlay-
based architectures can implement more sophisticated
data plane or control plane mechanisms, they cannot
leverage support at routers and are thus less powerful.7

9 Incremental Deployment

All the benefits of RBF shown in Fig. 8 except re-
ceiver reachability control and DDoS protection can
be achieved with a partial deployment of RBF routers
and middleboxes. In an initial phase, RBF routers could
support both RBF and legacy (non-RBF) traffic. To also
offer DoS protection and reachability control, individual
ASes can upgrade to RBF by dropping legacy traffic.
Hosts in such ASes can use multihoming to handle
legacy traffic, although they will be vulnerable to DoS
attacks on legacy interfaces.

10 Discussion

We have presented RBF, an architecture we have argued
strikes a desirable balance between flexibility and the
ability to guarantee policy compliance of all network
entities. We started this work with two high level goals
in mind. First, we wanted acompletearchitecture that
supports not only previously proposed communication
primitives, but also future ones. Second, we wanted an

7For example, overlay architectures can only drop un-
wanted packets at overlay nodes and hence cannot create a
network that is fundamentally default-off; once the network-
layer address of a node is known, it can always be attacked at
the underlying network layer.
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efficientarchitecture in which a packet unwanted by a
receiver along its path is dropped as early as possible.

While completeness in this context is difficult to for-
malize, intuitively we have reduced it to (1) supporting
arbitrary communication paths, and (2) allowing all
network entities (i.e., sender, receivers, middleboxes,
and routers) to be involved in the decision process. In
other words, we wanted to be able to define virtually
any forwarding path and give all involved parties a say
in defining it. We noted that such a path can be encoded
by associating with each node an “if-then-else” code
snippet, which specifies the next node down the path.
We further noted that allowing different network entities
to define the communication pattern is equivalent to
allowing them to define these code snippets. This is
roughly what the RBF proposal is.

These goals are ambitious – they subsume, unite and
extend many years of proposals for greater flexibility and
security in networks – and much of RBF’s complexity
follows from these goals.

Finally, one might question whether a relaxation of
RBF’s goals might lead to a significantly simpler design.
This is a valid question that we leave for future work.
We believe that understanding the fundamental tradeoffs
associated with these goals is critical and, at the very
least, that RBF is a step toward arriving at such an
understanding.
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