

CONTENT-AWARE LOAD BALANCING FOR DISTRIBUTED BACKUP

Fred Douglis¹, Deepti Bhardwaj¹, Hangwei Qian², and Philip Shilane¹

¹EMC

²Case Western Reserve University

- Deduplicating disk-based backup storage
 - Variable, content-defined chunks
 - Strong hashes of content to find duplicates

- Deduplicating disk-based backup storage
 - Variable, content-defined chunks
 - Strong hashes of content to find duplicates
 - Focused on making full backups after the first one use minimal extra disk space
 - Internal deduplication duplicates from multiple copies of the same file from the same source
 - Unchanged files dedupe trivially, while chunk-level deduplication catches changes scattered within large regions of unchanged content

- Deduplicating disk-based backup storage
 - Variable, content-defined chunks
 - Strong hashes of content to find duplicates
 - Focused on making full backups after the first one use minimal extra disk space
 - Internal deduplication duplicates from multiple copies of the same file from the same source
 - Unchanged files dedupe trivially, while chunk-level deduplication catches changes scattered within large regions of unchanged content
 - Deduplication can avoid sending the data at all
 - Send the hashes and then only send new chunks

- Deduplicating disk-based backup storage
 - Variable, content-defined chunks
 - Strong hashes of content to find duplicates
 - Focused on making full backups after the first one use minimal extra disk space
 - Internal deduplication duplicates from multiple copies of the same file from the same source
 - Unchanged files dedupe trivially, while chunk-level deduplication catches changes scattered within large regions of unchanged content
 - Deduplication can avoid sending the data at all
 - Send the hashes and then only send new chunks
 - Technology now common in backup products

Problem Statement

- Large-scale IT environment
 - Hundreds or thousands of systems ("clients") to backup
 - Many backup appliances to send the data

Problem Statement

- Large-scale IT environment
 - Hundreds or thousands of systems ("clients") to backup
 - Many backup appliances to send the data
- Impact of deduplication
 - Affinity: send the same client to the same appliance so it will deduplicate well
 - Moving it to a new system will cause everything to be written again
 - Overlap: benefit from sending similar systems to the same backup appliance
 - "External" deduplication, spanning clients

Problem Statement

- Large-scale IT environment
 - Hundreds or thousands of systems ("clients") to backup
 - Many backup appliances to send the data
- Impact of deduplication
 - Affinity: send the same client to the same appliance so it will deduplicate well
 - Moving it to a new system will cause everything to be written again
 - Overlap: benefit from sending similar systems to the same backup appliance
 - "External" deduplication, spanning clients

Simple approach: cluster clients by type

Benefits of Overlap

- Co-locating duplicate content
 - Reduces capacity requirements
 - May take a host from being overloaded to highly loaded, or highly loaded to moderately
 - Reduces throughput requirements
 - Duplicate copies in later clients' first full are skipped
 - Ongoing transfers benefit only if identical content being written to multiple hosts during a backup interval
- Deduplication changes traditional backup administration
 - Backup devices are not all created equal
 - They're not all identical tapes
 - There is a "stickiness" to the assignment in order to benefit from savings
 - But sometimes data migration benefits outweigh costs

Benefits of Overlap

- Co-locating duplicate content
 - Reduces capacity requirements
 - May take a host from being overloaded to highly loaded, or highly loaded to moderately
 - Reduces throughput requirements
 - Duplicate copies in later clients' first full are skipped
 - Ongoing transfers benefit only if identical content being written to multiple hosts during a backup interval
- Deduplication changes traditional backup administration
 - Backup devices are not all created equal
 - They're not all identical tapes
 - There is a "stickiness" to the assignment in order to benefit from savings
 - But sometimes data migration benefits outweigh costs

Where do we put clients and when do we have to give in and move them?

Goals

- Capacity allocation
 - Send data to backup appliances in the best way to fit them within constraints
 - Balanced load
 - Content-aware for best deduplication

Goals

- Capacity allocation
 - Send data to backup appliances in the best way to fit them within constraints
 - Balanced load
 - Content-aware for best deduplication
- Performance (throughput)
 - Support many backup streams simultaneously
 - Avoid overloading any individual appliances
 - Increased deduplication reduces overhead on network and appliance

Use Cases

- Sizing and deployment
 - Figure out requirements (and assignments) from "clean slate"
- First assignment
 - Given a set of clients and appliances, determine best assignments
- Reconfiguration
 - Adjust when clients or appliances are added or removed, or load shifts
- Disaster recovery & replication
 - Select mappings of appliances onto other appliances for off-site replication

Approach

- Minimize a utility function
 - "Cost" of a configuration is a function of capacity utilization and performance requirements
 - Compare costs directly to identify best configuration
 - Lots of tradeoffs
 - E.g., migrate a client to a new appliance to reduce capacity overload, but pay a penalty for data movement
- Identify overlap
 - Sample fingerprints for each client
 - Find cases of "significant" overlap
 - Ignore the rest

How Much Overlap is There?

- Many systems will have little or no overlap
- Some systems will have similar overlap with many other systems, so picking one in particular has no advantage
- Want to identify special affinity in cases of high overlap among 2, or few, hosts
- Studied 21 hosts from saved workstation backups and live systems
 - One host with 50% overlap with another and almost 25% additional overlap with a third
- Virtual machine images particularly likely to have high overlap

- In total, the cost for a given configuration is the sum of:
 - A small, weighted penalty for imbalance in capacity or throughput

- In total, the cost for a given configuration is the sum of:
 - A small, weighted penalty for imbalance in capacity or throughput
 - A stepped penalty for exceeding thresholds in capacity or throughput

- In total, the cost for a given configuration is the sum of:
 - A small, weighted penalty for imbalance in capacity or throughput
 - A stepped penalty for exceeding thresholds in capacity or throughput
 - A small penalty for migrating off an existing appliance

- In total, the cost for a given configuration is the sum of:
 - A small, weighted penalty for imbalance in capacity or throughput
 - A stepped penalty for exceeding thresholds in capacity or throughput
 - A small penalty for migrating off an existing appliance
 - A very large penalty for each client that does not "fit" on its appliance
 - In our experiments presented today, this penalty is the dominant cost. Above 1000 means "overload" and below it means "fit"
 - Smaller penalties are used to pick among plausible choices
- (A more formal definition appears in the paper)

Algorithms

- Compare "intelligent" assignment to brute force such as round-robin or random
 - All the brute force approaches quite fast

Random

- Pick arbitrary assignments. If random selection is full, iterate to find new appliance.
- Compute cost of configuration
- Repeat N times and take best result

Round-robin

- Assign to each appliance in turn
- Skip a "full" appliance to find one with available capacity if possible

Bin packing

 Assign based on size from largest to smallest (less likely to overflow)

Simulated annealing

- Shuffles assignments from the current "best position" to try and improve the cost
- The first three take any existing assignments as a given; only annealing will migrate a client
- Generally, all work well under low load; annealing can adapt better to overload

Annealing Example

utilization

Evaluation (Simulations)

• Define a number of clients of fixed size: small, medium, large, 20 per iteration

- Define a number of clients of fixed size: small, medium, large, 20 per iteration
- Repeatedly put a set of clients into system and assign to appliances

- Better dedupe within a class than across

- Periodically add a new appliance to increase capacity
 - At the same time, forget 1/3 of existing assignments (so some assignments have a penalty for movement and some don't)
 - Especially high dedupe with the corresponding client from other iterations – stress overlap affinity
- If new load outpaces capacity, high cost. If the new appliance is added to keep up with added load, low cost.

- Define a number of clients of fixed size: small, medium, large, 20 per iteration
- Repeatedly put a set of clients into system and assign to appliances
 - Better dedupe within a class than across
- Periodically add a new appliance to increase capacity
 - At the same time, forget 1/3 of existing assignments (so some assignments have a penalty for movement and some don't)
 - Especially high dedupe with the corresponding client from other iterations – stress overlap affinity
- If new load outpaces capacity, high cost. If the new appliance is added to keep up with added load, low cost.

Cap w/o Dedupe -△- Cap w/Dedupe -◇-

Cap w/o Dedupe -△- Cap w/Dedupe -◇-

Cap w/o Dedupe -△- Cap w/Dedupe -◇-

Cap w/o Dedupe -△-Cap w/Dedupe -◇- Random - - -

Cap w/o Dedupe -△-Cap w/Dedupe -◇- Random - O-

Cap w/o Dedupe -△-Cap w/Dedupe -◇- Random - -

Cap w/o Dedupe -△-Cap w/Dedupe -◇- Random -⊖-Round Robin ×

Annealing is an order of magnitude lower cost, but it's still a very high cost


```
Cap w/o Dedupe -△- Round Robin →
Cap w/Dedupe -◇- Bin Packing →
Random -⊙- Sim. Annealing —
```


Roughly Fitting Within Capacity

Roughly Fitting Within Capacity

Roughly Fitting Within Capacity

Costs only occasionally very high

What Else?

- Refer to the paper for:
 - A more detailed discussion of overlap computation
 - Some other examples of using the assignment tool
 - Overhead analysis
 - Simulated annealing often works much better but is dramatically slower
 - Variants
 - Ignoring previous assignments
 - How to penalize for each client that doesn't fit
 - Impact of content-awareness

Backup slides for Q&A

Summary

- In a large IT environment, important to automate assignment of clients to backup appliances to optimize for capacity and throughput
- Taking content overlap into account can reduce capacity requirements and may improve throughput due to duplicate suppression
- Many options for how to balance load
 - All work well if not overloaded
 - Bin Packing somewhat better than the other simple techniques as limits approached
 - Simulated Annealing can handle some extra overload cases

THANK YOU

