
Bringing Up Cielo: Experiences with a Cray XE6 System

or, Getting Started with Your New 140k Processor System

Cory Lueninghoener
cluening@lanl.gov

Daryl Grunau
dwg@lanl.gov

Timothy Harrington
toh@lanl.gov

Kathleen Kelly
kak@lanl.gov

Quellyn Snead
quellyn@lanl.gov

September 11, 2011

Abstract

High Performance Computing systems are complex to stand up and integrate into a wider
environment, involving large amounts of hardware and software work to be completed in a fixed
timeframe. It is easy for unforeseen challenges to arise during the process, especially with respect
to the integration work: sites have dramatically different environments, making it impossible for
a vendor to deliver a product that exactly fits everybody’s needs. In this paper we will look at
the standup of Cielo, a 96-rack Cray XE6 system located at Los Alamos National Laboratory.
We will examine many of the challenges we experienced while installing and integrating the
system, as well as the solutions we found and lessons we learned from the process.

Tags: HPC, configuration management, system integration

1 Introduction

High Performance Computing (HPC) systems are complex to stand up. They generally involve
the delivery of a large amount of hardware at one time that must be installed, configured, and
integrated in a fixed period of time in preparation to be run in relative steady state for five to
ten years. While physical installation is usually a job for the hardware vendor, configuration
and integration normally fall on the shoulders of a team of integrators and system administrators
that will be charged with managing the system after it is put in production. Configuration and
integration include such complex tasks as configuration management (CM) system design and
implementation, parallel filesystem and network integration, and accounts system and user services
integration. Standing up a new HPC resources can be similar to bringing up an entire new data
center from scratch, with all of the same difficulties and pitfalls.

In this paper we will look at the installation and integration of Cielo, a 96-rack Cray XE6
compute resource sponsored by the Alliance for Computing at Extreme Scale (ACES) project and
located at Los Alamos National Laboratory (LANL) and Sandia National Laboratory (Sandia).
The complete Cielo family consists of four machines: Smog and Muzia, two 1/3-rack test systems;
Cielito, a 1-rack development system; and Cielo, a 96-rack production system. Muzia is located
at Sandia, while Smog, Cielito, and Cielo are located at LANL. In this paper we will focus on
Cielo, but all four systems run the same software stack and have similar configurations, and our
experiences with Cielo align with our experiences on the smaller systems.

1



2 System Overview

Cielo is a 96-rack, 142,304-core Cray XE6 system operated by the HPC Division at LANL. Delivery
of the system began with the arrivals of Smog and Muzia at their respective laboratories in May
of 2010, followed by delivery of Cielito in June of 2010 and 72 racks of Cielo in August of 2010.
The final hardware delivery occurred in April of 2011, when Cielo was expanded to its full size of
96 racks. In this final configuration, Cielo consists of 8518 16-core compute nodes with 32GB of
memory each; 376 16-core visualization compute nodes with 64GB of memory each; 286 IO nodes;
16 internal login nodes; and a handful of infrastructure nodes. Cielo debuted on the Top 500 List
of Supercomputer Sites at position six in July of 2011.

The Cray XE6 is a massively parallel processing system that consists of compute and service
blades connected by a high-speed torus network. The basic building block of the system is a chassis
that holds eight compute or service blades. Each of these blades contains four diskless nodes that
are designated as either compute nodes, where actual jobs run, or service nodes, which provide
management, data virtualization service (DVS), or other services to the machine. Three chassis
can be placed in a rack, and many racks can be combined in rows to create large systems. All of
the nodes are connected by Cray’s Gemini network, providing a three-dimensional torus high-speed
network for user job communication, node management, and filesystem access.

All compute nodes are headless, diskless machines with no external network connections, but
service nodes have one or two on-board PCI slots for expansion. These slots are most commonly
used to provide outside network connections for login nodes or file server nodes. Two of the service
nodes are designated as special: the boot node and the service database (sdb) node. These two
nodes have external connections to a RAID device, the bootraid, and are used to provide persistent
services to the rest of the nodes such as logging, root filesystems, and administrator management
capabilities. One main task of the boot node is to serve the sharedroot from the bootraid to the
other service nodes, who mount it as their root filesystem. In our case we also have a set of DVS
nodes that serve this filesystem out to the compute nodes, giving them an optional complete Linux
environment.

Outside of the main XE6 racks are two classes of standard rack-mounted machines: the system
management workstation (SMW) and external login nodes. The SMW is the main administration
server for the system, controlling low-level hardware access, system bootstrapping, and system
ramdisks. The external login nodes are larger memory, diskfull analogs to the standard login nodes
on the system blades that make user access more similar to standard clusters.

3 Challenges

Before pieces of Cielo even showed up at lab, the system administration team realized that we were
going to have challenges integrating a Cray system into our environment. We currently run on the
order of 20 HPC clusters, ranging from tiny (tens of nodes) up to huge (thousands of nodes), and
we have been very careful to put configuration management at the forefront when installing new
systems. All of our existing clusters are fully managed by Cfengine[1], with a collection of dedicated
or multi-cluster CM servers covering every system in every cluster. This has tremendously helped
our relatively small team keep all of the systems in sync and under control.

We quickly discovered that Cray has taken a “fully managed appliance” approach with the XE
system. Part of this is due to the way the system itself is designed: the compute infrastructure

2



is tightly coupled by its torus network, with the compute and service node blade hardware fully
managed by their control system. The compute nodes run a stripped down Linux-based operating
system that is shipped as a Cray-provided image, while the service nodes run a Cray-branded
release of SuSE’s SLES 11 Linux distribution. Were we running Cielo as a stand-alone system,
these features would all be fantastic: we could dedicate people to the system to keep it patched and
running via Cray’s methods, and that would be that. In fact, this appears to be a common way for
sites to run large Cray systems: Cray will assign one or more software and hardware engineers to a
site to handle much of the day-to-day management of the system, leaving the system administration
team with more of a black box system to take care of.

Due to the existing usage models on our other systems, it was decided that we had a strong
business case to not take the fully managed appliance route with Cielo. This way we could provide
users with the most consistent environment across all of our systems while keeping our system
administration team as flexible as possible. Instead, we needed to have our administrators integrate
the system into our family of compute resources as tightly as we could. In our case, this was
definitely the right decision: we’ve spent years keeping a wide variety of systems consistent to
minimize the learning curve of existing users on new systems, and it has worked very well. However,
it did present a series of challenges to the system integrators and administrators bringing up the
systems. The challenges related to bringing up Cielo can be categorized into two broad areas:
vendor relations and software.

3.1 Vendor Relations Challenges

The integration team that brought up Cielo was very fortunate to have a strong working relationship
with Cray. The Cielo contract included provisions for Cray hardware, software, and application
engineers to be located on-site at LANL, and through the bringup process we had access to many
extra resources at Cray as we needed them. However, instead of just using the engineers as managers
of the appliance, we worked with them to fully integrate the system with our already existing
infrastructure. This being the first Cray system located at LANL in many years, there were some
challenges on both sides as we worked out how we could work together most effectively.

Since we were looking to closely integrate Cielo into our environment, we ended up digging
deeper into the inner workings of the machine than some of our Cray engineers were used to. In the
process, we found that there was a lot of in-house knowledge at Cray that, although easy to get,
was not always obvious to ask about. There were several times that we learned that a standard
assumption about the management of the machine was incorrect, including such details as the best
way to reboot nodes, the most effective way to correlate logs between the compute and service
nodes, and how to update software. One of our running gags became the hypothetical response
“Oh, you still do it that way?” to any question we asked of Cray.

On the bright side, we also had good challenges in this area: Cray provided written step-by-step
procedures for almost everything we needed to do to the system. In many ways we weren’t ready for
this, especially when compared to the many commodity clusters we have in our environment. The
biggest challenge here was figuring out how to make the best use of the documentation, whether it
be importing the actions into Cfengine scripts, importing the documentation into our own library,
or explicitly deciding to follow our own path. Cray was also very receptive to our suggestions for
improvement. The challenges listed in the next few sections are often clearly related to our desire
to do something our way instead of Cray’s. However, they were ready to hear our suggestions and
pass them on to their developers in most cases. There were several instance throughout Cielo’s

3



bringup where specific nuances we found difficult were changed in later software updates.

3.2 Software Challenges

Over the course of the year that we have been working with Cielo, the majority of the challenges
we have faced have come on the software front. As mentioned before, it is very common for Cray to
assign a group of software engineers to a site with one of their large systems. We believe this practice
has lead to many of our difficulties - Cray wasn’t ready for us to be downloading and working with
many of their software products, and we didn’t have the experience needed to understand some of
their distribution, packaging, and installation decisions.

3.2.1 Software Releases

There are three styles of software updates that we have worked with from Cray: cumulative service
pack-style updates containing all previous updates for a particular product; individual patches and
field notices that will eventually be rolled up in a cumulative update; and sliding window updates
that contain older versions of the related software for compatibility as well as the latest update.
Cumulative updates are generally released quarterly and contain new functionality, bug fixes, and
other substantial updates. Individual patches and field notices are released as needed between the
quarterly updates and generally fix bugs or security issues. Sliding window updates are used for
the Cray programming environment and includes the both the latest and the last n releases of
their supported compilers and libraries, where n is determined by Cray’s release engineers based on
provided functionality and customer usage. Each style of update is packaged differently, but each
generally consist of a monolithic installer script, one or more directories full of RPMs, and fairly
detailed instructions on how to install the update.

These individual release styles are further fragmented by individual update idiosyncrasies. Some
updates are available publicly to all registered Cray users, while some are only available to Cray
engineers. Most are applied by use of an included monolithic install script, but some are applied
in a more manual process by following instructions in an install document. Some are applied in
a way that will be preserved with future updates, while others are applied in a less stable way.
Finally, versioning can be confusing: many packages include an SVN repository version number in
their version string that refers to the repository revision from which it was generated. If branching
happens in an unusual way, this can (and does) lead to newer software having a lower “version
number” than already-existing software. All of these details are easily absorbed when the system
is looked at as a standalone appliance, but in a more integrated environment that is used to a high
level of update automation, they present a challenging hurdle.

3.2.2 Software Practices

Along with acclimating to Cray’s software release methods described above, we ran into challenges
with the software they contained. One of the biggest difficulties involved abuses of the RPM pack-
age management system. Most of the original software installs and subsequent updates provided
by Cray comes in the form of RPM packages and monolithic install scripts that examine the hard-
ware and software currently in use on the system and install required software as needed. This
involves installing most packages with --nodeps and --force options that override RPM’s built-in
dependency and safety checks. Again, these options fit the appliance model very well: the supplied

4



software is vetted by Cray in a specific format, and they want to replicate that format closely in the
field. However, they make verification and integration into an already-existing CM system difficult.

Similarly, Cray’s distributed RPMs often make use of postinstall scripts to take care of large
portions of the install. This use ranges from fairly benign (creating links if some other packages
are already installed) to difficult to manage (RPM only contains a .tar.gz file that is unpacked by
a postinstall script). These “write-only” RPMs also fit into the appliance model, but have many
problems in a wider-ranging environment: they are difficult to verify, they can seem to behave non-
deterministically depending on install order, and they tend to require more hand holding than more
well-behaved packages. We found these packages especially difficult to place under CM control, as
discussed in the next section.

Finally, we ran into several inconsistencies with respect to how software versions were managed.
The modules[2] package and /etc/alternatives system[3] are two existing packages created to
ease the selection of and switch between multiple versions of equivalent software installed on a
system. The Cray software stack uses both of these packages to manage its software versions, even
using both on the same package in some cases. In most cases they also use a third method involving
“default links”: symbolic links in each package’s install path that point to the install root of the
version that should be treated as default. These different methods are used to varying degrees by
different pieces of the overall system - the modules are mostly used for normal users of the system
to choose compilers, libraries, and related packages; while the alternatives and default links are
mostly used by system-level processes. However, there is overlap between the usage of each.

3.2.3 Configuration Management

We discovered many of the challenges listed above while working to put Cielo under complete con-
figuration management control. LANL’s HPC division has traditionally used Cfengine to manage
its systems, relying on it to create a uniform management environment across all of its clusters.
Early on we recognized that this would be more difficult on Cielo than on traditional clusters,
but we knew that it was the best way to integrate the new machine into our group’s management
rotation.

The software practices mentioned in the previous section all made configuration management
challenging: creative uses of RPM, inconsistent versioning, and multiple management methods all
add layers of complexity to the CM problem. However, the biggest challenge of all was Cray’s use
of monolithic install scripts. While very handy when installing software and updates interactively,
these scripts made it difficult to automate configuration of the machine. Some of these scripts
were easy to analyze and either import into Cfengine or call directly during the install process.
Others were much more problematic: one explicitly checked to make sure it was connected to a
TTY and exited with an error if it wasn’t, while another stopped in the middle and presented a set
of commands for the administrator to run in a second window before telling the script waiting in
the first to continue. In another case, the script didn’t even trust itself - after running, it instructs
the administrator to check its work and confirm it had written out various files correctly. It turns
out this was a needed step each time we ran it.

5



4 Responses

The above sections may sound like a large doom-and-gloom scenario, but in the end we were able
to integrate Cielo into our environment in a way that is relatively easy for our administrators to
pick up quickly. While we could have run the machine as a appliance-like system and not needed
to deal with most of the challenges we discussed, we concluded that closer integration with our
existing systems would help our small system administration team take on the system quickly after
integration was complete. That made each of the challenges into actual problems and pushed us
to find solutions for them.

4.1 Working Together

One of the most important things we did was keep a strong working relationship with Cray, our
vendor. While it would be very easy for the clashes between our ideal system and their real-world
products to result in deep fighting and animosity between the two groups, we were all able to keep
a good relationship. Cray was eager to hear our concerns, fix problems, and submit idea cases
when appropriate, and we were open to understanding their reasoning behind the design choices
they made. We believe this is an important thing for both vendor and customer to keep in mind
during a machine standup - both sides need each other, and keeping a good relationship is very
beneficial in the long run.

Along with working closely with our vendor, we were careful to work closely across teams at
LANL and Sandia. On the systems side, the Cielo bringup was a collaboration between HPC-5
(the system integrators) and HPC-3 (the system administrators) at LANL and the Cray support
team at Sandia. Having these three teams work together gave us great power: we had the Cray
experience from Sandia, the new system integration experience from HPC-5, and the long-term
production system experience from HPC-3. While the nature of our environment made in-person
collaboration the most useful form, we also made use of standard conference calls and email lists to
keep each other in sync. The HPC-5/HPC-3 collaboration was especially important, as it made the
transition from integration to production smooth and much less painless than a “throw it over the
fence” model would have provided. Being able to work closely between all of the groups without
chain of command overhead made it easy for us to make quick progress with the project.

4.2 Configuration Management

Another very important decision we made was to use a CM tool from the beginning. Although
this could be seen as the source of several of our challenges, we would have had a much larger
set of more difficult challenges without it. With Cielo, we ended up using a layered approach to
managing the various parts of the system. Since the majority of the cluster is diskless, our final
CM scheme had a small number of nodes that actually ran the Cfengine client: the SMW, the boot
node, and the external login nodes. Everything else was managed by the sharedroot area (from the
boot node) or the ramdisk images (from the SMW). With this design, we effectively had only a
handful of Cfengine product areas to manage. This simplification made it easier to quickly grasp
the design of the system and push out changes to the large number of nodes in the system.

Of course, after putting our CM system in place we still had a number of management tasks
that required manual work. Most of these revolved around the monolithic install scripts mentioned
previously - some of these were impossible to automate, while others just weren’t worth the time.

6



For these we decided the best route was to document the exception and train new system adminis-
trators to recognize when they needed to do things by hand. In some cases, such as rebuilding the
compute image ramdisk, we were able to have Cfengine print out a message after a successful run
telling the administrator what more needed to be done by hand. In other cases we needed to rely
on the carefully-maintained documentation wiki that the LANL administrators already use. By
modeling the Cielo documentation off of existing documentation for other systems, we were able
to fit these manual processes in to the mindset already known by the system administration team.

By implementing a complete configuration management scheme from the beginning, we were
able to make several big changes to the system relatively quickly and painlessly. The first happened
when we swung Cielo from our open network to our classified network: this required rebuilding the
entire machine from scratch, which we were able to do in a matter of days using the configuration
management system and documentation we had created. Later, we were able to quickly rebuild the
system again when the upgrade from 72 to 96 racks required a large change in machine topology.
Immediately after that, we made a quick upgrade between two Cray service packs that had caused
problems at other sites with little trouble, mostly because we had a fully managed system and
could recognize which system components had changed in incompatible ways. In short, our early
effort has repaid itself several times over already.

4.3 Homegrown Tools

While bringing up Cielo, we found several system management deficiencies that weren’t quite met
by existing Cray management tools, but were too specialized to our environment to submit as a
cases to Cray. Instead we wrote our own tools to fill in the gaps.

4.3.1 xtautorpm

Most of Cielo’s compute and service nodes are diskless systems that use a ramdisk and an NFS-
mounted read-only root filesystem to provide their operating system environment. The NFS filesys-
tem provides system specialization of files through a layered approach, with the base filesystem
being overlaid by views of node-specific files. These systems are managed by an interactive Cray
tool named xtopview that handles package installation, file specialization, and other management
tasks by presenting the administrator with a chrooted environment corresponding to the specialized
view of each system or class of systems. This extra layer made our team’s standard management
methods difficult, as it is designed to be run interactively, only one person can run the xtopview
utility at a time, and the utility has no provision for using tools such as yum to install packages.

To alleviate these restrictions, we expanded one of our already-existing tools under the name
xtautorpm. This new tool automates acts as a layer between Cfengine and the rpm command, giving
Cfengine the abstraction needed to use xtopview directly. With this extra layer of abstraction, we
made the package installation procedure identical to that on our other clusters without losing the
support of the vendor supplied tools.

4.3.2 xtfixdefault

As mentioned earlier, Cray uses several software version management schemes on their systems. We
found it time consuming to manually manage both the modules environment (which we understood
well) and the “default links” system that Cray introduced. To prevent version skew, we wrote a

7



tool named xtfixdefault to keep the two systems synchronized. Since we were already familiar
with the modules system, we decided to use it as the base for our versioning. When Cfengine runs
xtfixdefault, the utility checks all of Cray’s default links and confirms that they are pointing to
the same software versions as the modules environment’s default version. When run interactively,
the tool can also be used to update the modulefile from the default link and report on which
modulefiles and default links are not the same. With this one utility we can both enforce our
will over the software versions with Cfengine and report changes performed by Cray’s monolithic
software installers. This utility has made software updates much less time consuming.

4.3.3 ethcfg

The file specialization provided by the xtopview command is generally used at a class level to
cover a large group of service nodes at once or at the individual node level to make one node stand
out from the others. Both of these cases are simple and straightforward to manage. However,
there is one specialization case that requires every node to have its own file: the static network
management files. Standard configuration management systems avoid the need for hundreds of
node-specific files by using templates, DHCP, or other similar solutions, but these did not fit the
Cray model well. Instead we wrote a simple-but-powerful init script dubbed ethtool that configures
the nodes’ network interfaces by reading a flat configuration file at boot time. This file contains the
network interface information for all of the service nodes in the system, meaning it can live in the
default overlay view and requires no specialization for each node. The number of nodes included
in the file is small enough that we found no performance problems with a flat file, giving us ease of
maintainability over a more complex system using something like SQLite.

5 Lessons

After bringing up Cielo, we were able to put together a few lessons we learned along the way.

Keep good relations with your vendors : It is all too easy for vendor relations to break down
when you don’t see eye to eye with them. Keeping a good relationship makes it much easier
to keep all sides progressing throughout the project.

Get test systems early : Although they were only mentioned briefly at the beginning of this
report, our three smaller systems (Smog, Muzia, and Cielito) were instrumental in getting us
experience with Cray’s way of doing things early. When building a new system, getting access
to representative hardware early in the process fills the knowledge pipeline much faster.

Use configuration management, even if it takes effort : The upfront cost of configuration
management is easier to see than the long-term gains, but those gains are real. Whether you
should work to fit a system into an existing CM scheme or not is a site-specific question, but
using some tool is the best choice in any complex case.

When standing up a system of a new design, plan for “Murphy Time” : Murphy’s Law
will assert itself as often as it can, especially with new systems. Be ready for that. Finishing
early is much more impressive than finishing late.

8



Work as a team : Today’s systems are too complex for one person to fully understand. There
are too may pieces: hardware, software, networking, filesystems, system management, and
the list goes on. Working as a team is important for sharing responsibilities and areas of
expertise with a new system and for keeping everybody interested in the project. Resist the
urge to designate “the guy that knows it all”, as he will inevitably win the lottery and leave
the group.

6 Conclusions

As we stated in the beginning, standing up a new HPC resource is a complex task. While integrating
Cielo, we ran into an expected breadth of challenges: managing the vendor/customer relationship,
working with integrating an appliance-like system into an already-existing environment, designing
a configuration management system around an imperfect software distribution design, and other
more minor challenges. In our case these were all framed within the desire to make the system
behave similarly to an already extensive set of HPC resources, a requirement from both the user
and administrator points of view.

We were able to respond to these challenges with a combination of technical and social solutions
involving, among more minor solutions, a close working relationship between our vendor and local
teams, using strong configuration management and careful documentation when appropriate, and
writing custom tools to fill in gaps as needed. The combination of solutions we found kept us flexible
enough to make good decisions each time while getting the work done in the needed timeframe.

In the end, we were able to put together a short list of lessons that we thought were important
from our experience. On the top of that list was the need to keep strong working relationships with
all of the groups involved. Closely following this was the need for configuration management from
the beginning. The list was rounded out with other lessons that are obvious in hindsight, but easy
to lose track of in the heat of getting work done.

The final result of the work described in this report is a very manageable system. Like all systems
of Cielo’s complexity, there will always be work to be done, but we have a strong foundation on
which to continue building and we are confident in the work we have done to integrate it into our
environment.

References

[1] Cfengine. http://www.cfengine.org/.

[2] Modules – Software Environment Management. http://modules.sourceforge.net/.

[3] S. Kemp. Using the Debian alternatives system. http://www.debian-administration.org/
articles/91.

9


