
Staging Package 
Deployment via 

Repository Management
Chris St. Pierre

Matt Hermanson



Background
(Mostly) homogeneous environment
Organizational structure
Bcfg2



Our Approach
Control what packages are available in the 

repository
Define classes of repositories
Upstream/Stable/Unstable
Infra/HPSS/clusters

Clients are always up-to-date with repository
Centralized management



Other solutions
Yum excludes
Spacewalk
Bcfg2 version specification
Yum versionlock



A solution: Pulp
Part of Red Hat’s CloudForms
Repos can be “cloned” efficiently
Sync mediated by filters
Manual manipulation



Workflow
Tiered repositories
Upstream – daily sync from upstream
Unstable – filtered sync from upstream
Stable – filtered sync from unstable

Custom repositories branched from upstream
Package promotion separated by time and/or 

manual intervention



Workflow
How do we implement filters
Whitelist and blacklist packages

Manual package promotion and removal



Workflow
Patches are promoted to stable after at least a 

week in unstable
Security patches receive immediate attention
Choosing Impactful packages
Kernel and kernel-space
Impacts customers
Lustre and Infiniband related



Results
Improved automation results in less overhead
Increased compartmentalization



Updates



Vulnerabilities



What's next?
Sponge

 Web frontend for pulp
 Django
 More intuitive repository management
 http://github.com/stpierre/sponge

Apply an age attribute to individual packages
Other packaging formats


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

