
Automating Network and Service Configuration
Using NETCONF and YANG

Stefan Wallin
Luleå University of Technology

stefan.wallin@ltu.se

Claes Wikström
Tail-f Systems AB
klacke@tail-f.com

Abstract

Network providers are challenged by new requirements
for fast and error-free service turn-up. Existing ap-
proaches to configuration management such as CLI
scripting, device-specific adapters, and entrenched com-
mercial tools are an impediment to meeting these new re-
quirements. Up until recently, there has been no standard
way of configuring network devices other then SNMP
and SNMP is not optimal for configuration management.
The IETF has released NETCONF and YANG which are
standards focusing on Configuration management. We
have validated that NETCONF and YANG greatly sim-
plify the configuration management of devices and ser-
vices and still provide good performance. Our perfor-
mance tests are run in a cloud managing 2000 devices.

Our work can help existing vendors and service
providers to validate a standardized way to build con-
figuration management solutions.

1 Introduction

The industry is rapidly moving towards a service-
oriented approach to network management where com-
plex services are supported by many different systems.
Service operators are starting a transition from managing
pieces of equipment towards a situation where an opera-
tor is actively managing the various aspects of services.
Configuration of the services and the affected equip-
ment is among the largest cost-drivers in provider net-
works [9]. Delivering valued-added services, like MPLS
VPNS, Metro Ethernet, and IP TV is critical to the prof-
itability and growth of service providers. Time-to-market
requirements are critical for new services; any delay in
configuring the corresponding tools directly affects de-
ployment and can have a big impact on revenue. In re-
cent years, there has been an increasing interest in find-
ing tools that address the complex problem of deploying
service configurations. These tools need to replace the

current configuration management practices that are de-
pendent on pervasive manual work or ad hoc scripting.
Why do we still apply these sorts of blocking techniques
to the configuration management problem? As Enck [9]
points out, two of the primary reasons are the variations
of services and the constant change of devices. These
underlying characteristics block the introduction of au-
tomated solutions, since it will take too much time to
update the solution to cope with daily changes. We will
illustrate that a NETCONF [10] and YANG [4] based so-
lution can overcome these underlying challenges.

Service providers need to be able to dynamically adopt
the service configuration solutions according to changes
in their service portfolio without defining low level de-
vice configuration commands. At the same time, we need
to find a way to remove the time and cost involved in the
plumbing of device interfaces and data models by au-
tomating device integration. We have built and evaluated
a management solution based on the IETF NETCONF
and YANG standards to address these configuration man-
agement challenges. NETCONF is a configuration man-
agement protocol with support for transactions and dedi-
cated configuration management operations. YANG is a
data modeling language used to model configuration and
state data manipulated by NETCONF. NETCONF was
pioneered by Juniper which has a good implementation
in their devices. See the work by Tran [23] et. al for
interoperability tests of NETCONF.

Our solution is characterized by the following key
characteristics:

1. Unified YANG modeling for both services and de-
vices.

2. One database that combines device configuration
and service configuration.

3. Rendering of northbound and southbound interfaces
and database schemas from the service and device
model. Northbound are the APIs published to users

of NCS, be it human or programmatic interfaces.
Southbound is the integration point of managed de-
vices, for example NETCONF.

4. A transaction engine that handles transactions from
the service order to the actual device configuration
deployment.

5. An in-memory high-performance database.

To keep the service and device model synchronized,
(item 1 and 2 above), it is crucial to understand how a
specific service instance is actually configured on each
network device. A common problem is that when you
tear down a service you do not know how to clean up the
configuration data on a device. It is also a well-known
problem that whenever you introduce a new feature or
a new network device, a large amount of glue code is
needed. We have addressed this again with annotated
YANG models rather then adaptor development. So for
example, the YANG service model renders a northbound
CLI to create services. From a device model in YANG
we are actually able to render the required Cisco CLI
commands and interpret the response without the need
for the traditional Perl and Expect scripting. Currently
our solution can integrate without any plumbing.

It is important to address the configuration manage-
ment problem using a transactional approach. The trans-
action should cover the whole chain including the indi-
vidual devices. Finally, in order to manipulate config-
uration data for a large network and many service in-
stances we need fast response to read and write oper-
ations. Traditional SQL and file-based database tech-
nologies fall short in this category. We have used an in-
memory database journaled to disk in order to address
performance and persistence at the same time.

The objectives of this research are to determine
whether these new standards can help to eliminate the de-
vice integration problem and provide a service configu-
ration solution utilizing automatically integrated devices.
We have studied challenges around data-model discov-
ery, interface versioning, synchronization of configura-
tion data, multi-node configuration deployment, trans-
actional models, and service modeling issues. In order
to validate the approach we have used simulated scenar-
ios for configuring load balancers, web servers, and web
sites services. Throughout the use-cases we also illus-
trate the possibilities for automated rendering of Com-
mand Line interfaces as well as User Interfaces from
YANG models.

Our studies show that a NETCONF/YANG based con-
figuration management approach removes unnecessary
manual device integration steps and provides a platform
for multi-device service configurations. We see that
problems around finding correct modules, loading them

and creating a management solution can largely be auto-
mated. In addition to this, the transaction engine in our
solution combined with inherent NETCONF transaction
capabilities resolves problems around multi-device con-
figuration deployment.

We have run performance tests with 2000 devices in an
Amazon cloud to validate the performance of NETCONF
and our solution. Based on these tests we see that the
solution scales and NETCONF provides a configuration
management protocol with good performance.

2 Introduction to NETCONF and YANG

The work with NETCONF and YANG started as a result
of an IAB workshop held in 2002. This is documented
in RFC 3535 [18].

“The goal of the workshop was to continue the
important dialog started between network op-
erators and protocol developers, and to guide
the IETFs focus on future work regarding net-
work management.”

The workshop concluded that SNMP is not being
used for configuration management. Operators put
forth a number of requirements that are important for
a standards-based configuration management solution.
Some of the requirements were:

1. Distinction between configuration data and data that
describes operational state and statistics.

2. The capability for operators to configure the net-
work as a whole rather than individual devices.

3. It must be easy to do consistency checks of config-
urations.

4. The availability of text processing tools such as diff,
and version management tools such as RCS or CVS.

5. The ability to distinguish between the distribution
of configurations and the activation of a certain con-
figuration.

NETCONF addresses the requirements above. The de-
sign of NETCONF has been influenced by proprietary
protocols such as Juniper Networks JUNOScript appli-
cation programming interface [14].

For a more complete introduction see the Communi-
cations Magazine article [19] written by Schönwälder et
al.

2

2.1 NETCONF

The Network Configuration Protocol, NETCONF, is an
IETF network management protocol and is published in
RFC 4741. NETCONF is being adopted by major net-
work equipment providers and has gained strong industry
support. Equipment vendors are starting to support NET-
CONF on their devices, see the NETCONF presentation
by Moberg [16] for a list of public known implementa-
tions.

NETCONF provides mechanisms to install, manipu-
late, and delete the configuration of network devices. Its
operations are realized on top of a simple Remote Pro-
cedure Call (RPC) layer. The NETCONF protocol uses
XML based data encoding for the configuration data as
well as the protocol messages. NETCONF is designed
to be a replacement for CLI-based programmatic inter-
faces, such as Perl + Expect over Secure Shell (SSH).
NETCONF is usually transported over the SSH protocol,
using the “NETCONF” sub-system and in many ways
it mimics the native proprietary CLI over SSH inter-
face available in the device. However, it uses structured
schema-driven data and provides detailed structured er-
ror return information, which the CLI cannot provide.

NETCONF has the concept of logical data-stores such
as “writable-running” or “candidate” (Figure 1). Opera-
tors need a way to distribute changes to the devices and
validate them locally before activating them. This is in-
dicated by the two bottom options in Figure 1 where con-
figuration data can be sent to candidate databases in the
devices before they are committed to running in produc-
tion applications.

All NETCONF devices must allow the configuration
data to be locked, edited, saved, and unlocked. In ad-
dition, all modifications to the configuration data must
be saved in non-volatile storage. An example from RFC
4741 that adds an interface named “Ethernet0/0” to the
running configuration, replacing any previous interface
with that name is shown in Figure 2.

2.2 YANG

YANG is a data modeling language used to model con-
figuration and state data. The YANG modeling lan-
guage is a standard defined by the IETF in the NETMOD
working group. YANG can be said to be tree-structured
rather than object-oriented. Configuration data is struc-
tured into a tree and the data can be of complex types
such as lists and unions. The definitions are contained
in modules and one module can augment the tree in an-
other module. Strong revision rules are defined for mod-
ules. Figure 3 shows a simple YANG example. YANG
is mapped to a NETCONF XML representation on the
wire.

running
automatic-save

edit-config
copy-config

WRITABLE-RUNNING

running

copy-config

edit-config
copy-config

WRITABLE-RUNNING + STARTUP

startup

candidate

commit

edit-config
copy-config

CANDIDATE

running

automatic-save

candidate

commit

edit-config
copy-config

CANDIDATE + STARTUP

running

copy-config

startup

Figure 1: NETCONF Datastores

<rpc message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<edit-config>

<target>

<running/>

</target>

<config

xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

<top xmlns="http://example.com/schema/1.2/config">

<interface xc:operation="replace">

<name>Ethernet0/0</name>

<mtu>1500</mtu>

<address>

<name>192.0.2.4</name>

<prefix-length>24</prefix-length>

</address>

</interface>

</top>

</config>

</edit-config>

</rpc>

<rpc-reply message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>

</rpc-reply>

Figure 2: NETCONF edit-config Operation

3

module acme-system {
namespace
"http://acme.example.com/system";
prefix "acme";
organization "ACME Inc.";
contact "joe@acme.example.com";
description
"The ACME system.";

revision 2007-11-05 {
description "Initial revision.";

}
container system {
leaf host-name {

type string;
}
leaf-list domain-search {
type string;

}
list interface {
key "name";
leaf name {

type string;
}
leaf type {

type enumeration {
enum ethernet;
enum atm;

}
}

leaf mtu {
type int32;

}
must ‘‘ifType != ’ethernet’ or ‘‘+
‘‘(ifType = ’ethernet’ and ‘‘ +
‘‘mtu = 1500)‘‘ {
}

...

Figure 3: YANG Sample

YANG also differs from previous network manage-
ment data model languages through its strong support
of constraints and data validation rules. The suitability
of YANG for data models can be further studied in the
work by Xu et. al [24].

3 Our Config Manager Solution - NCS

3.1 Overview
We have built a layered configuration solution, NCS,
Network Configuration Server. See Figure 4. The De-
vice Manager manages the NETCONF devices in the

Config
Database

Rendering
Engine

Service
Manager

Device
Manager

NETCONF

Service
Logic

CLI, Web UI

YANG
Service Models
Device Models

Figure 4: NCS - The Configuration Manager

network and heavily leverage the features of NETCONF
and YANG to render a Configuration Manager from the
YANG models. At this layer, the YANG models repre-
sent the capabilities of the devices and NCS provides the
device configuration management capabilities.

The Service Manager in turn lets developers add
YANG service models. For example, it is easy to repre-
sent end-to-end connections over L2/L3 devices or web
sites utilizing load balancers and web servers. The most
important feature of the Service Manager is to transform
a service creation request into the corresponding device
configurations. This mapping is expressed by defining
service logic in Java which basically does a model trans-
formation from the service model to the device models.

The Configuration Database, (CDB), is an in-memory
database journaled to disk. CDB is a special-purpose
database that targets network management and the in-
memory capability enables fast configuration valida-
tion and performs diffs between running and candidate
databases. Furthermore the database schema is directly
rendered from the YANG models which removes the
need for mapping between the models and for exam-
ple a SQL database. A fundamental problem in net-
work management is dealing with different versions of
device interfaces. NCS is able to detect the device in-
terfaces through its NETCONF capabilities and this in-
formation is used by CDB to tag the database with re-
vision information. Whenever a new model revision is
detected, NCS can perform a schema upgrade operation.
CDB stores the configuration of services and devices and
the relationships between them. NETCONF defines ded-
icated operations to read the configuration from devices
and this drastically reduces the synchronization and rec-
onciliation problem.

Tightly connected to CDB is the transaction manager

4

web site

IP
Port
URL

Web Server
www1

Listeners: {IP, Port}

Web Server
www2

Listeners: {IP, Port}

Web Server
www3

Listeners: {IP, Port}

Listeners: {IP, Port}

Load balancer
lb

Backend. IP.Port

Profile

Figure 5: The Example

which manages every configuration change as a transac-
tion. Transactions include all aspects from the service
model to all related device changes.

At this point it is important to understand that the
NETCONF and NCS approach to configuration manage-
ment does not use a push and pull approach to versioned
configuration files. Rather, it is a fine-grained transac-
tional view based on data models.

The Rendering Engine renders the database schemas,
a CLI, and a Web UI from the YANG models. In this way
the Device Manager features will be available without
any coding.

3.2 The Example
Throughout the rest of this paper we will use an exam-
ple that targets configuration of web-sites across a load
balancer and web servers. See Figure 5.

The service model covers the aspects of a web site; IP
Address, Port, and URL. Whenever you provision a web
site you refer to a profile which controls the selection of
load balancers and web servers. A web site allocates a
listener on the load balancer which in turn creates back-
ends that refer to physical web servers. So when provi-
sioning a new web site you do not have to deal with the
actual load balancer and web server configuration. You
just refer to the profile and the service logic will config-
ure the devices. The involved YANG models are :

• website.yang : the service model for a web site, it
defines web site attributes like url, IP Address, port,
and pointer to profile.

• lb.yang : the device model for load balancers, it
defines listeners and backends where the listeners

refers to the web site and backends to the corre-
sponding web servers.

• webserver.yang : the device model for a physical
web server, it defines listeners, document roots etc.

The devices in our example are:

– Load Balancer : lb

– Web Servers : www1, www2, www3

3.3 The Device Manager
The Device Manager layer is responsible for config-
uring devices using their specific data-models and in-
terfaces. The NETCONF standard defines a capabil-
ity exchange mechanism. This implies that a device
reports its supported data-models and their revisions
when a connection is established. The capability ex-
change mechanism also reports if the device supports a
<writable-running> or <candidate> database.

After connection the Device Manager can then use the
get-schema RPC, as defined in the netconf-monitoring
RFC [20] to get the actual YANG models from all the
devices. NCS now renders northbound interfaces such as
a common CLI and Web UI from the models. The NCS
database schema is also rendered from the data-models.

The NCS CLI in Figure 6 shows the discov-
ered capabilities for device “www1”. We see that
www1 supports 6 YANG data-models, interfaces,
webserver, notif, and 3 standard IETF modules. Fur-
thermore the web-server supports NETCONF features
like confirmed-commit, rollback-on-error and
validation of configuration data.

In Figure 7 we show a sequence of NCS CLI com-
mands that first uploads the configuration from all de-
vices and then displays the configuration from the NCS
configuration database. So with this scenario we show
that we could render the database schema from the
YANG models and persist the configuration in the con-
figuration manager.

Now, let’s do some transaction-based configuration
changes. The CLI sequence in Figure 8 starts a trans-
action that will update the ntp server on www1 and the
load-balancer. Note that NCS has the concept of a can-
didate database and a running. The first represents the
desired configuration change and the running database
represents the actual configuration of the devices. At the
end of the sequence in Figure 8 we use the CLI command
‘‘compare running brief’’ to show the difference
between the running and the candidate database. This is
what will be committed to the devices. Note that we do
a diff and only send the diff. Our in-memory database
enables good performance even for large configurations
and large networks.

5

ncs> show ncs managed-device www1 capability <RET>

URI REVISION MODULE

--

candidate:1.0 - -

confirmed-commit:1.0 - -

confirmed-commit:1.1 - -

http://acme.com/if 2009-12-06 interfaces

http://acme.com/ws 2009-12-06 webserver

http://router.com/notif - notif

rollback-on-error:1.0 - -

urn:ietf:params:netconf:capability:notification:1.0 - -

urn:ietf:params:xml:ns:yang:ietf-inet-types 2010-09-24 ietf-inet-types

urn:ietf:params:xml:ns:yang:ietf-yang-types 2010-09-24 ietf-yang-types

urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring 2010-06-22 ietf-netconf-monitoring

validate:1.0 - -

validate:1.1 - -

writable-running:1.0 - -

xpath:1.0 - -

Figure 6: NETCONF Capability Discovery

ncs> request ncs sync direction from-device <RET>

...

ncs> show configuration ncs \

managed-device www1 config <RET>

host-settings {

syslog {

server 18.4.5.6 {

enabled;

selector 1;

}

...

}

ncs> show configuration ncs \

managed-device lb config <RET>

lbConfig {

system {

ntp-server 18.4.5.6;

resolver {

search acme.com;

nameserver 18.4.5.6;

}

}

}

Figure 7: Synchronize Configuration Data from Devices

In the configuration scenarios shown in Figure 8 we
used the auto-rendered CLI based on the native YANG
modules that we discovered from the devices. So it gives
the administrator one CLI with transactions across the
devices, but still with different commands for different

ncs% set ncs managed-device \

www1 config host-settings ntp server 18.4.5.7 <RET>

ncs% set ncs managed-device \

lb config lbConfig system ntp-server 18.4.5.7 <RET>

ncs% compare running brief <RET>

ncs {

managed-device lb {

config {

lbConfig {

system {

- ntp-server 18.4.5.6;

+ ntp-server 18.4.5.7;

}

...

ncs% commit

Figure 8: Configuring two Devices in one Transaction

vendors in case of non-standard modules. NCS allows
for device abstractions, where you can provide a generic
YANG module across vendor-specific ones.

Every commit in the scenarios described above re-
sulted in a transaction across the involved devices. In this
case the devices support the confirmed-commit capabil-
ity. This means that the manager performs a commit to
the device with a time-out. If the device does not get the
confirming commit within the time-out period it reverts
to the previous configuration. This is also true for restarts
or if the SSH connection closes.

6

3.4 The Service Manager

In our example we have defined a service model cor-
responding to web-sites and the corresponding service
logic that maps the service model to load balancers and
web servers. The auto-rendered Web UI let operators
create a web site like the one illustrated in Figure 9.

Figure 9: Instantiating a Web-site Service

A fundamental part of the Service Manager is that we
use YANG to model services as well as devices. In this
way we can ensure that the service model is consistent
with the device model. We do this at compile time by
checking the YANG service model references to the de-
vice model elements. At run-time, the service model
constraints can validate elements in the device-model in-
cluding referential integrity of any references. Let’s il-
lustrate this with a simple example. Figure 10 shows a
type-safe reference from the web-site service model to
the devices. The YANG leafref construct refers to a
path in the model. The path is verified to be correct ac-
cording to the model at compile time. At run-time, if
someone tries to delete a managed device that is referred
to by a service this would violate referential integrity and
NCS would reject the operation.

This service provisioning request initiates a hierarchi-
cal transaction where the service instance is a parent
transaction which fires off child transactions for every

leaf lb {

description "The load balancer to use.";

mandatory true;

type leafref {

path "/ncs:ncs/ncs:managed-device/ncs:name";

}

}

Figure 10: Service-Model Reference to Device-Model

device. In this specific case the selected profile uses
all web servers at the device layer. Either the complete
transaction succeeds or nothing will happen. As a result
the transaction manager stores the resulting device con-
figurations in CDB as shown in Figure 11.

Figure 11: The relationship from a Service to the Actual
Device Configurations.

You see that the web-site for acme created a listener
on the load balancer with backends that maps to the ac-
tual web servers. The service also created a listener on
the web server. You might wonder why there is a minus-
sign for the diff. The reason is that we are actually stor-
ing how to delete the service. This means that there will
never be any stale configurations in the network. As soon
as you delete a service, NCS will automatically clean up.

7

4 Evaluation

4.1 Performance Evaluation
We have evaluated the performance of the solution us-
ing 2000 devices in an Amazon Cloud. The Server is a
4 Core CPU, 4 GB RAM, 1.0 GHz, Ubuntu 10.10 Ma-
chine. Here we illustrate 4 test-cases. All test-cases are
performed as one single transaction:

1. Start the system with an empty database and upload
the configuration over NETCONF from all devices
(Figure 12 A).

2. Check if the configuration database is in sync with
all the devices (Figure 12 B).

3. Perform a configuration change on all devices (Fig-
ure 13 A).

4. Create 500 services instances that touch 2 devices
each (Figure 13 B).

5. In Figure 14 we show the memory and database
journal disc space for configuring 500 service in-
stances.

All of the test-cases involve the complete transaction
including the NETCONF round-trip to the actual devices
in the cloud. So, cold-starting NCS and uploading the
configuration from 500 devices takes about 8 minutes
(Figure 12) and 2000 devices takes about 25 minutes.
The configuration synchronization check utilizes a trans-
action ID to compare the last performed change from
NCS to any local changes made to the device. This test
assumes that there is some way to get a transaction ID
or checksum from the device that corresponds to the last
change irrespective of which interface is used. If that is
not available and you had to get the complete configura-
tion, then the numbers would be higher.

Updating the config on 500 devices takes roughly one
minute, (Figure 8). As seen by Figure 14 the in-memory
database has a small footprint even for large networks.
In this scenario it is important to note that we always diff
the configuration change within NCS before sending it
to the device. This means that we only send the actual
changes that are needed and this database comparison is
included in the numbers. This is an area where we have
seen performance bottlenecks in previous solutions when
traditional database technologies are used.

These performance tests cover two aspects: perfor-
mance of NETCONF, and our actual implementation.

NETCONF as a protocol ensures that we achieve at
least equal performance to CLI screen scraped solutions
and superior performance to SNMP based configuration
solutions. XML processing is considerably less CPU in-
tensive than SSH processing.

When running a transaction that touches many man-
aged devices, we use two tricks that affect performance.
We pipeline NETCONF RPCs, sending several RPCs in
a row, and collecting all the replies in a row. We can also
(in parallel) send the requests to all participating man-
aged devices, and then (in parallel) harvest the pipelined
replies.

NCS is implemented in Erlang [3, 11] and OTP (Open
Telecom Platform) [22] which have excellent support for
concurrency and multi-core processors. A lot of effort
has gone into parallelizing the southbound requests. For
example initial NETCONF SSH connection establish-
ment is done in parallel, greatly enhancing performance.

The network configuration data is kept in a RAM
database together with a disk journaling component. If
the network is huge, the amount of RAM required can be
substantial. When the YANG files are compiled we hash
all the symbols in the data models, thus the database is
actually a large tree of integers. This increases process-
ing speed and decreases memory footprint of the configu-
ration daemon. The RAM database itself is implemented
as an Erlang driver that uses skip lists [17].

Our measurements show that we can handle thousands
of devices and hundred thousands of services on off-the-
shelf hardware, (4 Core CPU, 4 GB RAM, 1.0 GHz).

We have also made some measurements comparing
SNMP and NETCONF performance. We read the in-
terface table using SNMP get-bulk and NETCONF get.
In general NETCONF performed 3 times quicker than
SNMP. The same kind of performance improvements us-
ing NETCONF rather than SNMP can be found in the
work by Yu and Ajarmeh [25].

4.2 NETCONF/YANG Evaluation

Let’s look at the requirements set forth by RFC 3535 and
validate these based on our implementation.

4.2.1 Distinction between configuration data, and
data that describes operational state and
statistics

This requirement is fulfilled by YANG and NETCONF in
that you can explicitly request to get only the configura-
tion data from the device, and elements in YANG are an-
notated if they are configuration data or not. This greatly
simplifies the procedure to read and synchronize config-
uration data from the devices to a network management
system. In our case, NCS can easily synchronize its con-
figuration database with the actual devices.

8

Figure 12: Starting NCS and Reading the Configuration from all Devices
(Dotted line represents Wall Clock Time, Solid Line CPU Time).

Figure 13: Making Device Configurations and Service Configurations

4.2.2 It is necessary to enable operators to concen-
trate on the configuration of the network as a
whole rather than individual devices

We have validated this from two perspectives

1. Configuring a set of devices as one transaction.

2. Transforming a service configuration to the corre-
sponding device configurations.

Using NCS, we can apply configurations to a group
of devices and the transactional capabilities of NET-
CONF will make sure that the whole transaction is ap-
plied or no changes are made at all. The NETCONF
confirmed-commit operation has proven to be espe-
cially useful in order to resolve failure scenarios. A
problem scenario in network configuration is that de-
vices may become unreachable after a reconfiguration.
The confirmed-commit operation requests the device
to take the new configuration live but if an acknowledge-

9

Figure 14: Memory and Journaling Disc Space

ment is not received within a time-out the device auto-
matically rolls-back. This is the way NCS manages to
roll-back configurations if one or several of the devices
in a transaction does not accept the configuration. It is
notable to see the lack of complex state-machines in NCS
to do roll-backs and avoid multiple failure scenarios.

In some cases, you would like to apply a global con-
figuration change to all your devices in the network. In
the general case the transaction would fail if one of the
devices was not reachable. There is an option in NCS
to backlog unresponsive devices. In this case NCS will
make the transaction succeed and store outstanding re-
quests for later execution.

4.2.3 It must be easy to do consistency checks of
configurations.

Models in YANG contain ‘‘must’’ expressions that put
constraints on the configuration data. See for example
Figure 3 where the must expression makes sure that the
MTU is set to correct size. So for example, a NETCONF
manager can edit the candidate configuration in a device
and ask the device to validate it. In NCS we also use
YANG to specify service models. In this way we can
use must expressions to make sure that a service config-
uration is consistent including the participating devices.
Figure 15 shows a service configuration expression that
verifies that the subnet only exists once in the VPN.

4.2.4 It is highly desirable that text processing tools
[...] can be used to process configurations.

Since NETCONF operations use well-defined XML pay-
loads, it is easy to process configurations. For example

must "count(

../../mv:access-link[subnet =

current()/../subnet]) = 1" {

error-message "Subnet must be unique

within the VPN";

}

Figure 15: Service Configuration Consistency

doing a diff between the configuration in the device ver-
sus the desired configuration in the management system.
The CLI output in Figure 16 shows a diff between a de-
vice configuration and the NCS Configuration Database.
In this case a system administrator has used local tools
on web server 1 and changed the document root, and re-
moved the listener.

4.2.5 It is important to distinguish between the dis-
tribution of configurations and the activation
of a particular configuration.

The concept of multiple data-stores in NETCONF lets
managers push the configuration to a candidate database,
validate it, and then activate the configuration by com-
mitting it to the running datastore. Figure 17 shows an
extract from the NCS trace when activating a new con-
figuration in web server 2.

10

ncs> request ncs managed-device \

www1 compare-config outformat cli <RET>

diff

ncs {

managed-device www1 {

config {

wsConfig {

global {

- ServerRoot /etc/doc;

+ ServerRoot /etc/docroot;

}

- listener 192.168.0.9 8008 {

- }

}

}

}

}

Figure 16: Comparing Configurations

ncs% set ncs managed-device \

www2 config wsConfig global ServerRoot /etc/doc <RET>

ncs% commit | details <RET>

ncs: SSH Connecting to admin@www2

ncs: Device: www2 Sending edit-config

ncs: Device: www2 Send commit

Commit complete.

Figure 17: Separation of Distribution of Configurations
and Activation

5 Related Work

5.1 Mapping to Taxonomy of Configura-
tion Management Tools

We can map our solution to other Configuration Manage-
ment solutions based on the taxonomy defined by Delaet
and Joosen [7]. They define a taxonomy based on 4 cri-
teria: abstraction level, specification language, consis-
tency, and distributed management.

The abstraction level ranges from high-level end-to-
end requirements to low-level bit-requirements. As
shown in Figure 18 and described below, in our solution
we work with level 1-5 of the 6 mentioned abstraction
levels.

1. End-to-end Requirements - The service models in
the Service Manager expresses end-to-end require-
ments including constraints expressed as XPATH
must expressions. In the case of our web site provi-
sioning example this corresponds to the model for a
web site - website.yang.

Service Manager :
• website.yang

Device Manager
• hostsettings.yang
• loadbalancer.yang
• webserver.yang

NETCONF
XML payload

Service Logic
• web-site.java

Load BalancerWeb Server

1. End-to-end requirements

2. Instance distribution rules

3. Instance configurations

4. Implementation dependent
 instances

5. Configuration files

Figure 18: NCS in the Configuration Taxonomy Defined
by Delaet and Joosen

2. Instance Distribution Rules - How an end-to-end
service is allocated to resources is expressed in the
Java Service Logic Layer. In this layer we map the
provisioning of a web site to the corresponding load
balancer and web-server models.

3. Instance Configurations - The changed configura-
tion of devices in the Device Manager. The result
of the previous point is a diff, configuration change,
sent to NCS Device Manager. The Device Man-
ager has two layers. The device independent layer
that can abstract different data-models for the same
feature and the concrete device model layer. This
layer may be vendor-independent. In Figure 18 we
indicate a vendor-independent hostsetting.yang
model which contains a unified model for host set-
tings like DNS and NTP.

4. Implementation Dependent Instances - The con-
crete device configuration in the NCS Device Man-
ager. This is the actual configuration that is sent to
the devices in order to achieve the service instanti-
ation. In the specific example of a web site it is the
configuration change to the load balancers and web
servers.

5. Configuration Files - The NETCONF XML,
editconfig, payload sent to the devices. Note
however whereas most tools work with configura-
tion files, NETCONF does fine-grained configura-
tion changes.

6. Bit-Configurations - Disk images are not directly
managed by NETCONF as such.

When it comes to the specification language we
have a uniform approach based on YANG at all lev-

11

els. Delaet and Joosen characterize the specification lan-
guage from four perspectives: language-based or user-
interface-based, domain coverage, grouping mechanism
and multi-level specification. We will elaborate on these
perspectives below.

We certainly focus on a language-based approach
which can render various interface representations.
Users can edit the configuration using the auto-rendered
CLI and Web UI. You can also feed NCS with the NET-
CONF XML encoding of the YANG models. NCS is a
general purpose solution in that the domain is defined
by the YANG models and not the system itself. YANG
supports groupings at the modeling level and NCS sup-
ports groupings of instance configurations as config-
urable templates. Templates can be applied to groups of
devices.

NCS supports multi-level specifications which in De-
laets and Joosens taxonomy refers to the ability to trans-
form the configuration specifications to other formats.
In our case, we are actually able to render Cisco CLI
commands automatically from the configuration change.
This is a topic of its own and will not be fully covered
here. However NCS supports YANG model-driven CLI
engines that can be fed with a YANG data-model and
the engine is capable of rendering the corresponding CLI
commands.

Consistency has three perspectives in the taxonomy:
dependency modeling, conflict management, and work-
flow management. We do not cover workflow manage-
ment. We consider workflow systems to be a client to
NCS. NCS manages dependencies and conflicts based
on constraints in the models and runtime policies. The
model constraints specifiy dependencies and rules that
are constrained by the model itself while policies are run-
time constrained defined by system administrators. We
use XPATH [6] expressions in both contexts.

Regarding conflict management NCS will detect con-
flicts as violations to policies as described above. The
result is an error message when the user tries to commit
the conflicting configuration.

The final component of the taxonomy covers the as-
pect of distribution. NCS supports a fine-grained AAA
system that lets different users and client systems per-
form different tasks. The agent is a NETCONF client on
the managed devices. The NCS server itself is central-
ized. The primary reason here is to enable quick valida-
tion of cross-device policy validation. The performance
is guaranteed by the in-memory database.

5.2 Comparison to other major configura-
tion management tools

There are many well-designed configuration manage-
ment tools like: CFengine [5], Puppet [15], LCFG [2]

and Bcfg2 [8]. These tools are more focused on system
and host configuration whereas we focus mostly on net-
work devices and network services. This is mostly de-
termined by the overall approach taken for configuration
management. In our model the management system has a
data-model that represents the device and service config-
uration. Administrators and client programs express an
imperative desired change based on the data-model. NCS
manages the overall transaction by the concept of a can-
didate and running database which is a well-established
principle for network devices.

Many host-management uses concepts of centralized
versioned configuration files rather than a database with
roll-back files. Also in a host environment you can put
your specific agents on the hosts which is not the case for
network devices. Therefore a protocol based approach
like NETCONF/YANG is needed.

Another difference is the concept of desired state. For
host configuration it is important to make sure that the
hosts follow a centrally defined configuration which is
fairly long-lived. In our case we are more focused on
doing fine-grained real-time changes based on require-
ments for new services. There is room for combination
of the two approaches where host-based approaches fo-
cused on configuration files address the more static setup
of the device and our approach on top if that addresses
dynamic changes.

It is also worth-while noting that most of the existing
tools have made up their own specific languages to de-
scribe configuration. YANG is a viable options for the
above mentioned tools to change to a standardized lan-
guage.

There is of course a whole range of commercial tools,
like Telcordia Activator [21], HP Service Activator [12],
Amdocs [1], that address network and service configu-
ration. While they are successfully being used for ser-
vice configuration, the underlying challenges of cost and
release-cycles for device adapters and flexibility of ser-
vice models can be a challenge.

6 Conclusion and Future Work

6.1 Conclusion
We have shown that a standards-based approach for net-
work configuration based on NETCONF and YANG can
ease the configuration management scenarios for opera-
tors. Also the richness of YANG as a configuration de-
scription language lends itself to automating not only the
device communication but also the rendering of inter-
faces like Command Line Interfaces and Web User In-
terfaces. Much of the value in this IETF standard lies in
the transaction-based approach to configuration manage-
ment and a rich domain-specific language to describe the

12

configuration and operational data. We used Erlang and
in-memory database technology for our reference imple-
mentation. These two choices provide performance for
parallel configuration requests and fast validation of con-
figuration constraints.

6.2 Future Work
We have started to work on a NETCONF SNMP adap-
tation solution which is critical to migrate from cur-
rent implementations. This will allow for two scenar-
ios: read-only and read-write. The read-only view is a
direct mapping of SNMP MIBs to corresponding NET-
CONF/YANG view, this mapping is being standardized
by IETF [13]. The read-write view is more complex
and cannot be fully automated. The main reason is that
the transactional capabilities and dependencies between
MIB variables are not formally defined in the SNMP
SMI, for example it is common that you need to set
one variable before changing others. We are working on
catching the most common scenarios and define YANG
extensions for those in order to automatically render as
much as possible.

Furthermore we are working on a solution where we
can have hierarchical NCS systems in order to cover huge
networks like nation-wide Radio Access Networks. We
will base this on partitioning of the instantiated model
into separate CDBs. NCS will then proxy any NET-
CONF requests to the corresponding NCS system.

We are also working on two interesting features in or-
der to understand the service configuration versus the de-
vice configuration: “dry-run” and “service check-sync”.
Committing a service activation request with dry-run cal-
culates the resulting configuration changes to the devices
and displays the diff without committing it. This is help-
ful in a what-if scenario: “If I provision this VPN, what
happens to my devices?”. The service check-sync fea-
ture will compare a service instance with the actual con-
figuration that is on devices and display any conflicting
configurations. This is useful to detect and analyze if
and how the device configurations have been changed by
any local tools in a way that breaks the service configu-
rations.

References
[1] AMDOCS. Amdocs service fulfillment, 2011.

http://www.amdocs.com/Products/OSS/Pages/Service-
Fulfillment.aspx.

[2] ANDERSON, P., SCOBIE, A., ET AL. Lcfg: The next generation.
In UKUUG Winter conference (2002), Citeseer.

[3] ARMSTRONG, J., VIRDING, R., WIKSTRÖM, C., AND
WILLIAMS, M. Concurrent Programming in ERLANG, 1993.

[4] BJORKLUND, M. YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF). RFC 6020 (Pro-
posed Standard), Oct. 2010.

[5] BURGESS, M. A tiny overview of cfengine: Convergent mainte-
nance agent. In Proceedings of the 1st International Workshop on
Multi-Agent and Robotic Systems, MARS/ICINCO (2005), Cite-
seer.

[6] CLARK, J., DEROSE, S., ET AL. XML path language (XPath)
version 1.0. W3C recommendation (1999).

[7] DELAET, T., AND JOOSEN, W. Survey of configuration manage-
ment tools. Katholieke Universiteit Leuven, Tech. Rep (2007).

[8] DESAI, N., LUSK, A., BRADSHAW, R., AND EVARD, R. Bcfg:
A configuration management tool for heterogeneous environ-
ments. Cluster Computing, IEEE International Conference on
0 (2003), 500.

[9] ENCK, W., MCDANIEL, P., SEN, S., SEBOS, P., SPOEREL, S.,
GREENBERG, A., RAO, S., AND AIELLO, W. Configuration
management at massive scale: System design and experience. In
Proc. of the 2007 USENIX: 21st Large Installation System Ad-
ministration Conference (LISA ’07) (2007), pp. 73–86.

[10] ENNS, R. NETCONF Configuration Protocol. RFC 4741 (Pro-
posed Standard), Dec. 2006.

[11] ERLANG.ORG. The erlang programming langugage, 2011.
http://www.erlang.org/.

[12] HP. HP Service Activator, 2011.
http://h20208.www2.hp.com/cms/solutions/ngoss/fulfillment/hpsa-
suite/index.html.

[13] J. SCHÖNWÄLDER. Translation of SMIv2 MIB Mod-
ules to YANG Modules. Internet-Draft, July 2011.
http://tools.ietf.org/html/draft-ietf-netmod-smi-yang-01.

[14] JUNIPER. Junos XML Management Protocol, 2011.
http://www.juniper.net/support/products/junoscript/.

[15] KANIES, L. Puppet: Next-generation configuration manage-
ment.; login: the USENIX Association newsletter, 31 (1), 2006.

[16] MOBERG, C. A 30 Minute Introduction To NETCONF and
YANG, 2011. http://www.slideshare.net/cmoberg/a-30minute-
introduction-to-netconf-and-yang.

[17] PUGH, W. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33 (June 1990), 668–676.

[18] SCHOENWAELDER, J. Overview of the 2002 IAB Network Man-
agement Workshop. RFC 3535 (Informational), May 2003.

[19] SCHÖNWÄLDER, J., BJÖRKLUND, M., AND SHAFER, P. Net-
work configuration management using NETCONF and YANG.
Communications Magazine, IEEE 48, 9 (sept. 2010), 166 –173.

[20] SCOTT, M., AND BJORKLUND, M. YANG Module for NET-
CONF Monitoring. RFC 6022 (Proposed Standard), Oct. 2010.

[21] TELCORDIA. Telcordia activator, 2011.
http://www.telcordia.com/products/activator/index.html.

[22] TORSTENDAHL, S. Open telecom platform. Ericsson Re-
view(English Edition) 74, 1 (1997), 14–23.

[23] TRAN, H., TUMAR, I., AND SCHÖNWÄLDER, J. Netconf in-
teroperability testing. In Scalability of Networks and Services,
R. Sadre and A. Pras, Eds., vol. 5637 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2009, pp. 83–94.
10.1007/978-3-642-02627-0-7.

[24] XU, H., AND XIAO, D. Considerations on NETCONF-Based
Data Modeling. In Proceedings of the 11th Asia-Pacific Sympo-
sium on Network Operations and Management: Challenges for
Next Generation Network Operations and Service Management
(2008), Springer, p. 176.

[25] YU, J., AND AL AJARMEH, I. An Empirical Study of the NET-
CONF Protocol. In Networking and Services (ICNS), 2010 Sixth
International Conference on (march 2010), pp. 253 –258.

13

