USENIX Association

Proceedings of the First Symposium on
Networked Systems Design and Implementation

San Francisco, CA, USA
March 29-31, 2004

THE ADVANCED COMPUTING §YSTEMS ASSOCIATION

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Listen and Whisper: Security M echanismsfor BGP

L akshminarayanan Subramanian®, Volker Roth#, lon Stoica*, Scott Shenker**+, Randy H. Katz*

*University of California, Berkeley # Fraunhofer Institute, Germany
vroth@igd.fhg.de

{lakme,istoica,randy } @cs.berkeley.edu

Abstract

BGP, the current inter-domain routing protocol, assumes
that the routing information propagated by authenticated
routers is correct. This assumption renders the current in-
frastructure vulnerable to both accidental misconfigura-
tions and deliberate attacks. To reduce this vulnerabil-
ity, we present a combination of two mechanisms: Listen
and Whisper. Listen passively probes the data plane and
checks whether the underlying routes to different destina-
tions work. Whisper uses cryptographic functions along
with routing redundancy to detect bogus route advertise-
ments in the control plane. These mechanisms are easily
deployable, and do not rely on either a public key infras-
tructure or a central authority like ICANN.

The combination of Listen and Whisper eliminates a large
number of problems due to router misconfigurations, and
restricts (though not eliminates) the damage that deliber-
ate attackers can cause. Moreover, these mechanisms can
detect and contain isolated adversaries that propagate even
a few invalid route announcements. Colluding adversaries
pose a more stringent challenge, and we propose simple
changes to the BGP policy mechanism to limit the dam-
age colluding adversaries can cause. We demonstrate the
utility of Listen and Whisper through real-world deploy-
ment, measurements and empirical analysis. For example,
arandomly placed isolated adversary, in the worst case can
affect reachability to only 1% of the nodes.

1 Introduction

The Internet is a collection of autonomous systems (AS’s),
numbering more than 14,000 in a recent count. The inter-
domain routing protocol, BGP, knits these autonomous sys-
tems together into a coherent whole. Therefore, BGP’s re-
silience against attack is essential for the security of the
Internet. BGP currently enables peers to transmit route an-
nouncements over authenticated channels, so adversaries
cannot impersonate the legitimate sender of a route an-
nouncement. This approach, which verifies who is speaking
but not what they say, leaves the current infrastructure ex-
tremely vulnerable to both unintentional misconfigurations
and deliberate attacks. For example, in 1997 a simple mis-
configuration in a customer router caused it to advertise a

T 1C3Y, Berkeley
shenker @icsi.berkeley.edu

short path to a large number of network prefixes, and this
resulted in a massive black hole that disconnected signifi-
cant portions of the Internet [14].

To eliminate this vulnerability, several sophisticated BGP
security measures have been proposed, most notably S-
BGP [24]. However, these approaches typically require
an extensive cryptographic key distribution infrastructure
and/or a trusted central database (e.g., ICANN [3]). Nei-
ther of these two crucial ingredients are currently available,
and so these security proposals have not moved forward
towards adoption.? In this paper we abandon the goal of
“perfect security” and instead seek “significantly improved
security” through more easily deployable mechanisms. To
the end we propose two measures, Listen and Whisper, that
require neither a public key distribution nor a trusted cen-
tralized database. We first describe the threat model we ad-
dress and then summarize the extent to which these mech-
anisms can defend against those threats.

1.1 Threat Model

The primary underlying vulnerability in BGP that we ad-
dress in this paper is the ability of an AS to create invalid
routes. There are two types of invalid routes:

Invalid routesin the Control plane: This occurs when an
AS propagates an advertisement with a fake AS path (i.e.,
one that does not exist in the Internet topology), causing
other AS’s to choose this route over genuine routes. A sin-
gle malicious adversary can divert traffic to pass through
it and then cause havoc by, for example, dropping packets
(rendering destinations unreachable), eavesdropping (vio-
lating privacy), or impersonating end-hosts within the des-
tination network (like Web servers etc.).

Invalid routes in the Data Plane: This occurs when a
router forwards packets in a manner inconsistent with the
routing advertisements it has received or propagated; in
short, the routing path in the data plane does not match the

1Thereis much debate about whether their failureis due to the
lack of a PKI and trusted database, or onerous processing over-
heads, or other reasons. However, the fact remains that neither of
these infrastructures are available, and any design that requires
them faces amuch higher deployment barrier.

corresponding routing path advertised in the control plane.
Mao et al. [26] show that for nearly 8% of Internet paths,
the control plane and data plane paths do not match.

Two primary sources of invalid routes are misconfigu-
rations and deliberate attacks. While these are the only
sources of invalid routes in the control plane, data plane in-
validity can occur additionally due to genuine reasons (e.g.
intra/inter-domain routing dynamics [26]). The fact that a
sizable fraction of Internet routes are invalid in the data
plane mativates the need for separately verifying the cor-
rectness of routes in the data plane and not merely focusing
on the control plane. Prior works on securing BGP focus
primarily on the control plane.

Misconfigurations occur in several forms ranging from
buggy configuration scripts to human errors. In the control
plane, Mahajan et al. [25] infer that misconfigurations pro-
duce invalid route announcements to roughly 200 — 1200
prefixes every day (roughly 0.2 — 1% of the prefix entries
in a typical routing table). Stale routes (not propagating
new announcements) and forwarding errors at a router (e.g.,
lack of forwarding entry) are two other data plane miscon-
figurations causing invalid routes. While AS’s might act
in malicious ways on their own, the biggest worry about
deliberate attacks comes from adversaries who break into
routers. Routers are surprisingly vulnerable; some have de-
fault passwords [10, 33], others use standard interfaces like
telnet and SSH, and so routers share all their known vulner-
abilities. For our purposes in this paper, the only difference
between a misconfiguration and an attack is that attackers
can take active countermeasures (by, for instance, spoofing
responses to various probes) while misconfigured routers
don’t. Deliberate attacks can involve an isolated adversary
(i.e., asingle compromised router) or colluding adversaries
(i.e., a set of compromised routers). Colluding adversaries
have the additional ability to tunnel route advertisements
and fake additional links in the topology.

The spectrum of problems we address in this paper can be
described, in order of increasing difficulty, as misconfigu-
rations, isolated adversaries and colluding adversaries. We
now describe the extent to which Listen and Whisper pro-
vide protection against these threats.

1.2 Level of Protection

Listen detects invalid routes in the data plane by checking
whether data sent along routes reaches the intended desti-
nation. Whisper checks for consistency in the control plane.
While both these techniques can be used in isolation, they
are more useful when applied in conjunction. The extent to
which they provide protection against the three threat sce-
narios can be summarized as follows:

Misconfigurations and Isolated Adversaries: Whisper
guarantees path integrity for route advertisements in the

presence of misconfigurations or isolated adversaries; i.e.,
any invalid route advertisement due to a misconfiguration
or isolated adversary with either a fake AS path or with
any of the fields of the AS path being tampered (e.g., ad-
dition, modification or deletion of AS’s) will be detected.
Path integrity also implies that an isolated adversary can-
not exploit BGP policies to create favorable invalid routes.
In addition, Whisper can identify the offending router if it
is propagating a significant number of invalid routes. Lis-
ten detects reachability problems caused by errors in the
data plane, but is only applicable for destination prefixes
that observe TCP traffic. However, none of our solutions
can prevent malicious nodes already on the path to a par-
ticular destination from eavesdropping, impersonating, or
dropping packets. In particular, countermeasures (from iso-
lated adversaries already along the path) can defeat Listen’s
attempts to detect problems on the data path.

Colluding Adversaries: Two colluding nodes can always
pretend the existence of a direct link between them by tun-
neling packets/ advertisements. In the absence of complete
knowledge of the Internet topology, these fake links can-
not be detected even using heavy-weight security solutions
like Secure BGP [23]. While these fake links enable col-
luding adversaries to propagate invalid routes without be-
ing detected, we show that if BGP employs shortest-path
routing then a large fraction of the paths with fake links
can be avoided. On the contrary, colluding adversaries can
exploit the current application of BGP policies to mount a
large scale attack. To deal with this problem and yet support
policy-based routing, we suggest simple modifications to
the BGP policy engine which in combination with Whisper
can largely restrict the damage that colluding adversaries
can cause.

The rest of the paper is organized as follows. In Section 2,
we discuss related work. In Sections 3 and 4, we de-
scribe the whisper and the listen protocols. In Section 5, we
present our implementation of Listen and Whisper. In Sec-
tion 6, we will evaluate several aspects of Listen and Whis-
per using real-world deployment and security analysis. In
Section 7, we discuss the case of colluding adversaries and
finally present our conclusions in Section 9.

2 Related Work

In this section, we will present related work as well as try to
motivate our work in comparison to previous approaches to
this problem. We classify related work based on the threat
model.

2.1 Misconfigurations

Traditional approaches to detecting misconfigurations in-
volves correlating route advertisements in the control plane
from several vantage points [25, 34]. While these works

identify two forms of misconfigurations (origin and export
misconfigurations), a fundamental limitation with analyz-
ing BGP streams: the lack of knowledge of the Internet
topology. Since the topology is not known, these techniques
can pinpoint invalid routes only when the destination AS is
wrongly specified but not when the path is modified.

Mao et al. [26] build an AS-traceroute tool to detect the AS
path in the data plane which can be used for data-plane ver-
ification. While this tool can detect several forms of invalid
routes in the data plane, it is useful for diagnostic purposes
only once a problem is detected. Padmanabhan et al. [29]
propose a secure variant of t r acer out e to test the cor-
rectness of a route. However, this mechanism requires a
prior distribution of cryptographic keys to the participating
AS’s to ascertain the integrity and authenticity of tracer-
oute packets. In the context of feedback based routing, Zhu
et al. [35] proposed a data plane technique based on passive
and active probing. The passive probing aspect of this work
shares some similarities to our Listen method.

2.2 Dealing with Adversaries

Techniques dealing with adversaries can be classified as
Key distribution based or Non-PKI based.

Key-distribution based: One class of mechanisms builds
on cryptographic enhancements of the BGP protocol, for
instance the security mechanisms proposed by Smith et
al. [31], Murphy et al. [27], Kent et al. [24], and recent
work on Secure Origin BGP [28]. All these protocols make
extensive use of digital signatures and public key certi-
fication. More lightweight approaches based on crypto-
graphic hash functions have been proposed e.g., by Hu
et al. [20, 22] in the context of secure routing in ad hoc
networks. However, these mechanisms require prior secure
distribution of hash chain elements.

Why not use a PKl-based infrastructure? Public key in-
frastructures impose a heavy technological and manage-
ment burden, and have received a fair share of criticism
e.g., by Davis [16], Ellison and Schneier [17]. The PKI
model has been criticized based on technical grounds, on
grounds of a lack of trust and privacy, as well as on prin-
ciple [16, 17, 15]. Building an Internet wide PKI infras-
tructure incurs huge costs and has a high risk of failure.
Secure-BGP, despite the push by a tier-1 ISP, has been de-
ployed only by a very small number of ISPs after 5 years
(though an IETF working group on Secure-BGP exists).

Non-PK 1 approaches: Non-PKI based solutions offer far
less security in the face of deliberate attacks. Some of these
mechanisms assume the existence of databases with up to
date authoritative route information against which routers
verify the route announcements that they receive. The In-
ternet Routing Registry [4] and the Inter-domain Route Val-
idation Service proposed by Goodell et al. [19] belong to

Sa S
Sa SnSs A Se Sc

c S8 ¢ @

Case(ii): Whisper Protocol Model

Figure 1: Comparison of the security approach of Whisper pro-
tocols with Secure BGP

this category. Here, the problem is to ascertain the authen-
ticity, completeness, and availability of the information in
such a database. First, ISPs only reluctantly submit routing
information because this may disclose local policies that
the ISPs regard as confidential. Second, the origin authen-
tication of the database contents again demands a public
key infrastructure [28]. Third, access to such databases re-
lies on the very infrastructure that it is meant to protect,
which is hardly an ideal situation.

3 Whisper: Control Plane Verification

In this section, we will describe the whisper protocol, a
control plane verification technique that proposes minor
modifications to BGP to aid in detecting invalid routes from
misconfigured or malicious routers. In this section, we re-
strict our discussion to the case where an isolated adversary
or a single misconfigured router propagates invalid routes.
We will discuss colluding adversaries in Section 7.

The Whisper protocol provides the following properties in
the presence of isolated adversaries:

1. Any misconfigured or malicious router propagating an
invalid route will always a trigger an alarm.

2. Assingle malicious router advertising more than a few
invalid routes will be detected and the effects of these
spurious routes will be contained.

3.1 Triggering Alarms vs ldentification

The main distinction between our approach and a PKI-
based approach is the concept of triggering alarms as op-
posed to identifying the source of problems. In Secure-BGP,
a router can verify the correctness of a single route ad-
vertisement by contacting a PKI and a central authority to
test the validity of the signatures embedded in the adver-
tisement . For example, in Figure 1 (Case(i)), each AS X
appends an advertisement with a signature Sx generated
using its public key. Another AS can use a PKI to check

whether Sx is the correct signature of X. In this case, any
misconfigured/malicious AS propagating an invalid route
will not be able to append the correct signatures of other
AS’s and can be identified.

Without either of these two infra-structural pieces, a router
cannot verify a single route advertisement in isolation. The
Whisper model is to consider two different route adver-
tisements to the same destination and check whether they
are consistent with each other. For example, in Figure 1
Case(ii), each route advertisement is associated with a sig-
nature of an AS path. AS D receives two advertisements
to destination A and can compare the signatures h 4p¢ and
h axy to check whether the routes (C, B, A) and (Y, X, A)
are consistent. When two routes are detected as inconsis-
tent, the Whisper protocol can determine that at least one
of the routes is invalid. However, it cannot clearly pinpoint
the source of the invalid route. Upon detecting inconsis-
tencies, the Whisper protocol can trigger alarms notifying
operators about the existence of a problem. This method is
based on the composition of well-known principles of weak
authentication as discussed by Arkko and Nikander [11].

Whisper does not require the underlying Internet topology
to have multiple disjoint paths to every destination AS. As
long as an adversary propagating an invalid route is not on
every path to the destination, whisper will have two routes
to check for consistency: (a) the genuine route to the desti-
nation; (b) invalid path through the adversary.

3.2 Route Consistency Testing

A route consistency test takes two different route advertise-
ments to the same destination as input and outputs true if
the routes are consistent and outputs false otherwise. Con-
sistency is abstractly defined as follows:

1. If both route announcements are valid then the output
is true.

2. If one route announcement is valid and the other one
is invalid then the output is false.

3. If both route announcements are invalid then the out-
put is true or false.

The key output from a route consistency test is false. This
output unambiguously signals that at least one of the two
route announcements is invalid. In this case, our protocols
can raise an alarm and flag both the suspicious routes as
potential candidates for invalid routes. If the consistency
test outputs true, both the routes could either be valid or in-
valid. Figure 2 depicts the outcomes of a route consistency
test for various examples of network configurations.

We will now describe two whisper consistency tests,
namely Weak Split Whisper and Strong Split Whisper
(SSW), of increasing complexity offering different security
guarantees. We primarily use Weak Split, a simple hash

True False Trueor False

O Uncompromised S Comrpomised
Node Node

- Imaginary Path

Figure 2: Different outcomes for a route consistency test. In
all these scenarios, the verifying node is V. The verifying node
checks whether the two routesit receives to destination P are con-
sistent with each other.

chain based construction, to motivate the construction of
SSW. SSW offers path integrity in the presence of miscon-
figurations or isolated adversaries and all the results in the
paper are based on SSW.

Conceptually, both these constructions introduce a signa-
ture field in every BGP UPDATE message which is used
for performing the route consistency test. There are three
basic operations that are allowed on the signature field:

1. Generate-Signature: The origin AS (the originator of
a route announcement) of a destination prefix gener-
ates a signature and initializes this field in the BGP
UPDATE message and forwards it to its neighbor. The
origin AS uses different initial signatures for every
prefix it owns.

2. Update-Signature: Every intermediary AS that is not
the origin of a destination prefix is required to update
the signature field using a cryptographic hash func-
tion. This operation is only performed by one router
in every AS (typically at the entry point of an AS).

3. Verify-Signature: Any intermediary router that re-
ceives two different routes (with different AS paths)
can compare whether the signatures in the two differ-
ent routes are consistent with each other.

The path integrity property requires the whisper protocol
to satisfy two properties: (a) a malicious adversary should
not be able to reverse engineer the signature field of an AS
path; (b) any modification to the AS path or signature field
in an advertisement should be detected as an inconsistency
when tested with a valid route to the same destination.

3.2.1 Weak Split Whisper

Figure 3 illustrates the weak-split construction using a sim-
ple example topology. Weak-Split whisper is motivated by
the hash-chain construction used by Hu et al. [21, 20] in
the context of ad-hoc networks. The key idea is as follows:
The origin AS generates a secret z and propagates h(x)
to its neighbors where h() is a globally known one-way

h(h(><)) h3(x)
n* (X)
h(X)
Secret=X o0 //6/>

()
h(n(x))

Figure 3: Weak-Split construction using a globally known hash
function A()

ZPAB

‘ ’NBC mod N
gZ-PmodN
< : QZ'P'XmodN

Figure 4: Basic Strong-Split construction using exponentiation
under modulo N where N = p x ¢, aproduct of two large primes.

gz.P.A

gZP mod N

N=p.q
Generator g
Secret z

hash function. Every intermediary AS in the path repeat-
edly hashes the signature field. An AS that receives two
routes r and s of AS hop lengths k£ and [with signatures
y, and y, can check for consistency by testing whether
hE=(y,) =y

The security property that the weak-whisper guarantees is:
An independent adversary that is N AS hops away from an
origin AS can propagate invalid routes of a minimum length
of N —1 without being detected as inconsistent. An AS that
is N hops away from the origin knows the value h™V ()
but cannot compute h*(z) for any k& < N since h() is a
one-way hash function. Such an AS also is not supposed to
reveal its hash value to other nodes (unless the AS colludes
with other AS’s). However, the adversary can forward any
fake path of length ¥V — 1.

Hence, weak-split whisper does not provide strong forms
of security guarantees. In particular, it cannot ensure path
integrity i.e. a malicious AS could modify the AS numbers
of a path without affecting the AS path length.

3.2.2 Srong Split Whisper

The strong split whisper protocol uses a more sophisticated
cryptographic check and can provide path integrity in the
presence of independent adversaries i.e., If an adversary re-
moves or changes any entry in the AS path, the strong split
whisper will always detect an inconsistency.

Figure 4 shows a construction of the basic SSW using the
RSA mechanism. We use a minor modification of the illus-
trated example. We will elaborate the three basic operations
for this protocol:

generate-signature: The origin AS computes three basic
parameters:. N, g, z. N is chosen as p x q where p and ¢
are two large primes of the form 2p’ + 1 and 2¢' + 1 where

p' and ¢’ are also prime. It then computes a generator g in
the prime group Z, and Z,. Finally, it chooses a random
number z and computes g?modN. The signature generated
is a tuple (IV, g*modN). While the origin AS publicly an-
nounces NNV, only it knows the prime factors of N. Similar
to RSA, we rely on the fact that an adversary cannot factor
N to determine its prime factors.

update-signature: Every AS is associated with a unique AS
number which is specified in the path. Let AS A that re-
ceive an advertisement from a neighboring AS with a sig-
nature (N,y) where y is of the form g”modN for some
value of D. AS A updates this signature to (N, y“modN).
In other words, the AS exponentiates using its AS num-
ber. In Figure 4, the route announcement contains an AS
path P, A, B, C, the corresponding signature of the route is
(N, g*PAB-CmodN).

verify-signature: We will describe verify-signature using
the example in Figure 4. The verifier,V, receives two sig-
natures (I, s;) and (IV, s5) where s; = g F4-B-CmodN
and sy = ¢ PX-YmodN. Given these values and the cor-
responding AS paths, the verifier outputs the routes to be
consistent if:
Sf(Y _ Sé B.C

SSW is similar to the MuHASH construction proposed
by Bellare et al. [12] for incrementally hashing signa-
tures. A formal proof of the security guarantees offered
by MuHASH is also applicable in our context to show
that SSW offers path integrity. The key observation with
our construction is: given N and given g*modN, an ad-
versary cannot compute z~mod@(N) (where ¢() is the
Euler function on natural numbers; given N = p x gq,
#(N) = (p— 1) x (g — 1)) and hence cannot remove the
signature of previous nodes in the AS path.

This construction has three problems: (a) an adversary can
permute entries in a path due to commutative property of
multiplication i.e., A.B = B.A; (b) the factoring property
i.e., 8 =4 x 2implies an AS path (2, 4) can be replaced by
(8); (c) More importantly, an adversary can add AS’s to the
AS path without being detected.

Preventing commutativity and factoring: To prevent
commutativity and factoring problems, we define a pseudo-
AS number for every AS which depends on the position of
the AS in a given AS path. If an AS X appears in position
p in the AS path, the following function

f(X,p)=2"xp+X

will produce unique values for all AS’s in different posi-
tions in an AS path (since 16 bits are sufficient to express
AS numbers). To avoid the problem of commutativity, an
AS updates a signature using f(X,p) instead of using its
AS number X.

To avoid the factoring problem, we use prime numbers.
Given a number y, one can determine the g(y) as the yt?
lowest prime number. Prime numbers are not factorable
and these numbers can be precomputed. Hence, given an
AS X appearing at position p, we use the exponent to be
X' = q(f(X,p)) to avoid both commutativity and factor-
ing problems. We refer to X' as the psuedo-AS number of
AS X when it appears in position p. The pseudo-AS hum-
bers for a given AS are computable by other routers as well.
Hence, we only use pseudo AS numbers for computing the
signature but do not change AS numbers in the AS path.

Preventing Addition of new ASnumbers:. The key to pre-
venting an adversary from adding AS numbers is to asso-
ciate a link identifier to represent an AS link between two
AS’s. If AS A forwards a route to AS B, let link(A, B) be
a uniquely computable identifier which is a function of the
AS numbers A and B. An AS A that received an advertise-
ment (N, y) should propagate the advertisement with the

signature:
(N, yA xlink(A,B))

where A’ is the pseudo-AS numbers of A. Since the iden-
tifier link(A, B) is added to the signature by A, B cannot
remove this portion from the signature. This implies B can-
not convert an AS path (B, A) to (B, C, A). However, if B
adds an AS at the end of a path (e.g., (C, B, A)), then the
neighbor receiving the advertisement will notice that the
neighbor it received the announcement from (i.e., B) does
not match the first AS in the path (i.e., C). Hence it will not
accept the announcement. One simple way to define a link
identifier is:

link(A,B) =2%2 x A' + B'

where A’ and B’ are the pseudo-AS numbers of A and
B. link(A, B) will be unique for all AS pairs A, B. Note
that pseudo-AS numbers are always less than 232 since
F(X,p) < 22! for all AS paths less than 32 hops in length.

Generalized SSW construction: In this section, we only
described the SSW construction using the basic RSA group
structure. Alternatively, one can build SSW using ellip-
tic curve cryptography [13]. The main distinction between
RSA and ECC is the number of bits necessary for the sig-
nature field. While RSA requires 1024 bit signatures, ECC
only requires 256 bits to provide the same level of security.

3.3 Containment: Penalty Based Route Selection

Route consistency testing only provides the ability to trig-
ger alarms whenever a node propagates invalid route an-
nouncements. We append consistency testing with penalty
based route selection, a simple containment strategy that
attempts to identify suspicious candidates and avoid routes
propagated by them. The strategy works as follows: A

Figure 5: Detecting Suspicious AS's: In this example, M is a
malicious AS that propagates 3 invalid routes to 3 different des-
tinations A,B,C. The AS paths in the routes propagated are in-
dicated along the links. The verifi er V' assigns penalty values of
3,1,1,1to M, A, B, C respectively.

router counts across destinations how often an AS appears
onan invalid route, and assigns this count as a penalty value
for the AS. The more destinations an adversary affects the
higher becomes its penalty and the clearer it stands out
from the rest. The route selection strategy is to choose the
route to a destination with the lowest penalty value.

Consider the topology in Figure 5, where M is a mali-
cious node that propagates 3 invalid route announcements
with AS paths M A, M B, M C. By choosing the minimum
penalty route, the verifier V' can avoid the invalid routes
through M since they have a higher penalty value. One key
assumption used in this technique is: The identity of an AS
propagating invalid routes is always present in the AS path
attribute of the routes. The identity of every AS is verified
by the neighboring AS which receives the advertisement.
For example, Zebra’s BGP implementation [2] explicitly
checks for this constraint for every announcement it re-
ceives. BGP should use shared keys across peering links
to avoid man in the middle attacks.

Penalties should primarily be viewed as a reasonable first
response to detect suspicious candidates and not as a fool-
proof mechanism. In the presence of an isolated adver-
sary, penalty based filtering can ensure that the effects of
the adversary are contained. We believe that penalties is
a good mechanism to detect malicious adversaries in cus-
tomer AS’s but should be applied with caution when in-
volving AS’s in the Internet core. In particular, penalties
are not a good security measure in the presence of collud-
ing adversaries or when the number of independent adver-
saries is large. For example, multiple adversaries can artifi-
cially raise the penalty of an innocent AS by including its
AS number in the invalid route.

4 Listen: Data Plane Verification

In this section, we will present the Listen protocol, a data
plane verification technique that detects reachability prob-

lems in the data plane. Reachability problems can occur
due to a variety of reasons ranging from routing problems
to misconfigurations to link failures. Listen primarily sig-
nals the existence of such problems as opposed to identify-
ing the source or type of a problem.

Data plane verification mechanisms are necessary in two
contexts: (a) connectivity problems due to stale routes or
forwarding problems are detectable only by data plane so-
lutions like Listen. (b) Blackhole attacks by malicious ad-
versaries already present along a path to a destination.
However, proactive malicious nodes can defeat any data
plane solution by impersonating the behavior of a genuine
end-hosts. The attractive features of Listen are: (a) pas-
sive (b) a standalone solution that can be incrementally de-
ployed without any modifications to BGP; (c) quick detec-
tion of reachability problems for popular prefixes; (d) low
overhead.

The basic form of the protocol described in this section
is vulnerable to port scanners generating many incomplete
connections. In Section 6.2, we use propose defensive mea-
sures against port scanners and motivate them using real
world measurements.

4.1 Listening to TCP flows

The general idea of Listen is to monitor TCP flows, and to
draw conclusions about the state of a route from this infor-
mation. The forward and reverse routing paths between two
end-hosts can be different. Thus we may observe packets
that flow in only one direction. We say that a TCP flow is
complete if we observe a SYN packet followed by a DATA
packet, and we say that it is incomplete if we observe only
a SYN packet and no DATA packet over a period of 2 min-
utes (which is longer than the SYN timeout period).

Consider that a router receives a route announcement for a
prefix P and wishes to verify whether prefix P is reachable
via the advertised route. In the simplest case, a router con-
cludes that the prefix P is reachable if it observes at least
one complete TCP flow. On the other hand, the router can-
not blindly conclude that a route is unreachable if it does
not observe any complete connection. Incomplete connec-
tions can arise due to reasons other than just reachability
problems. These include: (a) non-live destination hosts; (b)
route changes during the connection setup of a single flow
i.e. SYN and DATA packets traverse different routes. (c)
port scanners generating SYN packets.

Under the assumption that port scanners are not present, de-
tecting reachability problems would be easy. To deal with
non-live destinations, a router should notice multiple in-
complete connections to N different distinct destination
addresses (for a reasonable choice of). The problem of
route changes can be avoided by observing flows over a
minimum time period T'. Hence, a router can conclude that

a prefix is unreachable if during a period ¢ it does not ob-
serve a complete TCP flow where ¢ is defined as the maxi-
mum between: (a) the time taken to observe NV or more in-
complete TCP flows with different destinations within pre-
fix P; (b) a predefined time period 7.

The basic probing mechanism described above suffers from
two forms of classification errors: (a) false negatives; (b)
false positives. A false negative arises when a router infers
a reachable prefix as being unreachable due to incomplete
connections. A false positive arises when an unreachable
prefix is inferred as being reachable. A malicious end-host
can create false positives by generating bogus TCP con-
nections with SYN and DATA packets without receiving
ACKs. In Section 6.2, we show how to choose the parame-
ters NV and T to reduce the chances of incomplete connec-
tions causing false negatives.

4.1.1 Dealing with False Positives

Malicious end-hosts can create false positives by opening
bogus TCP connections to keep a router from detecting that
a particular route is stale or invalid. Adversaries noticing
route advertisements from multiple vantage points (e.g.,
Routeviews [8]) can potentially notice mis-configurations
before routers notice reachability problems. Such adver-
saries can exploit the situation and open bogus TCP con-
nections.

We propose a combination of active dropping and retrans-
mission checks as a countermeasure to reduce the probabil-
ity of false positives.

1. Active dropping: Choose a random subset of m, pack-
ets within a completed connection (or across connec-
tions), drop them and raise an alarm if these packets
are not retransmitted. Alternatively, one can just delay
packets at the router instead of dropping them.

2. Retransmission check: Sample a different random
subset of my packets and raise an alarm if more than
50% of the packets are retransmitted.

An adversary generating a bogus connection cannot decide
which packets to retransmit without receiving ACKSs. If the
adversary blindly retransmits many packets to prevent be-
ing detected by Active dropping, the Retransmission check
notices a problem. We set a threshold of 50% for retrans-
mission checks assuming that most genuine TCP connec-
tions will not experience a loss-rate close to 50%.

Consider an adversary that has transmitted k& packets in a
TCP connection without receiving ACKSs to retransmit a
fraction, ¢, of these packets. Let C(z,y) = ﬁ'),y, rep-
resent the binomial coefficient for two values x and y. The
probability with which the adversary is able to mislead the
active dropping test is given by % The probabil-
ity with which the retransmission check cannot detect an

procedure LISTEN(P,T,N)

Require: Prefi x P, time period 7', number of unique
destinations N

1: to =timeat which fi rst SYN packet observed

2: wait until |fows with distinct dest. in P| > N

3. wait till clock time > to + T

4: {Clean the data-set}

5: For every pair of |P addresses (src, dst) observed
6: if atleast asingle connection hascompleted then
7. Add sample (sre, dst, complete)

8 dse

9: Add sample (src, dst, incomplete)
10: end if
11: {Constants C},, C; must be determined in prac-

tice}

12: if fraction of complete connections > C}, then
13: return “routeis verifi able”

14: endif

15: if at least one connection completes then

16: if fraction of complete connections < C; then

17: {Test for false positive}

18: sample 2 future complete TCP fows towards
P

19: apply active dropping and retransmission
checks

20: if test is successful then

21: return “route is verifi able”

22: ese

23: return “route is not verifi able”

24: end if

25. endif

26: end if

Figure 6: Pseudo-code for the probing algorithm.

adversary is given by the tail of the binomial distribution
(1 (X2, /2 Clma,1)¢' (1 — g)™")). Hence the over-
all probability, p., that our algorithm does not detect an
adversary is:

% X (1 B (Z C(m%l)ql(l - Q)mgil))

l:ﬂ’Lg/2

For a given prefix, the overhead of active dropping can be
made very small. By choosing m; = 6 and dropping only
6 packets across different TCP flows, we can reduce the
probability of false positive, p., to be less than 0.1%.

This countermeasure is applied only when we notice a dis-
crepancy across different TCP connections to the same des-
tination prefix, i.e., number of incomplete connections and
complete connections are roughly the same. In this case,
we sample and test whether a few complete connections
are indeed bogus.

4.1.2 Detailed Algorithm

Figure 6 presents the pseudo-code for the listen algorithm.
The algorithm takes a conservative approach towards de-

termining whether a route is verifiable. Since false positive
tests can impact the performance of a few flows, the al-
gorithm uses the constant C}, and C; to trade off between
when to test for false positives. When the test is not ap-
plied, we use the fraction of complete connections as the
only metric to determine whether the route works. The set-
ting of Cj, C; depends on the popularity of the prefixes.
Firstly, we apply the false positive tests only for popular
prefixes i.e., C; = 0 for non-popular prefixes. For a popu-
lar prefix, we choose a conservative estimate of C}, (closer
to 1) i.e., a large fraction of the connections have to com-
plete in order to conclude that the route is verifiable. On
the other hand, if we observe that a reasonable fraction of
combination of incomplete connections, we apply the false
positive test to 2 sampled complete connections. The user
has choice in tuning C; based on the total number of false
positive tests that need to be performed. For non-popular
prefixes, the statistical sample of connections is small. For
such prefixes, we set the value of C', to be small.

5 Implementation

In this section, we will describe the implementation of Lis-
ten and Whisper and their overhead characteristics.

5.1 Whisper Implementation

In this section, we will only focus on the implementation of
the strong split whisper protocol. The whisper implementa-
tion contains two basic components: (2) a stand alone whis-
per library which performs the cryptographic operations
used in the protocol. (b) a Whisper-BGP interface which
integrates the whisper functions into a BGP implementa-
tion. We implemented the Whisper library on top of the
crypto library supported by OpenSSL development version
0.9.6b-33. We integrated this library with the Zebra BGP
router implementation version 0.93b [2]. Our Whisper im-
plementation works on Linux and FreeBSD platforms.

5.1.1 Whisper Library

The structure of a basic Whisper signature is:
t ypedef struct {
Bl GNUM *seed;
Bl GNUM *N;
} Si gnat ur e;

BIGNUM is a basic data structure used within the
OpenSSL crypto library to represent large numbers. The
whisper library supports these three functions using the
Signature data structure:

1. generate_signature(Signature * sg);

2: update_signature(Signature *sg, int asnumber, int
position);

3. verify_signatures(Signature *r, Signature *s,int
*aspath_r, int * aspath_s);

These functions exactly map to the three whisper opera-
tions described earlier in Section 3.2.2. The main advantage
of separating the whisper library from the whisper-BGP in-
terface is modularity. The whisper library can be used in
isolation with any other BGP implementation sufficiently
different from the Zebra version.

5.1.2 Integration with BGP

The Whisper protocol can be integrated with BGP with-
out changing the basic packet format of BGP. Specifically,
we do not need any additional field for the Whisper sig-
nature. BGP uses community attributes within UPDATE
messages that can be leveraged for embedding the sig-
nature attributes. Community attributes are 32 bit values
which are optional BGP attributes that are mainly used for
community-based routing mainly for multi-homing ISPs.

This design offers us many advantages over updating a
version of BGP. First, a single update message can have
several community attributes and one can split a signature
among multiple community attributes. Second, a commu-
nity attribute can be set using the BGP configuration script
to allow operators the flexibility to insert their own com-
munity attribute values. In a similar vein, one can imag-
ine a stand-alone whisper library computing the signatures
and a simple interface to insert these signatures within the
community attributes. Third, one can reserve a portion of
the community attribute space for whisper signatures. In
today’s BGP, community values can be set to any value as
long as they are interpreted correctly by other routers.

Our implementation uses the following semantics for the
community attribute: if the first 8 bits of an attribute are set
to 02 F0 and 0z F'1, then the remaining 24 bits refer to a
portion of the seed and N attributes in the signature. An
RSA based Whisper signature uses 2048 bits per signature
field - 1024 bits for the seed and 1024 bits for N. Such
a signature uses 88 community attributes. An ECC based
Whisper implementation uses 512 bits per signature and
hence uses only 22 community attributes.

5.2 Listen Implementation

We implemented the passive probing component of Listen
(i.e. without active dropping) in about 2000 lines of code
in C and have ported the code to Linux and FreeBSD oper-
ating systems. The current prototype uses the libpcap util-
ity [5] to capture all the packets off the network. This form
of implementation has two advantages: (a) is stand-alone
and can be implemented on any machine (need not be a
router) which can sniff network traffic; (b) does not require
any support from router vendors. Additionally, one can ex-
ecute bgpd (Zebra’s BGP daemon [2]) to receive live BGP
updates from a network router. For faster line-rates (e.g.
links in ISPs), listen should be integrated with hardware

Operation 512-hit 1024-hit 2048-bit
update_signature 0.18 msec | 0.45msec | 1.42 msec
verify_signatures 0.25msec | 0.6 msec 1.94 msec
generate_signature | 0.4 sec 8.0 sec 68 sec

Table 1: Processing overhead of the Whisper operations on
a 1.5 Ghz Pentium IV with 512 MB RAM.

or packet probing software like Cisco’s Netflow [1]. The
current implementation cannot support false positive tests
since the code can only passively observe the traffic but
cannot actively drop packets (since this does not perform
the routing functionality).

In our implementation, the complexity of listening to a TCP
flow is of the same order as a route lookup operation. Ad-
ditionally, the state requirement is O(1) for every prefix.
We maintain a small hash table for every prefix entry cor-
responding to the (src,dst) IP addresses of a TCP flow and
a time stamp. While a SYN packet sets a bit in the hash
table, the DATA packet clears the bit and record a complete
connection for the prefix. Using a small hash table, we can
crudely estimate the number of complete and incomplete
connections within a time-period 7'. Additionally, we sam-
ple flows to reduce the possibility of hash conflicts. This
implementation uses simple statistical counter estimation
techniques used to efficiently maintain statistics in routers.
Hence, the basic form of Listen can be efficiently imple-
mented in the fast path of today’s routers.

Deployment: We deployed our Listen prototype to sniff on
TCP traffic to and from a /24 prefix within our university.
Additionally, we received BGP updates from the univer-
sity campus router and constructed the list of prefixes in
the routing table used by the edge router. The tool only
needs to know the list of prefixes in the routing table and
assumes a virtual route for every prefix. The Listen tool
can report the list of verifiable and non-verifiable prefixes
in real time. Additionally, the Listen algorithm is applied
only by observing traffic in one direction (either outbound
or inbound).

5.3 Overhead Characteristics

Overhead of Whisper: One of the important requirements
of any cryptography based solution is low complexity. We
performed benchmarks to determine the processing over-
head of the Whisper operations. Table 1 summarizes the
average time required to perform the whisper operations for
3 different key sizes: 512— bit, 1024—bitand 2048 —bit. As
the key size increases, the RSA-based operations offer bet-
ter security. Security experts recommend a minimum size
of 1024 bit keys for better long-term security.

We make two observations about the overhead characteris-
tics. First, the processing overhead for all these key sizes

are well within the limits of the maximum load observed
at routers. For 2048 bit keys, a node can process more than
42,000 route advertisements within 1 minute. In compar-
ison, the maximum number of route advertisements ob-
served at a Sprint router is 9300 updates every minute [9].
For 1024 bit keys, Whisper can update and verify over
100,000 route advertisements per minute. Second, gener-
ate_signature() is an expensive operation and can consume
more than 1 sec per operation. However, this operation is
performed only once over many days.

Overhead of Listen: By analyzing route updates for over
17 days in Routeviews [8], we observed that 99% of the
routes in a routing table are stable for at least 1 hour. Based
on data from a tier-1 ISP, we find that a router typically
observes a maximum of 20000 active prefixes over a pe-
riod of 1 hour i.e., only 20000 prefixes observe any traffic.
If the probing mechanism uses a statistical sample of 10
flows per prefix, the overhead of probing at the router is
negligible. Essentially, the router needs to process 200000
flows in 3600 sec which translates to monitoring under 60
flows every second (equivalent to O(60) routing lookups).
Even if the number of active prefixes scales by a factor of
10, current router implementations can easily implement
the passive probing aspect of Listen.

Active dropping and retransmission checks are applied
only in the IP slow path and are invoked only when a prefix
observes a combination of both incomplete and complete
connections. To minimize the additional overhead of these
operations, we restrict these checks to a few prefixes.

6 Evaluation

In this section, we evaluate the key properties of Listen and
Whisper. Our evaluation is targeted at answering specific
questions about Listen and Whisper:

1. How much security can Whisper provide in the face
of isolated adversaries?

2. How useful is Listen in the real world? In particular,
can it detect reachability problems?

3. How does Listen react in the presence of port scan-
ners? How does one adapt to such port scanners?

We answer question (1) in Section 6.1, questions (2),(3)
in Section 6.2. Our evaluation methodology is two-fold:
(a) empirically evaluate the security properties of Whisper;
(b) use a real-world deployment to determine usefulness
of Listen. To evaluate the security properties of Whisper,
it is necessary to determine the effects of the worst-case
scenario which is better quantified using an empirical eval-
uation.

We collected the Internet AS topology data based on BGP
advertisements observed from 15 different vantage points
over 17 days including Routeviews [8] and RIPE [7]. The

°
©
T

°
@
T

°
S
T

°
>
T

°
@
T

°
IS
T

Cumulative Distribution

°

©
T

-~

= Top 100
‘= = Top 300
—— Top 500
== Top 1000

0.2 1

Fractior?:)f nodes vulnerable to Je?t‘tack(%)
Figure 7: Effects of penalty based route selection

policy-based routing path between a pair of AS’s is de-
termined using customer—provider and peer—peer relation-
ships, which have been inferred based on the technique
used in [32].

6.1 Whisper: Security Properties against Iso-
lated Adversaries

In this section, we quantify the maximum damage an iso-
lated adversary can inflict on the Internet given that Strong
Split Whisper is deployed. Since SSW offers path integrity,
an isolated adversary cannot propagate invalid routes with-
out raising alarms unless there exists no alternate route
from the origin to the verifier (i.e. adversary is present in
all paths from the origin to the Internet).

Given an adversary that is willing to raise alarms, we ana-
lyzed how many AS’s can one such adversary affect. In this
analysis, we exclude cases where the adversary is already
present in the only routing path to a destination AS. We use
penalty based route selection as the main defense to con-
tain the effects of such invalid routes. We assume that in
the worst-case, an adversary compromising a single router
inan AS is equivalent to compromising the entire AS espe-
cially if all routers within the AS choose the invalid route
propagated by the compromised router.

Let M represent an isolated adversary propagating an in-
valid route claiming direct connectivity to an origin AS
0. AS V is said to be affected by the invalid route if V'
chooses the route through M rather than a genuine route to
O either due to BGP policies or shorter hop length. Based
on common practices, we associate all AS’s with a simple
policy where customer routes have the highest preference
followed by peers and providers [18]. Given all these rela-
tionships, we define the vulnerability of an origin AS, O,
as V (0, M) to be the maximum fraction of AS’s, M can
affect. Given an isolated adversary M, we can quantify the
worst-case effect that M can have on the Internet using the
cumulative distribution of V' (O, M) across all origin AS’s
in the Internet.

Number of Probability of
Reachahility Problems | False Negatives
Outbound | 235 0.93%
Inbound 343 0.37%

Table 2: Listen: Summary of Results

With AS’s deploying penalty based route selection as a
defense, we expect the vulnerability V (O, M) to reduce.
We study how the cumulative distribution of V' (O, M) for
a single adversary M varies as a function of how many
AS’s deploy penalty based route selection. We consider
the scenario where the top n ISPs deploy penalty based
route selection (based on AS degree). Figure 7 shows this
cumulative distribution for for different values of n =
100, 300, 500 and 1000. These distributions are averaged
across all possible choices for M.

We make the following observations. First, a median value
of 1% for n = 1000 indicates that a randomly located ad-
versary can affect at most 1% of destination AS’s by prop-
agating bogus advertisements assuming that the top 1000
ISPs use penalties. This is orders of magnitude better that
what the current Internet can offer where a randomly lo-
cated adversary can on an average affect nearly 30% of the
routes (repeat the same analysis without SSW) to a ran-
domly chosen destination AS.

Second, in the worst case, a single AS can at most affect 8%
of the destination AS’s for n = 1000. 8% is a limit imposed
by the structure of the Internet topology since it represents
the size of the largest connected without the top 1000 ISPs.
One malicious AS in this component can potentially affect
other AS’s within the same component.

Third, if all provider AS’s use penalties for route selection,
the worst case behavior can be brought to a much smaller
value than 8%. Additionally, there is very little benefit in
deploying penalty based route selection in the end-host net-
works since they are not transit networks and typically are
sources and sinks of route advertisements. Hence, any fil-
tering at these end-hosts only protects themselves but not
other AS’s.

To summarize, the Whisper protocol in conjunction with
penalty based route selection can guarantee that a randomly
placed isolated adversary propagating invalid routes can af-
fect at most 1% of the AS’s in the Internet topology.

6.2 Listen: Experimental Evaluation

In this section, we describe our real-world experiences us-
ing the Listen protocol. We make two important observa-
tions from our analysis. First, we found that a large frac-
tion of incomplete TCP connections are spurious i.e., not
indicative of a reachability problem. We show that by adap-
tively setting the parameters 7', N of our listen algorithm

Number of end-hosts behind /24 network | 28
Number of days 40

Total No. of TCP connections 994234
No. of complete connections 894897
No. of incomplete connections 99337
Average Routing Table Size 123482
Total No. of Active Prefi xes 11141

Average No. of Active Prefi xes per hour 141

Average No. of Active Prefi xes per day 2500-3000
Verifi able Prefi xes 9711
Prefi xes with perennial problems 42

Table 3: Aggregate characteristics of Listen from the de-
ployment

we can drastically reduce the probability of such false nega-
tives due to such connections. Second, we are able to detect
several reachability problems using Listen including spe-
cific misconfiguration related problems like forwarding er-
rors. Table 2 presents a concise summary of the results ob-
tained from our deployment. We were able to detect reach-
ability problems to 578 different prefixes from our testbed
with a very false negative probabilities of 0.95% and 0.37%
respectively due to spurious outbound and inbound connec-
tions.

We will now describe our deployment experience in greater
detail. In our testbed, we use three active probing tests to
verify the correctness of results obtained using Listen: (a)
ping the destination; (b) traceroute and check whether any
IP address along in the path is in the same prefix as the
destination; (c) perform a port 80 scan on the destination
IP address. These tests are activated for every incomplete
connection. We classify an incomplete connection as hav-
ing a reachability problem only if all the three probing tests
fail. We classify an incomplete connection as a spurious
connection if one of the probing techniques is able to de-
tect that the route to a destination prefix works. A spurious
TCP connection is an incomplete connection that is not in-
dicative of a reachability problem.

Table 3 presents the aggregate characteristics of the traf-
fic we observed from a /24 network for over 40 days. In
reality, we found that nearly 10% of the connections are
incomplete of which a large fraction of these connections
are spurious (91% inbound and 63% outhound). A more
careful observation at the spurious connections showed
that nearly 90% of spurious inbound connections are due
to port scanners and worms. The most prominent ones
being the Microsoft NetBIOS worm and the SQL server
worms [6]. Spurious outbound connections occur primar-
ily due to failed connection attempts to non-live hosts and
attempts to access a disabled ports of other end-hosts (e.g.,
telnet port being disabled in a destination end-host).Given
this alarmingly high number of spurious connections, we
propose defensive measures to reduce the probability of

false negatives due to such connections.

6.2.1 Defensive Measuresto reduce False Negatives

In this section, we show that one can adaptively set the pa-
rameters N, T' in the listen algorithm to drastically reduce
the probability of false negatives due to spurious TCP con-
nections. In particular, we show that by adaptively tuning
the minimum time period, 7', one can reduce false negatives
due to port scanners and by tuning the number of distinct
destinations, NV, one can deal with non-live hosts.

Given the nature of incomplete connections in our testbed,
we use outbound incomplete connections as a test sample
for non-live hosts and inbound connections as the test sam-
ple for port scanners and worms. In both inbound and out-
bound, we restricted our samples to only those connections
which are known to be false negatives.

Setting T': One possibility is to choose an interval T' large
enough such that the router will notice at least one genuine
TCP flow during the interval. Such a value of T" will de-
pend on the popularity of a prefix. The popularity of a pre-
fix, pop(P), is defined as the mean time between two com-
plete TCP connections to prefix P. We can model the ar-
rival of TCP connections as a Poisson process with a mean
arrival rate as 1/pop(P) [30]. Given this, we can set the
value of T = 4.6 x pop(P) to be 99% certain that one
would experience at least one genuine connection within
the period 7. To have a 99.9% certainty, one needs to set
T = 6.9 x pop(P). For prefixes that hardly observe any
traffic, the value of 7" will be very high implying that port
scanners generating incomplete connections to such pre-
fixes will not generate any false alarms.

From our testbed, we determine the mean separation time
between the arrival of two incoming connections to be
pop(P) = 34.1 sec. By merely setting 7' = 156.8 to
achieve 99% certainty, we could reduce the probability of
false negatives in Listen from 91.83% to 0.37%. Through-
out the entire period of measurement, only during 8 periods
of 156 seconds each did we verify incorrectly that the local
prefix is not reachable.

Setting IV: The choice of an appropriate value of N trades
off between minimizing the false negative ratio due to non-
live hosts and the number of reachability problems de-
tected. In our testbed, we noticed that by merely setting
N = 2, we can significantly reduce the false negative ratio
in outbound connections from 63% to less than 1%. How-
ever, Listen reported only 35 out of 663 potential prefixes
to have routing problems. For several /24 prefixes, we ob-
served TCP connections to only a single host and by setting
N = 2, we tend to omit these cases. In practice, the value
of N is dependent on the diversity of traffic to a destination
prefix and the traffic concentration at a router. For many

Type of problem Number of Prefi xes
Routing Loops 51

Forwarding Errors 64

Generic (forward path) | 146

Generic (reverse path) | 317

Table 4: The number of prefixes affected by different types
of reachability problems.

/24 prefixes, we need to set N = 1. For /8 and /16 pre-
fixes, one can choose larger values of N = 4or N = 5
provided the prefix observes diversity in the traffic.

6.2.2 Detected Reachability Problems

Among the reachability problems detected by Listen, two
specific types of routing problems (as detected by active
probing) include: routing loops and forwarding errors due
to unknown IP addresses. Using traceroute, we were able to
detect routing loops and we inferred forwarding errors us-
ing the routing table entries at the University exit router. A
forwarding error arises when the destination IP address in
a packet is a genuine one but the router has no next hop for-
warding entry for the IP address. This can potentially arise
due to staleness of routes. Table 4 summarizes the number
of prefixes which are affected by each type of problem. In
particular, we observe routing loops to 51 different prefixes
and forwarding errors to 64 different prefixes. Addition-
ally, Listen detected 463 other prefixes having other forms
of reachability problems.

To cite a few examples of reachability problems we ob-
served: (a) A BGP daemon within our network attempted
to connect to another such daemon within the destination
prefix 193.148.15.0/24. The route to this prefix was peren-
nially unreachable due to a routing loop. (b) The route to
Yahoo-NET prefix 207.126.224.0/20 was fluctuating. Dur-
ing many periods, the route was detected as unavailable.

7 Colluding Adversaries

Additional to acting as a group of isolated adversaries, col-
luding adversaries can tunnel advertisements and secrets
between them and create invalid routes with fake AS links
without being detected by the Whisper protocols. These in-
valid routes are not detectable even with a PKI unless the
complete topology is known and enforced. Despite the lim-
itation, we can provide protective measures for avoiding
these invalid routes.

Given the hierarchical nature and the skewed structure of
the Internet topology, the invalid paths from colluding ad-
versaries not detectable by the Whisper tend to be longer
in AS path length. This is because, a normal route would
traverse the Internet core (tier-1 + tier-2 ISPs) once while
a consistent invalid route through 2 colluding adversaries

O

)
&

Cumulative Distribution
o
2

Cumulative Distribution

o
[}
0y

~,

= 2 Tier-1 ASes 4 &
== 2Tier-2 ASes o
‘== 12 Customer ASes ¢

°

°
S

= 2 Tier-1ASes
== 2Tier-2 ASes
+='= 12 Customer ASes

\
i
g
q
\
S
.
.

Cumulative Distribution

== 2Tier-1 ASes
— 2Tier-2 ASes
‘== 12 Customer ASes

07 o8 o 1 0 o1 o0z o3
Percentage of affected ASes

Figure 8: The effects of colluding adver-
sariesin the current Internet.

traverses the Internet core twice (since the adversary can-
not remove any AS from the path). Hence, by choosing the
shortest path we have a better chance of avoiding the invalid
route. Figures 8, 9 and 10, illustrates this effect of collud-
ing adversaries for 3 scenarios: (a) the current Internet with
no protection; (b) whisper protocols with policy routing;
(c) whisper protocols with shortest path routing. All these
graphs show the cumulative distribution of the vulnerability
metric (defined in Section 6.1) for a set of colluding mali-
cious adversaries. We specifically consider three cases: (2)
2 colluding tier-1 AS’s; (b) 2 colluding tier-2 AS’s (c) 12
colluding customer AS’s.

We make two observations. First, 12 randomly compro-
mised customer routers can inflict the same magnitude of
damage as that of two tier-1 nodes illustrating the effect of
colluding adversaries in the current Internet. Typically, cus-
tomer AS’s are easier to compromise since many of them
are unmanaged. Second, whisper protocols with shortest
path routing drastically reduces the possibility of colluding
adversaries (in comparison to policy routing) propagating
invalid routes without triggering alarms. In particular, even
when 12 customer AS’s are compromised, the effect on the
Internet routing is negligible.

Whisper protocols with policy routing offers much lesser
protection since BGP tends to choose routes based on the
local preference. The typical policy convention based on
stable routing and economic constraints is to prefer cus-
tomer routes over peer and provider routes [18]. This pref-
erence rule increases the vulnerability of BGP to pick
consistent invalid routes from customers over potentially
shorter routes through peers /providers. In principle, this
problem also exists in S-BGP. To strike a middle ground be-
tween the flexibility of policy routing and this vulnerability,
we propose a simple modification to the policy engine: Do
not associate any local preference to customer routes that
have an AS path length greater than 2 (any route from a
pair of colluding route should have a minimum path length
of 3). We believe that this modification to BGP policies
should have little impact on current operation since most

07
Percentage of affected ASes

08 09 1 107 10° o
Percentage of affected ASes

Figure 9: Effects of colluding adversaries Figure 10: Effect of colluding adversaries
with whisper + policy routing.

with whisper + shortest path routing

customer routes today have a path length less than 3.

To summarize, whisper protocols in combination with the
modified policies (emulating shortest path routing) can
largely restrict the damage of colluding adversaries.

8 Discussion

We now discuss a few important aspects about Listen and
Whisper not covered earlier.

Hijacking unallocated prefixes: With the deployment of
Whisper, a malicious adversary can still claim ownership
over unallocated address spaces without triggering alarms
by propagating bogus announcements. One way of dealing
with this problem is to request ICANN [3] to specifically
advertise unallocated address spaces with its own corre-
sponding Whisper signatures whenever it notices an adver-
tisement for an unallocated prefix. Additionally, to avoid a
DosS attack on ICANN for such prefixes, routers should not
maintain forwarding entries for these prefixes.

Route Aggregation: Whenever an AS aggregates several
route advertisements into one, it is required to perform one
of the following operations to maintain the consistency of
the aggregated route: (a) Append the individual signatures
corresponding to each advertisement so that an upstream
AS can match at least one of the signatures with the whisper
signatures for alternate routes to sub-prefixes. (b) If the AS
owns the entire aggregated prefix (common form of aggre-
gation in BGP), ignore the whisper signatures in the sub-
prefixes and append its own whisper signature.

Other types of security attacks: Other than propagation of
invalid routes, one can imagine other forms of routing at-
tacks or misconfiguration errors which may result in rout-
ing loops, persistent route oscillations or convergence prob-
lems. Such problems are out of the scope of this paper.

9 Conclusions

In this paper we consider the problem of reducing the vul-
nerability of BGP in the face of misconfigurations and ma-
licious attacks. To address this problem we propose two

techniques: Listen and Whisper. Used together these tech-
niques can detect and contain invalid routes propagated by
isolated adversaries, and a large number of problems due
to misconfigurations. To demonstrate the utility of Listen
and Whisper, we use a combination of real world deploy-
ment and empirical analysis. In particular, we show that
Listen can detect unreachable prefixes with a low proba-
bility of false negatives, and that Whisper can limit the per-
centage of nodes affected by a randomly placed isolated ad-
versary to less than 1%. Finally, we show that both Listen
and Whisper are easy to implement and deploy. Listen is
incrementally deployable and does not require any changes
to BGP, while Whisper can be integrated with BGP without
changing the packet format.

Acknowledgments

The anonymous reviewers and Amin Vahdat, our shepherd
provided us with invaluable feedback which helped sub-
stantially towards improving the quality of the paper. Tom
Anderson, Anand Desai, Nick Feamster, Mark Handley,
Chris Karlof, Ratul Mahajan, Satomi Okazaki, Vern Pax-
son, Adrian Perrig, Jennifer Rexford, Dawn Song, Doug
Tygar and David Wagner provided several technical com-
ments on this work. Krishna Gummadi and Konstantina
Papagianakki provided us with valuable data for empiri-
cally evaluating our Listen algorithm. Several students in
Berkeley read earlier drafts of this paper and provided use-
ful feedback. The authors would like to thank them all.

References

[1] Cisco ios netfow. http://ww. ci sco. coni war p/
publ i c/ 732/ Tech/ nnp/ netfl ow i ndex. shtmi .

[2] Gnuzebrarouter implementation. ht t p: / / www. zebr a.
org/.

[3] Internet Corporation for Assigned Names and Numbers.
http://ww.icann.org/.

[4] Internet routing registry. htt p: // www. i rr. net/. Ver-
sion current January 2003.

[5] libpcap utility. http://sourceforge. net/
projects/libpcap.

[6] Microsoft port 1433 vulnerability. http:/lists.
insecure.org/lists/vul n-dev/ 2002/ Aug/
0073. htm .

[7] Ripencc. http://ww. ri pe. net.

[8] Routeviews. htt p: //www. r out evi ews. or g/ .

[9] Sprint IPMON project. http://ipnon. sprint.

com .

Trends in dos attack technology. http://ww. cert.

or g/ archi ve/ pdf / DoS_trends. pdf.

J. Arkko and P. Nikander. How to authenticate unknown

principals without trusted parties. In Proc. Security Proto-

cols Workshop 2002, April 2002.

M. Bellare and D. Micciancio. A new paradigm for

collision-free hashing: Incrementality at reduced cost. vol-

ume 1223 of Lecture Notes in Computer Science. Springer

Verlag, 1997.

I. Blake, G. Serossi, and N. Smart. Elliptic Curvesin Cryp-

tography. Cambridge University Press, 2000.

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

(28]

[29]
(30]

(31]

(32]

V. J Bono. 7007 explanation and apology.
http://ww. nerit.edu/ mail.archives/

nanog/ 1997- 04/ nsg00444. ht m .
R. Clarke. Conventional public key infrastructure: An arte-

fact ill-fi tted to the needs of the information society. Tech-
nica report. http://ww. anu. edu. au/ peopl e/

Roger. Clarke/ I /PKIM sFit. htnl .
D. Davis. Compliance defects in public key cryptography.

In Proc. 6th USENIX Security Symposium, 1996.
C. Ellison and B. Schneier. Ten risks of PKIl: What

you're not being told about public key infrastructure.
Computer Security Journal, 16(1):1-7, 2000. Avail-
ableonlineat URL ht t p: / / www. count er pane. coni

pki-risks. htm .
L. Gao and J. Rexford. Stableinternet routing without global

coordination. In IEEE/ACM Transactions on Networking,

2001.
G. Goodell, W. Aiéllo, T. Griffi n, J. loannidis, P. McDanidl,

and A. Rubin. Working around BGP: An incrementa ap-
proach to improving security and accuracy of interdomain

routing. In Proc. of NDSS, San Diego, CA, USA, Feb. 2003.
Y. Hu, D. B. Johnson, and A. Perrig. SEAD: Secure effi cient

distance vector routing for mobile wireless ad hoc networks.

In Proc. of WMCSA, June 2002.
Y. Hu, A. Perrig, and D. B. Johnson. Wormhole detection in

wireless ad hoc networks. Technical Report TR01-384, De-

partment of Computer Science, Rice University, Dec. 2001.
Y. Hu, A. Perrig, and D. B. Johnson. Effi cient security mech-

anismsfor routing protocols. In Proc. of NDSS 03, February

2003.
S. Kent, C. Lynn, and K. Seo. Design and analysis of the

Secure Border Gateway Protocol (S-BGP). In Proc. of DIS

CEX’00.
S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Proto-

col (Secure-BGP). IEEE Journal on Selected Areas of Com-
munications, 18(4):582—592, Apr. 2000.

R. Mahgjan, D. Wetherall, and T. Anderson. Understanding
BGP misconfi gurations. In Proc. ACM SGCOMM Confer-
ence, Pittsburg, Aug. 2002.

Z.Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an ac-
curate AS-level traceroure tool. In ACM SSGCOMM, 2003.

S. Murphy, O. Gudmundsson, R. Mundy, and B. Wellington.
Retrofi tting security into Internet infrastructure protocols. In
Proc. of DISCEX ' 00, volume 1, pages 3—-17, 1999.

J. Ng. Extensions to BGP to support Secure Origin BGP
(sobgp). Internet Draft draft-ng-sobgp-bgp-extensions-00,

Oct. 2002.

V. N. Padmanabhan and D. R. Simon. Secure traceroute to
detect faulty or malicious routing. In Proc. HotNets-1, 2002.
V. Paxson and S.Floyd. Wide areatraffi c: Failure of poisson
modeling. In Proc. ACM SGCOMM, 1994.

B. Smith and J. Garcia-Luna-Aceves. Securing the Border
Gateway Routing Protocol. In Proc. Global Internet ' 96,
London, UK, November 1996.

L. Subramanian, S.Agarwal, JRexford, and R. H. Katz.
Characterizing the Internet hierarchy from multiple vantage
points. In I[EEE INFOCOM, New York, 2002.

R. Thomas. ht t p: / / www. crmyr u. com

X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F.
Wu, and L. Zhang. An analysis of BGP multiple origin AS
(MOAYS) conficts. In ACM SGCOMM IMW, 2001.

D. Zhu, M. Gritter, and D. Cheriton. Feedback based rout-

ing. In Proc. of HotNets-I, October 2002.

