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Abstract

Most existing intrusion detection systems take a passive
approach to observing attacks or noticing exploits. We
suggest that active intrusion detection (AID) techniques
provide value, particularly in scenarios where an admin-
istrator attempts to recover a network infrastructure from
a compromise. In such cases, an attacker may have cor-
rupted fundamental services (e.g., ARP, DHCP, DNS,
NTP), and existing IDS or auditing tools may lack the
precision or pervasive deployment to observe symptoms
of this corruption. We prototype a specific instance of the
active intrusion detection approach: how we can use an
AID mechanism based on packet injection to help detect
rogue services.

Tags: security, active intrusion detection, networking,
trust relationships, recovery

1 Introduction

Existing network intrusion detection systems (e.g.,
Bro [35, 12], Snort [31]) typically take a passive ap-
proach to detecting attacks: they scan network pack-
ets and flows to match their content against known-
malicious byte patterns (i.e., signatures). Such sensors
are typically situated at the network edge or other traf-
fic choke point rather than on individual hosts, and they
rarely interpose on (i.e., inject packets or frames into) the
actual connection or flow.

IDS systems rarely take an active approach to detect-
ing malicious behavior or indicators within the network.
By active, we mean that the sensor purposefully injects
packets and data meant to perturb the state of the net-
work, in essence becoming part of the various connec-
tions occurring on the network. Some existing IDS sen-
sors may be “active” in the sense that they periodically
scan some hosts or listen to some specific connections,
or that they attempt to proactively firewall or quarantine
hosts suspected of being malicious (for example, Net-

work Access Control or NAC). To the best of our knowl-
edge, most existing IDSs do not actively participate in
network conversations to deduce end host behavior.

This hesitance may be due to the perceived danger of
actively issuing network traffic designed to remotely di-
agnose the existence of malware or corrupted service on
an end host or server (such traffic might have an adverse
effect on benign hosts or servers).

In this paper, we suggest that the paradigm of active
intrusion detection (AID) is relatively under-explored,
and we offer an example of how such proactive scanning
for malicious behavior at the network level can benefit
a system administrator focused on recovering a network
infrastructure from an attack that attempts to replace or
spoof critical network services.

1.1 Motivation: Intrusion Recovery
Recovering a network infrastructure from an attack —
particularly an attack that has compromised a large por-
tion of the infrastructure [19] — is a complex, difficult,
and time-consuming task. Furthermore, the administra-
tor may not have much confidence in the services that
remain running after the discovery of such a compro-
mise. Because auditing and forensics are expensive pro-
cesses (in terms of time and density of instrumentation),
and such activities can be greatly curtailed because of the
need to get the network back up and running, system ad-
ministrators may have little information about what parts
of the system remain trustworthy.

1.2 The Challenge of Recovering Trust
We see the fundamental difficulty in such a situation as
the task of recovering trust in the network infrastruc-
ture. For example, if the DNS server has been compro-
mised, users cannot trust that their DNS queries have not
been tampered with. Similar trust relationships exist with
ARP and DHCP along with other critical network ser-



vices. In essence, each protocol implies that the client
trusts the server to relay correct information about the
network properties. Likewise, the server trusts clients to
act only on their own behalf.

Trust exists in many forms within the network. When
a host accepts an offer of a DHCP address, it implicitly
trusts the DHCP server it received the offer from. Sim-
ilarly, when a switch participates in a bridge election, it
implicitly trusts every other switch that is participating.
This arrangement exists out of necessity, but can cause
problems when the wrong entities are trusted.

Modern attacks have increased in sophistication; many
now involve hijacking benign hosts and their network
stacks for malicious use (which requires altering the nor-
mal behavior of the affected devices). Elements of the
network infrastructure, such as routers and switches, are
also attractive targets since network hosts frequently trust
them implicitly. Compromising such machines can give
an adversary a great deal of power without requiring him
or her to attack very many machines. Such attacks are a
useful way for an attacker to retain some level of control
and spread, and one recent example1 attempts to run a
rogue DHCP service.

Without the ability to meaningfully trust the informa-
tion such services provide, and in the absence of strong
authentication at such low levels of the network (as is
typical for very good reasons, see Section 1.4), the task
of rebuilding the network from scratch can require a Her-
culean effort.

In the course of rebuilding trust in critical low-level
services, having a tool that can actively probe for the
presence of a malicious or compromised low-level ser-
vice can help identify remnants of an attacker attempting
to spoof or man-in-the-middle these services.

1.3 Focus
This paper presents an early step toward a more mature
infrastructure for supporting such network recovery ac-
tivities. Although we are motivated by this problem, our
emphasis and focus for the scope of this paper is limited
to:

• constructing a data model for representing trust re-
lationships between network services, and;

• implementing a proof-of-concept prototype that
uses packet injection (via Scapy2) to probe suspect
services and examine their responses under the trust
relationship model.

These active probes will not search for specific ex-
ploits, as the examples we discuss in Section 2.4 do.
Thus, we are not aiming to create a thorough vulnera-
bility scanner. Instead, our probes are meant to test for

proper functionality and thereby trustworthiness. Our
form of active probing is designed less to find out what
causes a specific problem than to find whether a potential
misconfiguration or malicious influence exists.

1.4 Active Intrusion Detection
Our primary contribution is to propose a new pattern for
intrusion detection: actively issuing probes (in the form
of specially crafted or purposefully malformed network
packets) meant to reveal the presence or operation of
rogue services.

Most previous work, even of an active flavor, has dealt
with detecting specific vulnerabilities or exploits. In con-
trast, we introduce a method for crafting active scanning
patterns meant to elicit a certain behavior from network
hosts. Such a facility can help establish and maintain
a basis for verifying the trustworthiness of network ser-
vices on an ongoing basis (one can think of it as “Trip-
wire” for network behaviors). We are not searching for
specific exploits (as the examples in Section 2.4 do), but
rather search for deception patterns (i.e., indications that
rogue services exist or that otherwise trusted services are
compromised).

We believe active probing is most useful in verifying
the trustworthiness of certain key network services, in-
cluding DNS, DHCP, and ARP. We call these services
the Deception Surface of the network, because it is ex-
actly this fabric upon which most users implicitly (and
often unknowingly) base their belief that they are inter-
acting with a trustworthy network connection or service.
Since these protocols rarely involve authentication, they
are ripe targets for deception.

There are good reasons for not employing authentica-
tion and authorization infrastructure at such a low net-
work level. The effort involved in managing this equip-
ment and these services in the presence of a variety of
different authentication mechanisms and credentials is
greatly increased. Without the need to predistribute cre-
dentials, hosts are free to “plug-and-play” with the net-
work; being able to simply trust these services by default
is a labor-saving practice. For a large enterprise network,
configuring each host with authentication credentials for
all deception surface network services requires a large
investment of valuable time and energy. Most users pre-
fer their machines to work out of the box, and prefer to
avoid extensive setup time. For this reason, such authen-
tication (even if a mechanism exists, like DNSSEC) fre-
quently remains unused, thereby leaving room for rogue
services and deception.

Central Assumption One of the central assumptions
of our approach is the hypothesis that there is an equiva-
lence between “normal” behavior and “trustworthy” be-



havior. As a consequence, our approach is currently best
suited toward detecting malicious influence or attacks
that change the normal behavior of a service; in other
words, we cannot detect attacks that display syntacti-
cally or semantically indistinguishable behavior (and our
tool’s model of a service’s behavior may be incomplete,
and thus unable to test features or characteristics that
may have been changed). Our tool makes the assump-
tion that changes in normal behavior are symptoms of
either malicious influence or misconfiguration.

Our goal with active probing is to significantly raise
the bar for an attacker: now they need not only provide a
rogue service, but mimic all the logic and failure modes
of the “valid” service’s code logic and specific config-
uration. In a sense, active probing helps swing the at-
tacker’s traditionally asymmetric advantage to a network
defender.

2 Related Work

Our work on active intrusion detection is inspired by re-
cent examples of (largely manual) analysis of the proper-
ties and behavior of exploits and malware (see examples
below). At the same time, the most related work from a
technical perspective is the body of work on OS finger-
printing (see below) and detecting network sniffers (e.g.,
sniffer-detect.nse [21]). This latter script takes advantage
of the fact that a network stack in promiscuous mode will
pick up packets that are not intended for it, but after the
stack removes the addresses, all higher layers assume the
packet is intended for the local stack and act accordingly.
The sniffer-detect script uses ARP probes in this manner,
and by the responses it hears is able to make a determina-
tion about whether or not the probed host is in promiscu-
ous mode. At its core, the approach exploits an assump-
tion made within the stack: that packets which reach the
upper layers of the stack are supposed to be answered by
that stack. This insight is an excellent independent ap-
plication of the combination of the Stimulus-Response
pattern and the Cross-Layer Data pattern (see Section 3).

Port-knocking is a similar idea to active probing ap-
plied to access control: by probing a host with a par-
ticular pattern of packets, one can gain the ability to
have the target firewall forward subsequent packets. In
the theme of verifying host behavior to detect deviations
from expected behavior, this work is conceptually related
to Frias-Martinez et al. [15], who enable network access
control (especially for MANET environments) based on
exchanging anomaly detection byte content models.

2.1 Finding Deceptions vs. Monitoring
One central question is how much active probing dif-
fers from existing network “good hygiene” monitoring

practices like using a second or third independent net-
work connection to actively monitor properties, services,
and data that your network exposes to the outside world.
We note that active probing is an extension of common
practice to proactively scan internal networks with tools
like NMap to discover open ports, new machines, or
other previously unknown activity at the network edge
or within an organization’s network core. Rather than
just detecting open ports on machines that should not
be there, our approach is predicated on reasoning about
deceptions that exist in the network infrastructure. Al-
though vulnerability scanning software (e.g., NeXpose3,
Nessus4) does probe hosts and servers, this type of prob-
ing typically focuses on identifying vulnerable versions
of software services rather than detecting the presence of
malcode or malicious activity.

2.2 Intrusion Detection
Network intrusion detection systems like Snort and
Bro [35] have a number of advantages: since they are
passive, they do not impose load on the network and they
can be difficult to detect. We detail some of the differ-
ences between active and passive approaches to IDS in
Table 1.

Regardless of the response mechanism or other details,
an IDS usually employs a paradigm of passive monitor-
ing which depends on tracking packet streams and delv-
ing into protocols [5]. This leaves them with several
fundamental problems. IDS, whether passive or active,
typically fail-open (i.e., their failure modes do not cease
operation of the monitored system and they can not tell
when they miss an alert, i.e., false negative).

We suggest that the most relevant shortcoming of cur-
rent network IDS with respect to the concept of active
probing is that an IDS is left to guess the end state of
all hosts on the monitored segment. Fundamentally, IDS
only observes packet flows and cannot feasibly know the
end-state of every host in the network, making it sus-
ceptible to evasion attacks [30, 16]. Furthermore, trying
to keep track of even limited amounts of state poses a
resource exhaustion problem, and even keeping up with
certain traffic loads can cause the IDS to miss packets.

2.3 OS Fingerprinting
Nmap uses a series of up to 16 carefully crafted probe
packets, each of which is crafted for a variation in RFC
specifications [20]. Whereas NMap issues probes to ob-
serve the characteristics of the target network stack, the
p0f tool uses passive detection, and it examines various
protocol fields (e.g., IP TTL, IP Don’t Fragment, IP Type
of Service, and TCP Window Size) [26]. Alternatively,
LaPorte and Kollmann suggest using DHCP for finger-



Active Passive
Can sound out targets Must listen to targets

Network overhead no network overhead
Operates noisily Operates quietly

Minimal state storage requirement Potentially significant storage
Creates own context Must learn context from surroundings

Detection based on behavior Detection based on signature and anomaly
Constant probing is noisy Can run constantly without disturbing network

Cannot run offline Can run offline
Can learn only what is listened for in data model Can learn anything in a trace

Table 1: A Comparison of Active and Passive IDS Properties. While both approaches face some of the same challenges
(e.g., being fail-open), a hybrid (tightly coupled or otherwise) approach seems promising.

printing [10], and Arkin suggests ICMP [3]. An interest-
ing variation in this field is Xprobe2; rather than using
a signature-matching approach to OS fingerprinting, it
employs what its authors call a “fuzzy” approach. They
argue that standard signature-matching relies too heavily
on volatile specific signature elements. Xprobe2 instead
uses a matrix-based fingerprint matching method based
on the results of a series of different scans [4].

Fingerprinting OS network stacks and other services
can be an imprecise activity frustrated by the use of
virtual honeypots [29] or countermeasures like Wang’s
Morph (Defcon 12). Morph operates on signatures of
existing production systems, rather than creating decoys.
Morph scrubs and modifies inbound and outbound traffic
to mimic a specific target operating system, fooling both
active and passive fingerprinters [18].

2.4 Examples of an Active Pattern

The Conficker worm, unleashed in January 2009, rep-
resents one noteworthy example of malware analysis
that resulted in a way to diagnose the presence of Con-
ficker’s control channel. The malware itself exploited
flaws in Microsoft Windows to turn infected machines
into a large-scale botnet [22]. It proved especially diffi-
cult to eradicate. Because some peer-to-peer strains of
the worm used a customized command protocol, subse-
quent analysis and reverse-engineering provided a means
of scanning for and identifying infected machines[6].
This example helps illustrate the utility of the general
pattern of active probing for suspect behaviors.

The Zombie Web Server Botnet provides another ex-
ample of active exploit detection. First documented in
September 2009, the exploit targeted machines running
web servers, and once installed set up an alternate web
server on port 8080, thereby avoiding some passive IDS
monitors that only watch port 80. Hidden frames on af-
fected websites contained links pointing to free third-

party domain names, which then translated into port
8080 on infected machines. These infected web servers,
which also serviced legitimate sites, then attempted to
upload malware and other malicious content from this
rogue 8080 port [1]. If the user’s web browser did not
accept the uploaded malware, the exploit used an HTTP
302 Found status to redirect the user to another infected
web server. From there, the exploit re-attempted the mal-
ware upload. This redirection was detectable by sending
HTTP GET messages to the queried server and watching
for 302 redirects [7].

As a final example of the utility of active probing, con-
sider the Energizer DUO USB Battery Charger exploit
(March 2010). The Energizer DUO Windows applica-
tion allowed users to view the status of charging batter-
ies and installed two .dll files, UsbCharger.dll in the
application directory and Arucer.dll in the system32
directory. The software itself uses UsbCharger.dll to
interact with the computer’s USB interface, but it also
executes Arucer.dll and configures it to start automat-
ically.
Arucer.dll acts as a Trojan horse, opening an unau-

thorized backdoor on TCP port 7777 to allow remote
users to view directories, send and receive files, and ex-
ecute programs [11]. Since this rogue service responds
only to outside control, passive detection may not be ef-
fective. An active probe, however, can detect the unau-
thorized open port even if not in use, and thus identify
the infection more reliably [8].

2.5 Intrusion Recovery

Recovering a compromised host or network is a difficult
task. Classic [34, 33, 9] and more recent [32, 17] ac-
counts can both be found, but little work on systematic
approaches to recovery from large scale intrusions ex-
ists [14, 25].



3 Approach

When a compromised machine exists on a network, there
are two primary ways to find it. First, one can attempt
to detect the malicious activity passively. Conventional
intrusion detection systems provide a good example of
this approach. However, compromised or rogue services
may not display any behavior that is obviously malicious
(thus evading misuse-based sensors) nor display behav-
ior that is particularly new or different than previous
packets (thus evading anomaly-based sensors).

Our approach employs active probing. The assump-
tion underlying the utility of active probing is that such
probing can reveal discrepancies in internal behavior or
configuration — particularly at corner cases and for mal-
formed input. In this sense, active probing helps a net-
work defender understand how an infection alters its
host’s behavior or how rogue services operate.

Active probing is a suitable tool for discovery of la-
tent or otherwise stealthy malicious influence; we can
probe hosts (or the network at large using broadcast ad-
dresses) rather than waiting for them to send packets.
Active probing can constructively infer network state and
context by issuing targeted probes.

Active probing exploits several unique features about
a networked environment; in essence, this environment
represents a distributed state and a set of computations
(i.e., the network stacks) involved in manipulating the
global state of the network. The arrangement of these
relationships and the nature of most protocol interactions
provide several key areas of focus for designing probe
patterns (e.g., sequences of protocol messages intended
to elicit distinguishing responses).

3.1 Key Insight: Behavior Differences Due
to Implementation or Configuration

During our experimentation, we frequently observed that
the same stimulus produced different responses from dif-
ferent network entities. We discovered two reasons for
this. The first reason relates to configuration. In some
cases, responses differ because the two entities operated
based on different configurations. For example, con-
sider two identical DHCP server implementations pro-
grammed with different gateways. All other network
conditions being equivalent, these two servers will al-
ways give a different result when queried, since they are
programmed to do so. The richness of the configura-
tion space can help distinguish between a rogue server
set up for minimal interposition on a service and the full-
featured service.

The second reason relates to implementation. In most
cases, one or more RFCs lay out the behavior a network
service or protocol should exhibit. In practice, however,

we find that differences exist, whether due to lack of
specification for every possible case, or simple deviance
from the specification. Generally, we found that imple-
mentations perform similarly on common cases, such as
well-behaved DHCP Discover packets. This observation
makes intuitive sense, since specifications exist for them.
It is the less well-behaved stimuli that are handled differ-
ently. Corner cases and malformed input (e.g., semanti-
cally invalid options pairings or flag settings) cause dif-
ferent, infrequently exercised code paths to execute – it
is unlikely that an attacker has replicated such behavior
with high fidelity.

Taken together, understanding these differences form
the foundation of our method. If we look for both types
of differences, then two entities must exhibit the exact
same behaviors in order to escape notice. Put another
way, if someone wants to masquerade as another on the
network, the imitator must mimic not just the target’s
normal behaviors in common cases (relatively easy) but
the minor, idiosyncratic ones as well (we claim that this
is harder).

3.2 Stimulus-Response Pattern
We note that many network interactions take the form
of pairing between stimulus and response. The DHCP
Discover/Response cycle, the DNS Query/Response cy-
cle, and many others all fall into this category, whereas
something like the Cisco Discovery Protocol does not.
Note that the stimulus-response includes not only client-
server interactions, but also peer-to-peer as well. We rely
on and harness this stimulus-response paradigm for our
verification method.

3.3 Network Trust Relationships and
Trusted Data

Trust relationships form the basic building block of the
network. In the majority of cases, hosts trust essential
services by default, to ensure ease of connection with-
out the burden of extensive configuration. As an exam-
ple, without prior configuration in an IPv4 environment,
DHCP and ARP provide the primary ways for a host
to learn about the network. Unfortunately, the scope of
many modern networks makes these trust-by-default re-
lationships all but necessary, since manually configuring
and re-configuring every host in the network is often im-
practical. As a consequence, they present an avenue for
an adversary who can masquerade as a provider of one
of these legitimate trusted services. If the adversary of-
fers the same trusted-by-default service and can get his
or her information believed, then he or she has compro-
mised whatever elements of the network believe that in-
formation. We target this sort of “trusted–by–default”



deception.
Note that we do not specify anything about the exact

process by which the deception we have just described is
executed. It could be that the adversary has disabled the
legitimate service, or is simply able to get its information
out faster than the legitimate information does. Regard-
less of the specifics, we begin in the place of a network
entity and mistrust the service provider that we hear but
whose trustworthiness we must accept for normal oper-
ation. Everything we do constitutes an attempt to verify
the trustworthiness of that service provider. Is the infor-
mation they provide consistent? Do they respond in the
way a legitimate service might if we make illogical or
semantically invalid requests? Or, if they are an attacker
intent on remaining stealthy, do they greedily respond
to packets that look attractive to intercept and interpret,
but are really meaningless (in terms of us getting on the
network) and only mean to flush out such malicious in-
terposition?

3.4 Cross-Layer Data
Sometimes, it helps to exploit the layered nature of net-
work protocols. Consider a man in the middle attack,
one of the most basic and most common compromises.
An ordinary machine will pick up all packets and exam-
ine them, discarding any that are not addressed to it. This
behavior is expected from the majority of well-behaved
machines on a network. However, a machine acting as a
MITM will pick up these packets, examine them, per-
form some sort of malicious activity (be it recording,
modifying, fuzzing, or any number of other things), and
then send them on to their destination. To do this, the at-
tacker must modify the machine’s normal network stack,
and configure the kernel to forward packets. This modi-
fication makes the compromise detectable (see Section 6
for our experiment on this topic).

4 Active Probing Model

We model active probing on the concept of a network
conversation containing messages that reveal the viola-
tion of conditions related to configuration or behavior,
where these constraints represent the belief of the prob-
ing entity about the valid, trustworthy state of the net-
work.

In essence, active probes attempt to verify some be-
havior of the target host or service, and the messages
emitted from the target host in response to our (crafted)
protocol messages represent characteristics of that be-
havior. Figure 1 depicts this interplay in a very basic
form; the intent behind probing is to discover behavioral
artifacts arising from differences in implementation or
configuration (as discussed in Section 3.1).

Figure 1: Ladder Diagram for Active Probing Data
Model. A probing host P (our prototype plays this role)
issues probes designed to exercise logic and configura-
tion corner cases in the target host T . As T reacts to
these probes (and generates m

′
i subject to its implemen-

tation quirks and configuration details), P builds a set of
data relevant to the trust relationship being probed.

Our model consists of two parties P and T . P is the
prober and has the ability to simulate multiple protocol
stack implementations (especially “broken” ones). The
second, T , is the target or service provider. P’s hypothe-
sis is that T may contain a broken, partial, incomplete,
or incorrectly configured protocol stack. If T were a
trustworthy service, it would display “normal” expected
behavior according to the trust relationship between P
(rather, the role of the client or peer that P is playing)
and T (more specifically, the server or peer that T may
be masquerading as). In this sense of having an estab-
lished trust relationship, we say that T provides a service
X to P.

For P to consider T trustworthy with respect to service
X , T must satisfy a set of conditions C on its behavior.
To verify that these constraints hold, P uses a sequences
of messages M = m1,m2, . . . ,mn sent to T that take the
form of packet probes.

For each mi, there exists a corresponding message m
′
i

from T to P that may be a packet, a sequence of packets,
or the absence of a packet (determined through a pre-
configured timeout). For each such m

′
i, there is some rel-

evant portion r(m
′
i) that serves as evidence for or against

some particular element ci ∈ C. As each m
′
i is received

(or not received), P performs the operation R = R∪r(m
′
i),

building a body of evidence R as shown in Figure 1.
Once all probes have been sent and answers recorded,
the probing entity decides whether or not R violates the
conditions contained in C.



5 Methodology

In attempting to recover trust in key network services,
a system administrator would follow the general tasks
outlined below. The procedures we describe are typ-
ically aimed at an auditing-style service rather than a
general-purpose scanner for running malware or botnet
command and control. As such, the definition of a trust
relationship, the specific verification plan, and the format
and content of probes are usually service specific and in-
formed by administrator knowledge of their own service
implementations and configuration. We posit (but have
not shown) that the amount of effort needed to follow the
steps below is similar to tuning of IDS rules or calibra-
tion of IDS parameters to a specific environment.

5.1 Define Trustworthiness
In order to establish the trustworthiness of a network
service, there must be a notion of what trustworthiness
means for that service. This will vary based on the net-
work and service being verified, and in most cases will
depend on the specific deployment of the service being
probed. This trustworthiness criteria directly informs the
set of constraints C.

For example, trustworthiness in the forwarding case
means that no hosts but known gateways should exhibit
forwarding behavior. For a more complicated system, a
definition might take into account information the legiti-
mate service should provide (for example, a known-valid
set of DNS responses), and ways it should respond to
certain stimuli (e.g., how the service handles a particular
corner case configuration or incompatible flags). Gener-
ally speaking, the definition is what we need to hear to
trust the speaker.

5.2 Verification Plan
Once we have an idea of what trustworthiness looks like,
we need to develop a plan of how to verify it. Recall
the two types of differences between service providers
we discussed earlier. Many network entities have pecu-
liarities to their implementations, and the plan for verifi-
cation should make use of them. It is also necessary to
get as much standard information from the probed entity,
so that both types of differences can be detected. The
more information gathered, both about the service im-
plementation and the service configuration, the harder an
adversary must work to fool our probe. In doing this we
need to plan to check our service against every part of the
trustworthiness definition we have already developed.

For the examples above, the verification plan might
range from a simple comparison of known good answers
to specific DNS queries to the absence of a “forwarded”

packet. In essence, each verification plan is tightly cou-
pled to the actual method of detecting a specific decep-
tion on the network. As yet, we do not contend with
automating this process.

5.3 Probe Creation

The next step in our methodology calls for turning the
plan into a set of active message probes and codify-
ing those probes. Although a variety of packet crafting
mechanisms exist, we found Scapy, a packet generation
and manipulation tool, to be helpful. The codified probes
crafted in Scapy’s environment comprise the functional
portion of an active verification tool.

5.4 Reply Detection

Finally, we need to capture the replies to our probes and
examine them against the constraints derived from our
trustworthiness definition. With that information, we
must make a determination as to the trustworthiness of
what responses the probes cause.

5.5 Implementation

We have found Scapy [27], a freeware packet manipula-
tion program, quite useful. Scapy allows users to build,
sniff, analyze, decode, send, and receive packets with in-
credible flexibility. It does not interpret response packets
directly, so it can prove more useful than other packet in-
jection or scanning tools in some scenarios. It employs
Python-based control, so its commands are also easily
adapted into Python programs. We have used Scapy to
implement our prototype probing tool. Currently, ver-
ification plans (and their corresponding probes) require
individually-developed Scapy scripts.

6 Case Studies: Detecting Deceptions

Our preliminary evaluation focuses on illustrating our
prototype’s effectiveness at detecting network deceptions
rather than attempting to detect malicious software (e.g.,
botnet command-and-control, spyware). To a certain ex-
tent, the related work we discuss in Section 2 illustrates
how one might go about using existing tools like nmap to
identify command-and-control or backdoors. Although
we illustrate how to detect (1) a duplicate DHCP server
and (2) the presence of a host configured for forward-
ing, our point is that these two examples are patterns of
network deceptions, and this is the main intent of our ap-
proach.



6.1 Detecting Forwarding Behavior

As an example of using the Cross-Layer Data pattern,
one of our first experiments dealt with detection of for-
warding behavior. As ordinary machine will typically
silently discard packets (frames) not addressed to it. This
behavior is expected from the majority of well-behaved
machines on a network. A machine acting as a MITM,
however, will pick up these packets, examine them, per-
form some sort of malicious activity (be it recording,
modifying, fuzzing, or any number of other things),
and then send them on to their destination. To accom-
plish this MITM, the attacker must modify the machine’s
normal network stack settings and configure the kernel
to forward packets. This modification is remotely de-
tectable.

We hypothesized that if we sent a broadcast packet out
to the network with the destination as our own machine, a
host configured for forwarding might give itself away by
sending the packet back to us. We used Scapy to test this,
sending IP packets carrying a layer 2 broadcast address
and a layer 3 address of our own machine. We found that
many forwarding entities (for example, Linksys routers)
did identify themselves by forwarding the packet as ex-
pected, but Linux kernels in forwarding mode do not.
We hypothesized that this was due to the layer 2 broad-
cast address of the packet. To test this hypothesis, we
replaced the broadcast hardware address with a unicast
address of the machine we wanted to probe, and listened
for the response. We found that this resulted in the packet
being sent back to us, as expected. We codified this re-
sult into an Nmap plugin that detects hosts in forwarding
mode that are behaving in what is generally an undesir-
able manner and thus may have been compromised or
misconfigured.

Formally speaking, in this experiment of detecting a
host in forwarding mode, the condition C is that only a
small known set of hosts on the network should be in for-
warding mode (specifically: that only those hosts should
deliver the packet we generated back to us because we
chose the packet contents in such a way as to be con-
sumed by hosts that are promiscuous and forwarding, but
when processed by higher layers of the network stack,
don’t realize that they shouldn’t be sending this packet
back to its origin); if the responses that P gathers con-
tains an IP address outside this set (i.e., we see our mes-
sage from mi in R), we know that the trust condition is
violated.

6.2 Rogue DHCP Server

To demonstrate the viability of an active probing ap-
proach, we have implemented it on the Dynamic Host
Configuration Protocol. DHCP makes an excellent sub-

Figure 2: Basic DHCP Setup With Cisco Switch. This
self-contained test environment consists of a set of com-
puters connected to a single Cisco switch (a DHCP
server, the rogue DHCP service, and our prober P). This
setup was also used for the forwarding detection sce-
nario.

ject for a case study for several reasons. First, it provides
new hosts several critical pieces of knowledge about the
network, such as an IP address, gateway information, and
location of the DNS servers. Typically, a network stack
sends out a DHCP Discover immediately after coming
online, highlighting DHCP’s importance. If an adversary
can get malicious DHCP information believed, he or she
can exert a great deal of control over the deceived hosts.
Second, it comprises part of our Deception surface, so
most hosts trust whatever DHCP traffic they receive by
default.5

We see a recent example of an exploit using DHCP
in a variant of the Alureon rootkit. This exploit infects
networks and sets up a rogue DHCP server to compete
with the legitimate one. This rogue server gives out the
address of a DNS server under the control of the worm’s
authors, which in turn points users to a malicious web
server. This web server attempts to force the user to up-
date their browser, but they instead are downloading a
malware that will reset their DNS pointer to Google’s
service once the machine is infected [2]. This is the sort
of exploit that motivates us to examine DHCP closely.

Our prototype software uses Scapy scripts to probe
DHCP servers and can both produce PCAP fingerprint
files and compare to an existing PCAP fingerprint. In
practice, we found it successfully distinguished between
the different servers we used.

6.3 Environment

We used three main environments for our DHCP experi-
ments. First, as shown in Figure 2, we have a small, self-
contained test environment consisting of a set of comput-
ers connected to a single Cisco switch. This was also the
environment we used for the aforementioned forward-
ing detection work. We configured one of the computers
with an instance of the udhcpd DHCP server, and ran our
tests from the other.



We also have access to the production network at Dart-
mouth College’s CS department. We used the same ma-
chine for our tests here as in the previous environment,
and ran our experiments against the actual production
server. Finally, we have the DHCP server included in a
Linksys WRT54G2 router. It runs as the core of a small
home network.

As described previously, we tried to determine both
the configuration of the probed server and the server it-
self. We are not interested in identifying the specific
server implementation, but rather detecting its differ-
ences from another server. We do so by taking a brute-
force approach, where we try several different values for
different fields. Some of these are well-behaved values,
and others are designed to test the server’s handling of
unusual traffic. This allows us to test both the server’s
configuration and its implementation.

To test the usefulness of our software, we compared
responses to probes across our test environments. Do-
ing so simulates the introduction of another DHCP agent
onto the network whose traffic we are seeing instead
of the legitimate server’s traffic. This process is akin
to comparing a previous behavior model captured in
a known trustworthy state with a later behavior model
gleaned from an environment during recovery. We can
probe the server at a time when we assume it to be in a
trustworthy state; this can be established by (1) manual
inspection of the program or process, (2) some kind of
integrity check of the code and configuration files a la
Tripwire, or (3) immediately after a new deployment of
the service.

6.4 Constructing DHCP Probes
Within a DHCP packet (see Figure 4), four fields (ciaddr,
yiaddr, siaddr, and giaddr) contain IP addresses, while a
fifth (chaddr) contains a MAC address. We check the
servers’ handling of these fields by setting each one in
turn to four different types of values:

• The client’s currently assigned IP address

• Another valid IP address in the client’s subnet

• A valid IP address in another subnet

• An invalid IP address

We also do something similar for the chaddr field:

• The client’s MAC address

• Another valid MAC address

• An all-zeroes MAC address

• An all-ones (Broadcast) MAC address

# Request probe w/ ciaddr set to other IP

state = random.getstate()

probeFunc(Ether(src=get_if_raw_hwaddr(conf.iface)[1],

dst="ff:ff:ff:ff:ff:ff")

/IP(src="0.0.0.0", dst="255.255.255.255")

/UDP(sport=68, dport=67)

/BOOTP(flags=0x8000,

chaddr=get_if_raw_hwaddr(conf.iface)[1],

giaddr=ip,

xid=random.randint(0, 4294967295))

/DHCP(options=[("message-type", "discover"),

("end")]

), state)

# Request probe w/ chaddr zeroes

state = random.getstate()

probeFunc(Ether(src=get_if_raw_hwaddr(conf.iface)[1],

dst="ff:ff:ff:ff:ff:ff")

/IP(src="0.0.0.0", dst="255.255.255.255")

/UDP(sport=68, dport=67)

/BOOTP(flags=0x8000,

chaddr="00:00:00:00:00:00",

xid=random.randint(0, 4294967295))

/DHCP(options=[("message-type", "discover"),

("end")]

), state)

# Request probe with chaddr nonsense

state = random.getstate()

probeFunc(Ether(src=get_if_raw_hwaddr(conf.iface)[1],

dst=’’ff:ff:ff:ff:ff:ff’’)

/IP(src=’’0.0.0.0’’, dst=’’255.255.255.255’’)

/UDP(sport=68, dport=67)

/BOOTP(flags=0x8000,

chaddr=’’gg:gg:gg:gg:gg’’,

xid=random.randint(0, 4294967295))

/DHCP(options=[(‘‘message-type’’, ‘‘discover’’),

(‘‘end’’)]

), state)

Figure 3: Example Probes for DHCP. Three of the eleven
probes we constructed for profiling the behavior of a
DHCP server. We took a profile of the known good
DHCP service and compared it against another profile
from a different machine.

We also send discover probes that manipulate option
values. These include normal options and the parameter
request list, which allows the requesting client to ask for
specific information from the server. We set a number of
options in our probes and assign them values (where ap-
plicable) as described above. We also send a number of
probes requesting different information from the server
using the parameter request list option (we do not believe
that Scapy implements all of the options).

6.5 Results

The tool successfully identified that significant differ-
ences exist between the production DHCP server and the
Linksys router. Not only were the configurations dif-
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| op (1) | htype (1) | hlen (1) | hops (1) |

+---------------+---------------+---------------+---------------+

| xid (4) |

+-------------------------------+-------------------------------+

| secs (2) | flags (2) |

+-------------------------------+-------------------------------+

| ciaddr (4) |

+---------------------------------------------------------------+

| yiaddr (4) |

+---------------------------------------------------------------+

| siaddr (4) |

+---------------------------------------------------------------+

| giaddr (4) |

+---------------------------------------------------------------+

| |

| chaddr (16) |

| |

| |

+---------------------------------------------------------------+

| |

| sname (64) |

+---------------------------------------------------------------+

| |

| file (128) |

+---------------------------------------------------------------+

| |

| options (variable) |

+---------------------------------------------------------------+

Figure 4: DHCP Message Format. This diagram was
copied verbatim from RFC2131 [13].

ferent, but it turned out that the Linksys DHCP agent
in our third environment ignored several of the less
well-behaved probes, leading to an easy identification.
While not comprehensive, we believe this successful re-
sult demonstrates the value of our approach to active in-
trusion detection.

7 Discussion & Future Work

We discuss how our active probing methodology would
apply to two other critical network services (DNS and
ARP). This is in essence future work, but we offer the
sketches as evidence of the feasibility of extending this
type of probing to other fundamental network services.
We are currently extending our analysis (and crafting
probes) to other services like SNMP, STP, NTP, and rout-
ing protocols. Each of these protocols requires a different
type of approach to composing a verification plan, since
their modes of operation may not naturally fit a query-
response pattern. In such scenarios, we can take advan-
tage of the cross-layer data pattern and trust relationship
patterns.

In the two examples below, our probing has different
semantics than our “rogue DHCP” and “forwarding de-
tection” examples. Since we sketch an outline of a verifi-
cation plan, we focused on relatively easy ways to verify
the trustworthiness of these services (e.g., for DNS com-
paring against known good answers). We could, how-
ever, rely on a behavioral signature much more in line
with the DHCP experiment by issuing probes that exer-
cise little-used options or ask for incomplete or illogical
DNS and ARP resolutions.

7.1 Domain Name System

We describe one way in which our method might apply
to Domain Name System (DNS). DNS operates on the
stimulus-response client-server model, where the client
sends name resolution requests to the server, which in
turn queries as many other servers in the DNS hierar-
chy as is necessary to get an answer [23, 24]. In many
cases, DNS responses are trusted by default, since they
represent the best and frequently only information a host
has about how to resolve external names to machine ad-
dresses. As such, attacks on DNS are fairly common,
since successfully doing so could trick a host into send-
ing all of its traffic to the adversary.

Clearly, the trustworthiness of DNS depends on giving
correct answers to queries. Our system should be able
to determine whether or not the responses it hears are
correct. If not, we can assume that the server we are
querying is untrustworthy. Note that this does not mean
that the server we are querying directly has an issue, but
since DNS servers form a hierarchy, a trust issue with
one could mean trouble for many others.

In creating a verification plan, we cannot feasibly ex-
amine what answers the server gives for every possible
query. We can, however, pick a number of common
queries and build a list of responses we should receive
for each one. We need a list rather than a single re-
sponse, as one name frequently has several hosts which
respond to queries for it. This list should be large and
diverse, and the answers built from manual research or
compiled from DNS queries to different servers, mini-
mizing the possibility that a compromised server con-
tributes to our definition of trustworthiness. We also want
to feed the server some malformed requests, both with
poorly-formed packets and for names known not to exist
(this will have to be checked) to test the implementation
details of the server.

Our probes would take the form of DNS question
packets as described previously, which could be done
with Scapy. Query responses could be listened for, and
responses checked against the list discussed previously.
If we hear any unexpected responses, an alert could be
raised indicating that a possible issue with the server ex-
ists.

7.2 Address Resolution Protocol

We describe how our method could apply to Ad-
dress Resolution Protocol (ARP). ARP operates on the
stimulus-response model where each host or gateway can
both make and service requests [28]. ARP provides im-
portant information enabling communication both within
and across networks, and its information is generally
trusted by default, so it provides a good illustration for



Protocol P T X
DNS Host DNS Server Name resolution information
DHCP Host DHCP Server IP address, gateway address, DNS address, etc.
ARP Host/Gateway Host/Gateway IP address:MAC address mapping
STP Switch Switch Bridge priority, path cost
CDP Network Device Network Device Addresses, device information

Table 2: Enumerating Services Involved in a Network’s “Deception Surface”. The protocols here form the main decep-
tion surface of a network; we list them in the context of our data model’s trust relationship syntax. Even though there
are “secure” variants of some of these protocols, networks do not always use them because requiring authentication
infrastructure in order to establish basic layer 2 and 3 connectivity can be cumbersome and difficult to maintain.

active probing.

The definition of trustworthiness for ARP should state
that all hosts respond to queries for their IP address with
their own MAC address, and gateways also respond to
queries for IP addresses outside their network segment
with their own MAC address. Any deviance from this
model could indicate a deception occurring.

Merely looking at ARP replies in isolation may not be
sufficient. Consider the following scanning strategy. A
prober conducts an ARP scan of a given set of addresses,
and for each address scanned it does two things. First,
it listens for replies and raises an alert if it hears more
than one different MAC address in response. Second, if
only one response is received, it saves that response to a
hashtable. It then would check for one of two conditions.
The scan can either look for the address it has just heard
appearing in the hashtable twice, or to look for it to not
be in the hash.

The prober needs to run this scan against both its local
network (excluding the gateway) and against addresses
outside its network. The former warns the prober of un-
trustworthy ARP behavior of hosts and servers on its own
segment, and the latter of such behavior associated with
its gateway. The scan needs to look for both the presence
of duplicate addresses and their absence for this reason:
all non-local addresses should resolve to the same ad-
dress, which should not have been seen for any local ad-
dress.

If we do not observe this, we know that we have traf-
fic intended for multiple IP addresses going to the same
device on the network. This falls outside the definition
of trustworthy ARP behavior, and the prober can raise an
alert. We could run forwarding detection against the non-
gateway IPs which returned the duplicate MAC, but it is
not strictly necessary. Probes would take the form of a
simple ARP scan, with a supporting hashtable. The tech-
nique employs a brute-force approach, but should suc-
cessfully detect ARP issues on the network.

7.3 Limitations

Although the probing approach we discuss is meant to
serve as a kind of “tripwire for trust,” it has several
shortcomings. Of particular interest going forward is
the consideration of how to scale the process of pro-
ducing a verification plan and the concomitant probes
to very large networks (along with large networks con-
taining non-TCP/IP networking equipment). In a sense,
the manual nature of writing probing scripts both helps
and hinders the ability to scale. On one hand, writing
scripts for a small number of critical pieces of network
infrastructure benefits from the manual attention to detail
and the knowledge of the system administrator about the
quirks or peculiarities of the system being probed. On
the other hand, in a highly heterogeneous environment
containing a network composed over years from a vari-
ety of organizations, the sheer diversity of core services
poses a significant challenge.

One way to deal with this challenge is to focus on de-
tecting the presence of certain types of deceptions rather
than verifying the behavior of every last system. An-
other (complementary) approach would require research
that can attempt to generate a set of probes from pristine
(or trusted) configuration files and/or binary code of the
target service.

The stimulus-response pattern for detecting untrust-
worthy behavior may not apply well to protocols that are
not purely request-response based (e.g., they may operate
on a stream of asynchronous update messages). We can
attempt to verify the behavior of such services through
trust relationships and cross-layer data (for example, for
a routing protocol we might spoof or issue route with-
drawals or announcements from one peer and see if the
target announces such messages to another peer).

Finally, we have not explicitly considered the effect
the use of such active probing might have on IDSs extant
in the target environment. It is likely that certain types of
IDS might alert on messages from the prober, especially
if they are malformed in some fashion. Dangers here in-
clude the IDS increasing its alert logging (and thereby



increasing the noise in its alert stream or logs) as well as
subtly changing their view of the network. In general, a
coordinated security response from multiple independent
security mechanisms is a hard unsolved problem. Nev-
ertheless, one of our primary use cases is in a network
that we are attempting to recover; we might expect to
ignore the secondary effects of such probing in favor of
re-establishing core critical services.

8 Conclusion

This paper suggests that active intrusion detection (AID)
techniques hold promise as a useful network security pat-
tern, particularly when attempting to verify that basic
constraints or characteristics of the network hold true.
We presented an approach to AID based on probing: is-
suing crafted packets meant to elicit a particular type of
response from the target system or host.

There are several conceptual lessons to take away from
this work. Our main approach is predicated on probing
the “corner case” behavior and configurations of network
services and verifying that services return known–good
answers. Our main assumption is that normal behavior is
in some sense equivalent to “trustworthy.” Feeding a sys-
tem crafted input meant to exercise corner cases in logic
or configuration serves as a good heuristic for revealing
behavior that might carry highly individualized informa-
tion. We hypothesize that meaningful differences in the
characteristics of network trust relationships can reveal
malicious influence (or at least a bug or misconfigura-
tion).

We suggested three patterns for building verifica-
tion plans and exploring this space of varied behavior:
stimulus-response, cross-layer data, and trust relation-
ships. This approach can help users, client hosts, and sys-
tem administrators verify the trustworthiness of network
services, especially in the absence of strong authentica-
tion mechanisms at layer 2 and 3. We discussed how to
apply this method to DNS and ARP, we crafted packets
that can remotely detect a host in forwarding mode, and
we implemented a Scapy-based prototype to verify the
trustworthiness of a DHCP service.
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