
Getting to Elastic: Adapting a Legacy Vertical Application
Environment for Scalability

Eric Shamow - Puppet Labs

ABSTRACT
 During my time in the field prior to joining Puppet Labs, I experienced several
scenarios where I was asked to be prepared for so-called “elastic” operations, which
would dynamically scale according to end-user demand. This demand only intensified as
the notion of moving to IaaS became realistic. There's no button you hit marked "make
elastic" to turn your infrastructure into an elastic cloud...rather you need to come to an
understanding both of the technologies your organization uses, its tolerances for latency
and downtime, as well as your platform, to get there. This paper discusses the key areas
that must be addressed: organizational culture, technical policy development, and
infrastructure readiness.

Introduction

 As I’ve moved through the industry, it’s
become increasingly common to f ind
organizations operating what might be termed
an “internal cloud” - a commodity hardware
infrastructure front-ended by VMware, Xen, or
another virtualization technology, being used to
cushion the need for rapid and varying server
deployments. Over the past few years, I have
seen increasing interest in outsourcing that
operation - in moving to external cloud
offerings including IaaS. In most cases, I've also
needed to become prepared for elastic
expansion of our apps as we modify them to
scale out rather than up.
 I encountered many of these problems
during the time I spent as Manager of the
Systems Operations group at Advance Internet.
Advance is a mid-size company in the
publishing field, running approximately 1050
servers in a local, private cloud. Although I left
Advance prior to the full implementation of our
elastic solution, I was deeply involved in the
architecture and implementation of that
solution, and was fortunate to learn valuable

lessons about how to take an entrenched static
environment into a dynamic one.
 There's no button you hit marked "make
elastic" to turn your infrastructure into an elastic
cloud...rather you need to come to an
understanding both of the technologies your
organization uses, its tolerances for latency and
downtime, as well as your platform, to get there.
Advance traveled some of this road, and this
report will include both information about the
solutions we found, and some recommendations
for those attempting to do the same.

Characterizing the Problem
In order to consider what will be necessary to
“go elastic,” we must first evaluate what that
phrasing really means. How elastic do we want
to be? What parts of our applications are able to
scale easily? What parts do not? What elements
of our process or infrastructure make automatic
expansion impossible? In short, what do we
need to know?
 A t A d v a n c e , i n e x a m i n i n g o u r
environment, I identified five major questions
or issues that would be show-stoppers for us
implementing any kind of scalable environment:

1) Our servers and applications could not be
deployed without human intervention.
Documentation was limited and there was no
automation available.

2) We had no information available about when
to deploy a new server automatically. There
was a mandate to be able to expand
dynamically, but no information about what
that meant.

3) Similarly, we did not know when to
automatically retire a new server. How
responsive to increases and decreases in load
would we need to be?

4) What was to be the mechanism for the
automatic deployment and retirement?

5) Were our applications optimized to take
advantage of this type of scaling? In several
cases our experience was that performance
improvement was not a linear correlation
with an increase in server count - and in fact
that in some cases increasing parallelism was
damaging to performance. We would need to
determine which applications would need to
be refactored to handle this architecture, and
which were prepared to handle it natively.

 In any environment facing similar issues,
the five listed above will form the core of the
matter - the remainder of our internal fact-
finding extended naturally from the answers we
found and the process we underwent in
attempting to determine those answers.
 F o r t h o s e u n d e rg o i n g t h e s a m e
exploration, this fact-finding exercise will form
the groundwork for all future work in this space.
This means that truthful responses and openness
are absolutely necessary. The teams involved
don’t need to agree on a solution yet, but
without a common understanding of the
problem space, we cannot reasonably determine
whose concerns or enthusiasm are justifiable. It
can often help to present this as an opportunity
to air long-unaddressed concerns in a new way.

If the application team distrusts elasticity,
encourage them to fully explain and justify
those concerns and promise that they will be
addressed as part of the proposed solution.
Getting everyone to cooperate here is the most
critical step of the process. For me, getting to
elastic meant a lot less engineering than I
expected, and a whole lot more PR, meetings,
and assuaging of concerns.

Elasticity Means Automation

 The first key recognition about elastic
expansion is that by definition, it means that the
server provisioning process must be automated.
This is a bridge that many organizations have
yet to cross. In some cases the deployment
process itself may be automated, but post-install
configuration is not completed automatically.
My own f indings ga thered f rom the
organizations I have observed - and this was the
case at Advance as much at others - are that
most installation and configuration procedures
are not automated because groups do not have
clear and stable procedures that are followed for
deployment . Whether this is because
deployment teams do not maintain regular
standards for system configuration, or because
development teams do not provide accurate
release notes or cleanly packaged applications
ultimately comes down to finger-pointing; the
organization as a whole must recognize that if it
wants elasticity, it will need automation, and
automation requires clarity of purpose and
requirements, and stability of procedures.
 A u t o m a t i o n i t s e l f h a s m u l t i p l e
components, and depending on the breakdown
of roles and responsibilities within an
organization, these components are often
managed by different groups. Infrastructure
groups will have concerns about provisioning
storage and network; OS groups will worry
about package repositories, OS versioning, and

configuration management; application groups
will focus on updating application-specific
configurations to recognize new or removed
members of a cluster, reshuffling data that has
been partitioned based on previous cluster size,
and changing various application settings to
properly tune performance. All of these are
critical and should be clearly mapped.
 Where possible, inquiry into how they
affect each other is worth discussion - does
repartitioning our data suggest different OS
configs? With the new cluster size, should we
alter our load balancer configuration? However,
don’t let these advanced discussions derail the
primary goal of understanding how your
systems are provisioned. The second-level
analysis of how those systems interact will
occur naturally during the design and
implementation of your process, and should
continue to iterate through its lifecycle. The
most important thing is to come to an
understanding of those manual processes which
are not currently automated. Those manual steps
are your hard roadblocks on the way to
elasticity.
 Ultimately, at Advance, we settled on a
toolset of Kickstart for OS deployments,
managed through Cobbler for the additional
repository and profile information it permitted.
We then handed off to Puppet for application
installation and configuration, having worked
closely with the application teams to build
Puppet manifests that handled their applications
appropriately. On the infrastructure side, the
SAN, network and VMware team decided to
manually script their deployment, resulting in a
tool called vDeploy. I will discuss this tool later
on in the paper. Ultimately, the tools you choose
should be based on two factors: your own
comfortability with them, and their flexibility to
work well together and to integrate with each
other. It is not always critical to choose the best-
of-breed software, but rather to choose the

software that best fi ts you and your
organization.

Elasticity Requires Open Metrics

 An additional component to expanding
and contracting an environment in an automated
fashion is that accurate and relevant metrics
about that environment must be available. In
order for those metrics to be meaningful for
e last ic i ty, they must be rel iable and
comprehensive enough that an unattended
system can make bottom-line decisions based
on them: should I deploy or remove a live
system from my customer-facing si te
immediately? This means that the metrics
cannot be siloed as many IT reporting
infrastructures are, but must reflect both the
state of the application infrastructure as well as
the applications running on it. These metrics
must also be reliable: they must not be
inaccurate, fudged, or intermittently available
because of an individual group’s desire to hide
information from the rest of the team. Elastic
expansions and contractions affect the whole
without human intervention, but by definition
this process is naive - it can only know what we
tell it. If we lie to the system, the system will
make poor choices.
 The choice of metrics should also reflect a
cross-disciplinary approach. Much is lost in IT
monitoring because of a lack of communication
between groups. A monitoring team will pride
itself on implementing trend lines for disk
utilization, but will fail to monitor a change in a
transaction rate or size easily exposed by the
monitored application itself. These metrics can
predict an increase in the rate of growth at a
time when the change would only appear to be a
statistical anomaly in the storage data. Again,
the discussions of these interrelationships will
e v o l v e f r o m t h e d i s c u s s i o n s a n d
implementations you are implementing here,

and we shouldn’t hesitate too long attempting to
nail them down early. That said, any
u n d e r s t a n d i n g w e c a n g e t a b o u t
interrelationships between the components in
our environment helps us better predict future
changes. Better prediction means better
automation, which means elasticity that’s less
likely to break.
 At Advance this was a major source of
contention. Monitoring was highly siloed, with
Systems controlling an array of Cacti, PNP,
MRTG, and proprietary VMware, 3par, and
NetApp applications to monitor and graph data -
in fact, even within systems, monitoring was
siloed, split between different implementations
in the DBA, infrastructure, and operations
spaces. Application development staff often
maintained off-the-radar monitoring systems
stashed on workstations or quasi-production
servers. The metrics from these groups were
never aggregated, and much time was lost
bouncing requests and information back
between multiple people who were hesitant to
allow access to - or knowledge of the existence
of - their proprietary systems.

Openness Requires Culture Change

 If the organization preparing to implement
a model based on elastic expansion is not in the
state needed to gather the information above -
with a clear availability of infrastructure, OS,
and application-level metrics across the board,
honest communication between groups and
well-documented deployment and configuration
changes, elastic expansion is unlikely to be
possible. These steps are all pre-requisites for
technological change, but they themselves are
less technological than cultural. If organizations
are going to be prepared for elasticity -
operating at a minimum cost most of the time

but prepared for the huge onrush of traffic
caused by an article “going viral” or the sudden
success of their service1, they must address the
underlying lack of transparency before they can
begin to work on the technical challenges.
 In reality, getting this to happen is often
the hardest part of the process. It is fortunate if
the change is being implemented in a top-down
manner, in that if management is mandating the
change, it is often willing to enforce that
mandate by requiring teams to cooperate. But
what if the change isn’t mandated?
 In my own experience, the best approach
is two-pronged. The first prong is to establish
the missing communication. As the head of an
Operations team, I regularly met with the head
of Development teams, including those of small
development groups that my predecessors had
often ignored. I wanted to know their pain
points, where Operations was letting them down
or frustrating their work. Establishing this
communication was key to establishing trust.
 Trust, however, does not come through
words but through deeds. The best action I
found I could take in this regard was to
surrender unilaterally. I might not be able to get
developers or infrastructure to share everything
with me, but I would share everything with
them. Every incident was clearly documented,
metrics were available to all teams, and we
developed a process for requesting the addition
of new metrics. I committed to making these
newly-requested metrics available to them with
an response time based on severity, reaching
from 20-30 minutes during a crisis, to a
maximum of 48 hours outside of one.
 I also worked hard to develop a
professional chain of command-based
communication system with development
managers. This may not be applicable in all
engineering environments - in many having all

1 http://blog.pinboard.in/2011/03/anatomy_of_a_crushing/

http://blog.pinboard.in/2011/03/anatomy_of_a_crushing/
http://blog.pinboard.in/2011/03/anatomy_of_a_crushing/

discussions on a public list is part of the fabric
of their work culture. But it can also result in
decisions made based on ego and pride rather
than technical judgment. Being called out on an
error or disagreement in public forces a
different type of response from a concern
brought quietly in private. At Advance I
committed to bring development concerns to the
relevant managers and help triage my team’s
issues rather than exposing them on our internal
IRC channels and mailing lists, and asked the
development managers to do the same. The
ratcheting-down of public tensions combined
with the daily give-and-take of triaging
priorities with the other managers aided greatly
in establishing an understanding of other teams’
needs and willingness to cooperate.

Getting Things Started

 We’ve now established communication
between departments, established some baseline
metrics that we need to pay attention to, and
defined clearly the expectation that server
rollouts and retirements - from the bare metal
phase to appearing in a user-facing cluster -
should be automated. Now we’re ready to do
some work. But where to begin work?
 For the purposes of this paper, I will
assume that metric collection systems are
already available to you, and that you need only
tune your existing system to provide you the
agreed-upon information. There are a variety of
tools excellent at collecting and displaying raw
data - from the simplicity of MRTG to more
complex tools such as Munin or Cacti, and
newer distributed tools such as Graphite or
Ganglia. The use of one or more of these will
depend on your data sources and the familiarity
of your teams with the tools in question. My
team used a mix of Cacti and PNP4Nagios,

although we were strongly looking into
Graphite as a replacement.

Finding Meaningful Metrics

 Assuming that we have monitoring
technology in place, the next obvious question
is “what do we measure?” The answer to this
question may at first seem obvious to
stakeholders on all sides of the discussion, but a
quick synchronization of expectations often
indicates that each group’s answer is different.
The infrastructure and OS groups will tend to
monitor metrics focused on the performance of
the system itself such as processor load,
memory availability, I/O throughput, CPU
percentage (distinct from load, which really
measures queue length - a distinction lost on
many involved in resource monitoring)2, and
swap usage.
 In the meantime, the application team will
likely be focusing on internal data points that
reflect the actual capacity of the application
itself, identifying performance of key areas of
code, headroom left in caching applications
such as Memcache or Varnish, and other data
points that reflect how pieces of the code are
relating to each other. If there is a separate
business owner with access to a dashboard or
metrics, that person or group is likely
examining more vanilla performance stats - for
a web application, time for first byte download,
hits per second, and so forth.
 It is very likely that none of these metrics
will give you on its own the answer that
indicates at what point your application will
need to elastically expand. In fact, it is likely
that, until this point, any discussions about non-
elastic expansion have involved meetings
between several stakeholders to review this data
and find ways to optimize on existing hardware.

2 http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages

http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages
http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages

Finding the right formula is an exercise in
looking at aggregate data patterns, finding
correlations that seem to reliably suggest the
need for additional servers, and then regularly
re-examining those metrics as the application
and hardware profiles change.
 The worst mistake you can make at this
point is assuming that you know or understand
too much about your appl ica t ion or
environment. What was true several months ago
may not be true now...a feature in the
application that caused an I/O bottleneck six
weeks ago may have been rectified in the
application code four weeks ago, and now
you’ve hit a CPU limit on your storage device.
Assumptions about causes are more likely to
cause bad interpretation of data, which in turn
are more likely to cause a misunderstanding of
what criteria will need to be used for automated
scaling. So the important part of this stage is to
have a fresh discussion about application
performance and possible bottlenecks at all
levels - an informed discussion, but one that
makes no assumptions and thoroughly re-
examines every facet of the environment
looking for hidden indicators and bottlenecks.
You won’t find them all, but application,
operations and business people together will
find a lot more than any of those three alone.
This is what DevOps looks like in practice.

The Shifting Landscape

 Before moving on to the next stage of
enabling the elastic environment, I want to
return to a phrase used just a few paragraphs
back: “What was true several months ago may
not be true now.”
 While this will always be the case is fast-
moving, multifaceted IT environments, what
should not be the case is that any of this

changing truth should be undocumented, or
worse a complete surprise to all but one or two
people. In a field with rampant hyper-
specialization with limited training budgets and
one or two “experts” in a given technology per
group, it is almost inevitable that sub-pockets of
activity have developed which are at least
partially invisible, even to members of that
pocket’s own team.
 This type of change is absolutely toxic to
elastic expansion. Since all of the painstaking
research and rule development you are doing is
based around a shared understanding of the
environment, changes to that environment that
are not automated make it impossible to deploy
a single additional node without manual
intervention. For that reason, change
management must be implemented for an elastic
environment to succeed.
 This may sound like a leap, but if you
examine the nature of elasticity, the reasoning
becomes clear. Elasticity is essentially a set of
rules wrapped around automation -- a set of
conditions under which automated procedures
should take place. Automation itself is really
nothing more than a form of machine-parseable
and actionable documentation - we are taking
yesterday’s run book or wiki doc and turning it
into a YAML file, but in the end we are writing
documentation about how a system should be
configured, and then using an application to
verify compliance with that document.
 Note that I did not say that change control
was needed - merely change management3. As
long as the changes made are compatible with
the rest of the operating environment and do not
interfere with its operation, those changes can
be submitted without review. Whether it is wise
to do so is a different matter, but don’t attempt
to bite off more than you can chew here - the
framework for change management can be

3 http://www.technologyexecutivesclub.com/Articles/management/artChangeControl.php

http://www.technologyexecutivesclub.com/Articles/management/artChangeControl.php
http://www.technologyexecutivesclub.com/Articles/management/artChangeControl.php

expanded to include change control later on. For
now, the important thing is that any change that
would affect the ability to automatically rebuild
a system is made part of the server and app
deployment processes.

Policy

 Even when using clearly defined metrics
to signal the need for expansion, there are
additional factors to consider. First, we must
consider the statistical anomaly. If you are
running a website, you don’t want to scale to a
thousand machines because a web crawler hit
your site and began to index, or because a user
wrote a bad script to fetch your page every
millisecond. Similarly, we must consider how
long it takes for a new server to come up.
Depending on the nature of your environment,
this can be very tricky. If load increases sharply,
you may need a new server in under a minute.
Even with well-automated deployment, a large
database server can take five or more minutes to
power up and build. If this is not fast enough to
save your application from falling over, we have
missed the point of the elastic expansion.
 The reverse is also true. If load drops to
nothing because of an ISP failure, we do not
want our production cloud to shrink to its
minimum size. We also don’t want to power
down servers we think we may need again in a
few seconds or minutes.
 It is the rules around making these
determinations that I refer to as “policy” - not a
formal organizational policy, but rather an
internal technical policy explaining when and
how fast you expand, when and how fast you
contract, what the artificial limits to both of the
above operations should be, and how we work
around the elements of those operations that
don’t fit our environment.

 There is no formula that can be generated
for this outside of an examination of your own
application’s behavior and the metrics you
should now be gathering. As an example,
however, I can discuss the type of solutions we
had envisioned at Advance.
 For the particular example of database
servers, we looked at a combination of server
load, database server queue length, and slow
query information from the database server, and
latency and queue information from the
application side, to determine that a new
database server was needed. However a new
database server could take in excess of ten
minutes to provision, far too long to resolve a
sudden explosion of activity.
 Advance’s solution was to mandate that,
depending on cluster size, one to two database
servers would be provisioned and immediately
powered down as par4t of our cluster at
minimum size. Every time new database servers
were automatically provisioned, 1-2 extra
servers would be provisioned and immediately
powered off. When the need came for new
servers, we could begin provisioning additional
servers but simultaneously power up the 1-2
idle servers, providing relief to the application
within a minute, while additional resources
came on line. We employed this strategy in
reverse while shutting systems down,
decommissioning them but always leaving 1-2
systems powered down but not destroyed.
 We also decided to implement several
caps on growth and decommissioning to hedge
against the possibility of failures in our metrics
and formulas. We only allowed growth to
proceed at a limited rate, controlling the
maximum number of servers that could be
provisioned per 15-minute period, and setting a
maximum limit on the number of machines that
could be auto-deployed without administrator

4 http://pulpproject.org/

http://pulpproject.org
http://pulpproject.org

intervention. We set similar limits on
decommissioning.
 This strategy works well for a “naive”
application, where application servers are not
aware of each other and can scale out
horizontally. This is not the case for most
applications, particularly in-house ones which
have been written to scale vertically - requiring
more resources such as RAM and CPU - rather
than horizontally. As a result, many of these
apps will not see a linear improvement as each
server is added, and it is possible to see a
diminishing return, and eventually even a
negative impact from the addition of more
servers. While an application rewrite down the
line should help this, it’s almost never
immediately possible; rather, you should tailor
your expansion policies to fit the characteristics
of the application you have, while encouraging
your development teams to begin thinking in
terms of horizontal rather than vertical resource
usage in the future.
 There is an additional concern -
application servers which must remain aware of
each other - which we will return to after a
discussion of the necessary remaining
components of the elastic toolset.

Getting the Infrastructure Ready

 For the purposes of this discussion, I will
assume that the reader is functioning in a
“cloud”-type virtualized environment. It is
possible to scale elastically in a hardware
environment, but the complexity level is much
higher. While implementing this system, I was
working with an internal cloud built on
VMware vSphere, with Infoblox providing
DNS and DHCP and Cobbler for provisioning
and repository management.
 The key infrastructure elements needed to
support this are as follows:

• Network support - your network devices
must support servers being brought up in a
variety of subnets. In a virtualized
environment, this typically means that the
appropriate networks are available to the
virtual switches used for provisioning.
Depending on the size of your environment
and complexity of your network layout, you
may need to do additional work on the virtual
switch side and VM controller configurations
to ensure that new servers are brought up on
servers with access to the appropriate subnets.
At Advance, where nearly all subnets were
available to all VMs for provisioning, this was
vastly simplified; in most organizations
however this is not the case.

• Network service support - either pre-
provisioned static IP addresses for new
servers with appropriate ports provisioned, or
DHCP. Since most bare-metal configuration
requires DHCP and PXE booting capability,
having both will make your life much easier.
If a subnet fills up, your auto-deployment
tools should be robust enough to capture and
handle that error, even if only by paging an
admin to resolve the problem. One of the
reasons the Infoblox was terrific for this
deployment was the ease of access to its
DHCP interface for both querying of available
addresses and provisioning of reserved
addresses.

• DNS readiness for automated deployment.
This means that your DNS zones should be
laid out clearly, with reasonable reverse-
mapping of IP addresses, so that automated
provisioning is straightforward. The system
needs to know what IP address to assign based
on system role.

• A p p r o p r i a t e c o n n e c t i v i t y t o b u i l d
environments. You must have the bandwidth
to push down OS images and patch data to
multiple servers quickly.

• API or command-line access to your
virtualization platform which will enable you
to create new VMs, grab their MAC
addresses, and hand information about them
to your bare-metal deployment system.
VMware is shaky in this regard, but it
provided enough access for us to comfortably
do what we needed.

• Automated OS licensing. If you need to enter
a username and password at the console and
that information can’t be stored in an answer
file, elastic expansion is a no-go.

• Automated patch management. This is often
overlooked, but it’s very important that a
server brought up today look like one that was
brought up last week. If we install an OS,
even from the same image, but then run an
update against current package repositories,
our server today may have a very different set
of packages from the server deployed last
week. So it is important that all servers talk to
the same repository set, with the same
package version information across the board.
We were struggling with this when I departed
Advance, but had identified the Pulp project
as a possible solution.

OS and Application Deployment

 Your OS deployment choices will be
largely shaped by your OS choice. As a CentOS
environment, we used Cobbler for system
deployments. There are a multitude of
alternatives - Foreman, Spacewalk, or even
hosting kickstart files on a regular webserver.
The important thing is that the deployment
system be able to identify a host and hand it the
appropriate base configuration. Your OS install
should be generic and minimal; don’t try to
handle 50 gold master images, but rather let
your configuration management tool handle the
heavy lifting.

 At Advance, we chose Puppet as a
configuration management system, and as I
have since left Advance to work for Puppet
Labs, my preferences are clear. However using
any tool in this space puts your organization
light years ahead of most of its competition. The
key is not which configuration management tool
you use, but the discipline to stick with that tool
and keep everything in configuration
management. Remember that, as discussed
earlier, if it’s not in configuration management,
it can’t be deployed automatically.
 At this point I will return briefly to the
concept of clusters that are not a collection of
naive servers, but which must be aware of their
own conf igura t ion or of each o ther.
Configuration management provides the
solution for this. Servers can be assigned
environments or variables based on their
intended role or position in a cluster, and
configuration files can be templatized based on
that information. In Puppet, we can use
Exported Resources to ship dynamic
information out of nodes to a shared datastore,
so that other nodes can learn about them and
make decisions. With proper scripting and
policies, we can repartition our data sets in what
is now a self-aware, elastically growing cluster.

Ad Hoc Administration

 There are circumstances in any IT
environment that don’t fit well into the
paradigm of change/configuration management.
Suppose we want to kick all the Apache servers
in a particular datacenter, or remount NFS
volumes attached to a storage device that went
belly-up?
 The old solutions were SSH in a for loop,
and ClusterSSH, which displays multiple
terminals and allows a user to control them all
simultaneously. Newer tools in this space

provide more accountability and control and
better reporting.
 At Advance we were using the Marionette
Collective, or MCollective, for a few months
when Puppet Labs acquired it, cementing our
choice. Whether you using MCollective, func,
fabric, Knife, or any other tool the important
thing is that ad hoc administration should be
compatible with your change management
environment. If changes in one disrupt the
other, automation will break. Many of these ad
hoc tools force you into writing clients or
carefully-wrapped agent scripts, something seen
as an inconvenience. But there’s a reason for
this: we want to be able to execute something in
a controlled period of time and then aggregate
and return the results in a meaningful way. We
can then store and report on the results and even
audit the activities of the people using the tools.
 The more centralized and automated this
solution, the less likely it is to have unexpected
impact on the managed environment. If we take
the SSH in a for loop example - if we run that
loop against 1500 servers, who is going to parse
the results to notice that server 650’s response
didn’t quite look right? And if it didn’t, will the
next round of changes cause server 650 to
diverge even further from the remaining 1499?
Tools with built-in auditing and data
summarization can find these issues before they
become problems or unexplained application
behavior.

Where To Next?

 I was saddened to leave Advance before
we actually went elastic in production, but we
had all the groundwork in place, thanks to the
work of our infrastructure team’s construction
of their vDeploy tool, which interfaced with our
VMware, DNS and DHCP environments to
deploy new servers, then handed off to my

Operations team’s Cobbler and Puppet
environments.
 The workflow was that our Nagios-based
monitoring system would trigger vDeploy only
if the appropriate business criteria were met,
causing vDeploy to build a new host based on
information passed from Nagios. The concept of
doing this sounded unthinkable at the start of
the design process, but after analyzing the
problem, it became clear that technologically,
there were very few hurdles. Most applications
and environments have APIs or RESTful
interfaces that can be used for this sort of
communication, and writing these scripts was
simply a matter of putting in the work.
 The actual complexity lay in building the
application and business rules around when
these things should happen. Focusing on
communication and shared information rather
than the engineering details proved to be the
key. Good engineering and technology selection
is key but is made much easier by taking the
time to understand the business logic that these
engineering exercises are designed to satisfy.
While the impulse of many engineers is to jump
in and start coding, taking the time to
understand and manage the underlying cultural
and infrastructure issues can turn development
of an elastic environment from a seemingly
insurmountable series of roadblocks to an
exercise in small-scale script development.

