
CDE: Run Any Linux Application On-Demand Without Installation

Philip J. Guo
Stanford University
pg@cs.stanford.edu

Abstract

There is a huge ecosystem of free software for Linux, but
since each Linux distribution (distro) contains a differ-
ent set of pre-installed shared libraries, filesystem layout
conventions, and other environmental state, it is difficult
to create and distribute software that works without has-
sle across all distros. Online forums and mailing lists
are filled with discussions of users’ troubles with com-
piling, installing, and configuring Linux software and
their myriad of dependencies. To address this ubiqui-
tous problem, we have created an open-source tool called
CDE that automatically packages up the Code, Data, and
Environment required to run a set of x86-Linux pro-
grams on other x86-Linux machines. Creating a CDE
package is as simple as running the target application un-
der CDE’s monitoring, and executing a CDE package re-
quires no installation, configuration, or root permissions.
CDE enables Linux users to instantly run any application
on-demand without encountering “dependency hell”.

1 Introduction

The simple-sounding task of taking software that runs on
one person’s machine and getting it to run on another
machine can be painfully difficult in practice. Since no
two machines are identically configured, it is hard for
developers to predict the exact versions of software and
libraries already installed on potential users’ machines
and whether those conflict with the requirements of their
own software. Thus, software companies devote con-
siderable resources to creating and testing one-click in-
stallers for products like Microsoft Office, Adobe Pho-
toshop, and Google Chrome. Similarly, open-source de-
velopers must carefully specify the proper dependencies
in order to integrate their software into package manage-
ment systems [4] (e.g., RPM on Linux, MacPorts on Mac
OS X). Despite these efforts, online forums and mail-
ing lists are still filled with discussions of users’ troubles

with compiling, installing, and configuring software and
their myriad of dependencies. For example, the official
Google Chrome help forum for “install/uninstall issues”
has over 5800 threads.

In addition, a study of US labor statistics predicts that
by 2012, 13 million American workers will do program-
ming in their jobs, but amongst those, only 3 million will
be professional software developers [24]. Thus, there are
potentially millions of people who still need to get their
software to run on other machines but who are unlikely
to invest the effort to create one-click installers or wres-
tle with package managers, since their primary job is not
to release production-quality software. For example:

• System administrators often hack together ad-
hoc utilities comprised of shell scripts and custom-
compiled versions of open-source software, in or-
der to perform system monitoring and maintenance
tasks. Sysadmins want to share their custom-built
tools with colleagues, quickly deploy them to other
machines within their organization, and “future-
proof” their scripts so that they can continue func-
tioning even as the OS inevitably gets upgraded.

• Research scientists often want to deploy their com-
putational experiments to a cluster for greater per-
formance and parallelism, but they might not have
permission from the sysadmin to install the required
libraries on the cluster machines. They also want to
allow colleagues to run their research code in order
to reproduce and extend their experiments.

• Software prototype designers often want clients to
be able to execute their prototypes without the has-
sle of installing dependencies, in order to receive
continual feedback throughout the design process.

In this paper, we present an open-source tool called
CDE [1] that makes it easy for people of all levels of
IT expertise to get their software running on other ma-
chines without the hassle of manually creating a robust

Your Linux
machine

Ubuntu

Fedora

SUSE

Debian

CentOS

...

Figure 1: CDE enables users to package up any Linux
application and deploy it to all modern Linux distros.

installer or dealing with user complaints about depen-
dencies. CDE automatically packages up the Code, Data,
and Environment required to run a set of x86-Linux pro-
grams on other x86-Linux machines without any instal-
lation (see Figure 1). To use CDE, the user simply:

1. Prepends any set of Linux commands with the cde
executable. cde executes the commands and uses
ptrace system call interposition to collect all the
code, data files, and environment variables used
during execution into a self-contained package.

2. Copies the resulting CDE package to an x86-Linux
machine running any distro from the past ∼5 years.

3. Prepends the original packaged commands with the
cde-exec executable to run them on the target
machine. cde-exec uses ptrace to redirect file-
related system calls so that executables can load
the required dependencies from within the package.
Execution can range from ∼0% to ∼30% slower.

The main benefits of CDE are that creating a package
is as easy as executing the target program under its super-
vision, and that running a program within a package re-
quires no installation, configuration, or root permissions.

The design philosophy underlying CDE is that people
should be able to package up their Linux software and
deploy it to other Linux machines with as little effort as
possible. However, CDE is not meant to replace tradi-
tional installers or package managers; its intended role is
to serve as a convenient ad-hoc solution for people like
sysadmins, research scientists, and prototype makers.

Since its release in Nov. 2010, CDE has been down-
loaded over 3,000 times [1]. We have exchanged hun-
dreds of emails with users throughout both academia and
industry. In the past year, we have made several signifi-
cant enhancements to the base CDE system in response to
user feedback. Although we introduced an early version

Your Linux
machine

Ubuntu

Fedora
SUSE

Debian
CentOS

"The cloud"

Figure 2: CDE’s streaming mode enables users to run any
Linux application on-demand by fetching the required
files from a farm of pre-installed distros in the cloud.

of CDE in a short paper [20], this paper presents a more
complete CDE system with three new features:

• To overcome CDE’s primary limitation of only be-
ing able to package dependencies collected on exe-
cuted paths, we introduce new tools and heuristics
for making CDE packages complete (Section 3).

• To make CDE-packaged programs behave just like
native applications on the target machine rather than
executing in an isolated sandbox, we introduce a
new seamless execution mode (Section 4).

• Finally, to enable users to run any Linux application
on-demand, we introduce a new application stream-
ing mode (Section 5). Figure 2 shows its high-level
architecture: The system administrator first installs
multiple versions of many popular Linux distros in
a “distro farm” in the cloud (or an internal com-
pute cluster). The user connects to that distro farm
via an ssh-based protocol from any x86-Linux ma-
chine. The user can now run any application avail-
able within the package managers of any of the dis-
tros in the farm. CDE’s streaming mode fetches the
required files on-demand, caches them locally on
the user’s machine, and creates a portable distro-
independent execution environment. Thus, Linux
users can instantly run the hundreds of thousands of
applications already available in the package man-
agers of all distros without being forced to use one
specific release of one specific distro1.

This paper continues with descriptions of real-world
use cases (Section 6), evaluations of portability and per-
formance (Section 7), comparisons to related work (Sec-
tion 8), and concludes with discussions of design philos-
ophy, limitations, and lessons learned (Section 9).

1The package managers included in different releases of the same
Linux distro often contain incompatible versions of many applications!

cde-package/
 cde-root/
 usr/
 lib/

/usr/lib/logutils.so

logutils.so

cde <command>

open()

copy

cde-package/
 cde-root/
 usr/
 lib/

/usr/lib/logutils.so

logutils.so

cde-exec <command>

redirect open()

Bob's computer

Alice's computer

filesystem

filesystem

1.

3.

2.

Figure 3: Example use of CDE: 1.) Alice runs her com-
mand with cde to create a package, 2.) Alice sends her
package to Bob’s computer, 3.) Bob runs command with
cde-exec, which redirects file accesses into package.

2 CDE system overview

We described the details of CDE’s design and implemen-
tation in a prior paper and its accompanying technical
report [20]. We will now summarize the core features of
CDE using an example.

Suppose that Alice is a system administrator who is
developing a Python script to detect anomalies in net-
work log files. She normally runs her script using this
Linux command:

python detect_anomalies.py net.log

Suppose that Alice’s script (detect anomalies.py)
imports some 3rd-party Python extension modules,
which consist of optimized C++ log parsing code com-
piled into shared libraries. If Alice wants her colleague
Bob to be able to run her analysis, then it is not sufficient
to just send her script and net.log data file to him.

Even if Bob has a compatible version of Python on his
Linux machine, he will not be able to run her script until
he compiles, installs, and configures the exact extension
modules that her script used (and all of their transitive
dependencies). Since Bob is probably using a different
Linux distribution (distro) than Alice, even if Alice pre-
cisely recalled all of the steps involved in installing all of
the original dependencies on her machine, those instruc-
tions probably will not work on Bob’s machine.

kernel

cde

program

open()

open file

copy file into package

Figure 4: Timeline of control flow between target pro-
gram, kernel, and cde process during an open syscall.

2.1 Creating a new CDE package
To create a self-contained package with all of the depen-
dencies required to run her anomaly detection script on
another Linux machine, Alice simply prepends her com-
mand with the cde executable:

cde python detect_anomalies.py net.log

cde runs her command normally and uses the Linux
ptrace system call to monitor all of the files it ac-
cesses throughout execution. cde creates a new sub-
directory called cde-package/cde-root/ and copies
all of those accessed files into there, mirroring the orig-
inal directory structure. Figure 4 shows an overview of
the control flow between the target program, Linux ker-
nel, and cde during a file-related system call.

For example, if Alice’s script dynamically
loads an extension module as a shared library
named /usr/lib/logutils.so (i.e., log pars-
ing utility code), then cde will copy it to
cde-package/cde-root/usr/lib/logutils.so

(see Figure 3). cde also saves the values of environment
variables in a text file within cde-package/.

When execution terminates, the cde-package/ sub-
directory (which we call a “CDE package”) contains all
of the files required to run Alice’s original command.

2.2 Executing a CDE package
Alice zips up the cde-package/ directory and transfers
it to Bob’s Linux machine. Now Bob can run Alice’s
anomaly detection script without first installing anything
on his machine. To do so, he unzips the package, changes
into the sub-directory containing the script, and prepends
her original command with the cde-exec executable
(also included in the package):

cde-exec python detect_anomalies.py net.log

cde-exec sets up the environment variables saved
from Alice’s machine and executes the versions of
python and its extension modules that are located within
the package. cde-exec uses ptrace to monitor all

kernel

cde-exec

program

open()

open file
from package

rewrite open() argument

Figure 5: Timeline of control flow between target pro-
gram, kernel, and cde-exec during an open syscall.

system calls that access files and dynamically rewrites
their path arguments to the corresponding paths within
the cde-package/cde-root/ sub-directory. Figure 5
shows the control flow between the target program, ker-
nel, and cde-exec during a file-related system call.

For example, when her script requests to load the
/usr/lib/logutils.so library using an open sys-
tem call, cde-exec rewrites the path argument of
the open call to cde-package/cde-root/usr/lib/

logutils.so (see Figure 3). This run-time path redi-
rection is essential, because /usr/lib/logutils.so

probably does not exist on Bob’s machine.

2.3 CDE package portability

Alice’s CDE package can execute on any Linux ma-
chine with an architecture and kernel version that are
compatible with its constituent binaries. CDE currently
works on 32-bit and 64-bit variants of the x86 archi-
tecture (i386 and x86-64, respectively). In general, a
32-bit cde-exec can execute 32-bit packaged applica-
tions on 32- and 64-bit machines. A 64-bit cde-exec
can execute both 32-bit and 64-bit packaged applications
on a 64-bit machine. Extending CDE to other architec-
tures (e.g., ARM) is straightforward because the strace
tool that CDE is built upon already works on many archi-
tectures. However, CDE packages cannot be transported
across architectures without using a CPU emulator.

Our portability experiments (§7.1) show that pack-
ages are portable across Linux distros released within 5
years of the distro where the package originated. Besides
sharing with colleagues like Bob, Alice can also deploy
her package to run on a cluster for more computational
power or to a public-facing server machine for real-time
online monitoring. Since she does not need to install any-
thing as root, she does not risk perturbing existing soft-
ware on those machines. Also, having her script and all
of its dependencies (including the Python interpreter and
extension modules) encapsulated within a CDE package
makes it somewhat “future-proof” and likely to continue
working on her machine even when its version of Python
and associated extensions are upgraded in the future.

cde-root usr bin java

Figure 6: The result of copying a file named
/usr/bin/java into the cde-root/ directory.

3 Semi-automated package completion

CDE’s primary limitation is that it can only package up
files accessed on executed program paths. Thus, pro-
grams run from within a CDE package will fail when exe-
cuting paths that access new files (e.g., libraries, configu-
ration files) that the original execution(s) did not access.

Unfortunately, no automatic tool (static or dynamic)
can find and package up all the files required to suc-
cessfully execute all possible program paths, since that
problem is undecidable in general. Similarly, it is also
impossible to automatically quantify how “complete” a
CDE package is or determine what files are missing,
since every file-related system call instruction could be
invoked with complex or non-deterministic arguments.
For example, the Python interpreter executable has only
one dlopen call site for dynamically loading extension
modules, but that dlopen could be called many times
with different dynamically-generated string arguments
derived from script variables or configuration files.

There are two ways to cope with this package incom-
pleteness problem. First, if the user executes additional
program paths, then CDE will add new files into the same
cde-package/ directory. However, making repeated
executions can get tedious, and it is unclear how many
or which paths are necessary to complete the package2.

Another way to make CDE packages more com-
plete is by manually copying additional files and sub-
directories into cde-package/cde-root/. For exam-
ple, while executing a Python script, CDE might au-
tomatically copy the few Python standard library files
it accesses into, say, cde-package/cde-root/usr/
lib/python/. To complete the package, the user
could copy the entire /usr/lib/python/ directory
into cde-package/cde-root/ so that all Python li-
braries are present. A user can usually make his/her
package complete by copying only a few crucial direc-
tories into the package, since programs store all of their
files in several top-level directories (see Section 3.3).

However, programs also depend on shared libraries
that reside in system-wide directories like /lib and
/usr/lib. Copying all the contents of those directo-
ries into a package results in lots of wasted disk space.
In Section 3.2, we present an automatic heuristic tech-
nique that finds nearly all shared libraries that a program
requires and copies them into the package.

2similar to trying to achieve 100% coverage during software testing

cde-root

usr

etc

bin

lib

alternatives

java

jvm

java

java

jre-1.6.0-openjdk

java-1.6.0-openjdk-1.6.0.0

jre bin

Figure 7: The result of using OKAPI to deep-copy a single /usr/bin/java file into cde-root/, preserving the
exact symlink structure from the original directory tree. Boxes are directories (solid arrows point to their contents),
diamonds are symlinks (dashed arrows point to their targets), and the bold ellipse is the actual java executable file.

3.1 The OKAPI utility for deep file copying

Before describing our heuristics for completing CDE
packages, we first introduce a utility library we built
called OKAPI (pronounced “oh-copy”), which performs
detailed copying of files, directories, and symlinks.
OKAPI does one seemingly-simple task that turns out to
be tricky in practice: copying a filesystem entity (i.e.,
a file, directory, or symlink) from one directory to an-
other while fully preserving its original sub-directory and
symlink structure (a process that we call deep-copying).
CDE uses OKAPI to copy files into the cde-root/ sub-
directory when creating a new package, and the support
scripts of Sections 3.2 and 3.3 also use OKAPI.

For example, suppose that CDE needs to copy the
/usr/bin/java executable file into cde-root/ when
it is packaging a Java application. The straightforward
way to do this is to use the standard mkdir and cp utili-
ties. Figure 6 shows the resulting sub-directory structure
within cde-root/, with the boxes representing direc-
tories and the bold ellipse representing the copy of the
java executable file located at cde-root/usr/bin/
java. However, it turns out that if CDE were to use
this straightforward copying method, the Java applica-
tion would fail to run from within the CDE package! This
failure occurs because the java executable introspects
its own path and uses it as the search path for finding
the Java standard libraries. On our Fedora Core 9 ma-
chine, the Java standard libraries are actually installed
in /usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0,
so when java reads its own path as /usr/bin/java, it
cannot possibly use that path to find its standard libraries.

In order for Java applications to properly run from
within CDE packages, all of their constituent files must
be “deep-copied” into the package while replicating
their original sub-directory and symlink structures. Fig-
ure 7 illustrates the complexity of deep-copying a single
file, /usr/bin/java, into cde-root/. The diamond-
shaped nodes represent symlinks, and the dashed arrows
point to their targets. Notice how /usr/bin/java is a

symlink to /etc/alternatives/java, which is itself
a symlink to /usr/lib/jvm/jre-1.6.0-openjdk/

bin/java. Another complicating factor is that /usr/
lib/jvm/jre-1.6.0-openjdk is itself a symlink
to the /usr/lib/jvm/java-1.6.0-openjdk-1.6.

0.0/jre/ directory, so the actual java executable
resides in /usr/lib/jvm/java-1.6.0-openjdk-1.

6.0.0/jre/bin/. Java can only find its standard li-
braries when these paths are all faithfully replicated
within the CDE package.

The OKAPI utility library automatically performs the
deep-copying required to generate the filesystem struc-
ture of Figure 7. Its interface is as simple as ordinary cp:
The caller simply requests for a path to be copied into a
target directory, and OKAPI faithfully replicates the sub-
directory and symlink structure.

OKAPI performs one additional task: rewriting the
contents of symlinks to transform absolute path targets
into relative path targets within the destination directory
(e.g., cde-root/). In our example, /usr/bin/java
is a symlink to /etc/alternatives/java. However,
OKAPI cannot simply create the cde-root/usr/bin/

java symlink to also point to /etc/alternatives/

java, since that target path is outside of cde-root/.
Instead, OKAPI must rewrite the symlink target so that
it actually refers to ../../etc/alternatives/java,
which is a relative path that points to cde-root/etc/

alternatives/java.
The details of this particular example are not impor-

tant, but the high-level message that Figure 7 conveys
is that deep-copying even a single file can lead to the
creation of over a dozen sub-directories and (possibly-
rewritten) symlinks. The problem that OKAPI solves is
not Java-specific; we have observed that many real-world
Linux applications fail to run from within CDE packages
unless their files are deep-copied in this detailed way.

OKAPI is also available as a free standalone command-
line tool [1]. To our knowledge, no other Linux file copy-
ing tool (e.g., cp, rsync) can perform the deep-copying
and symlink rewriting that OKAPI does.

3.2 Heuristics for copying shared libraries

When Linux starts executing a dynamically-linked ex-
ecutable, the dynamic linker (e.g., ld-linux*.so*)
finds and loads all shared libraries that are listed in a spe-
cial .dynamic section within the executable file. Run-
ning the ldd command on the executable shows these
start-up library dependencies. When CDE is executing a
target program to create a package, CDE finds all of these
dependencies as well because they are loaded at start-up
time via open system calls.

However, programs sometimes load shared libraries in
the middle of execution using, say, the dlopen function.
This run-time loading occurs mostly in GUI programs
with a plug-in or extension architecture. For example,
when the user instructs Firefox to visit a web page with
a Flash animation, Firefox will use dlopen to load the
Adobe Flash Player shared library. ldd will not find that
dependency since it is not hard-coded in the .dynamic

section of the Firefox executable, and CDE will only
find that dependency if the user actually visits a Flash-
enabled web page while creating a package for Firefox.

We have created a simple heuristic-based script that
finds most or all shared libraries that a program requires3.
The user first creates a base CDE package by executing
the target program once (or a few times) and then runs
our script, which works as follows:

1. Find all ELF binaries (executables and shared li-
braries) within the package using the Linux find

and file utilities.

2. For each binary, find all constant strings using the
strings utility, and look for strings containing
“.so” since those are likely to be shared libraries.

3. Call the locate utility on each candidate shared li-
brary string, which returns the full absolute paths of
all installed shared libraries that match each string.

4. Use OKAPI to copy each library into the package.

5. Repeat this process until no new libraries are found.

This heuristic technique works well in practice be-
cause programs often list all of their dependent shared
libraries in string constants within their binaries. The
main exception occurs in dynamic languages like Python
or MATLAB, whose programs often dynamically gener-
ate shared library paths based on the contents of scripts
and configuration files.

Another limitation of this technique is that it is overly
conservative and can create larger-than-needed pack-
ages, since the locate utility can find more libraries
than the target program actually needs.

3always a superset of the shared libraries that ldd finds

3.3 OKAPI-based directory copying script
In general, running an application once under CDE mon-
itoring only packages up a subset of all required files. In
our experience, the easiest way to make CDE packages
complete is to copy entire sub-directories into the pack-
age. To facilitate this process, we created a script that
repeatedly calls OKAPI to copy an entire directory at a
time into cde-root/, automatically following symlinks
to other directories and recursively copying as needed.

Although this approach might seem primitive, it is ef-
fective in practice because applications often store all of
their files in a few top-level directories. When a user
inspects the directory structure within cde-root/, it
is usually obvious where the application’s files reside.
Thus, the user can run our OKAPI-based script to copy
the entirety of those directories into the package.

Evaluation: To demonstrate the efficacy of this ap-
proach, we have created complete self-contained CDE
packages for six of the largest and most popular Linux
applications. For each app, we made an initial packag-
ing run with cde, inspected the package contents, and
copied at most three directories into the package. The
entire packaging process took several minutes of human
effort per application. Here are our full results:

• AbiWord is a free alternative to Microsoft Word.
After an initial packaging run, we saw that some
plug-ins were included in the cde-root/usr/

lib/abiword-2.8/plugins and cde-root/

usr/lib/goffice/0.8.1/plugins directories.
Thus, we copied the entirety of those two original
directories into cde-root/ to complete its pack-
age, thereby including all AbiWord plug-ins.

• Eclipse is a sophisticated IDE and software de-
velopment platform. We completed its package
by copying the /usr/lib/eclipse and /usr/

share/eclipse directories into cde-root/.

• Firefox is a popular web browser. We completed its
package by copying /usr/lib/firefox-3.6.18
and /usr/lib/firefox-addons into
cde-root/ (plus another directory for the
third-party Adobe Flash player plug-in).

• GIMP is a sophisticated graphics editing tool.
We completed its package by copying /usr/lib/

gimp/2.0 and /usr/share/gimp/2.0.

• Google Earth is an interactive 3D mapping ap-
plication. We completed its package by copying
/opt/google/earth into cde-root/.

• OpenOffice.org is a free alternative to the Mi-
crosoft Office productivity suite. We completed its
package by copying the /usr/lib/openoffice

directory into cde-root/.

Alice's CDE package

/

home

var

bob
cde-package cde-root usr

lib

lib

bin

libc.so.6

libpython2.6.so

logutils.so

python

log httpd access_log

error_log

Figure 8: Example filesystem layout on Bob’s machine after he receives a CDE package from Alice (boxes are direc-
tories, ellipses are files). CDE’s seamless execution mode enables Bob to run Alice’s packaged script on the log files
in /var/log/httpd/ without first moving those files inside of cde-root/.

4 Seamless execution mode

When executing a program from within a package,
cde-exec redirects all file accesses into the package
by default, thereby creating a chroot-like sandbox with
cde-package/cde-root/ as the pseudo-root direc-
tory (see Figure 3, Step 3). However, unlike chroot, CDE
does not require root access to run, and its sandbox poli-
cies are flexible and user-customizable [20].

This default chroot-like execution mode is fine for run-
ning self-contained GUI applications like games or web
browsers, but it is a somewhat awkward way to run most
types of UNIX-style command-line programs that sys-
tem administrators, developers, and hackers often prefer.
If users are running, say, a compiler or command-line im-
age processing utility from within a CDE package, they
would need to first move their input data files into the
package, run the target program using cde-exec, and
then move the resulting output data files back out of the
package, which is a cumbersome process.

In our Alice-and-Bob example from Section 2 (see
Figure 3), if Bob wants to run Alice’s anomaly detec-
tion script on his own log data (e.g., bob.log), he
needs to first move his data file inside of cde-package/
cde-root/, change into the appropriate sub-directory
deep within the package, and then run:

cde-exec python detect_anomalies.py bob.log

In contrast, if Bob had actually installed the proper
version of Python and its required extension modules on
his machine, then he could run Alice’s script from any-
where on his filesystem with no restrictions. Some CDE
users wanted CDE-packaged programs to behave just like
regularly-installed programs rather than requiring input

files to be moved inside of a cde-package/cde-root/
sandbox, so we implemented a new seamless execution
mode that largely achieves this goal.

Seamless execution mode works using a simple
heuristic: If cde-exec is being invoked from a di-
rectory not in the CDE package (i.e., from somewhere
else on the user’s filesystem), then only redirect a path
into cde-package/cde-root/ if the file that the path
refers to actually exists within the package. Otherwise
simply leave the path unmodified so that the program can
access the file normally. No user intervention is needed
in the common case.

The intuition behind why this heuristic works is
that when programs request to load libraries and other
mandatory components, those files must exist within the
package, so their paths are redirected. On the other hand,
when programs request to load an input file passed via,
say, a command-line argument, that file does not exist
within the package, so the original path is used to retrieve
it from the native filesystem.

In the example shown in Figure 8, if Bob ran Alice’s
script to analyze an arbitrary log file on his machine (e.g.,
his web server log, /var/log/httpd/access log),
then cde-exec will redirect Python’s request for its own
libraries (e.g., /lib/libpython2.6.so and /usr/

lib/logutils.so) inside of cde-root/ since those
files exist within the package, but cde-exec will not
redirect /var/log/httpd/access log and instead
load the real file from its original location.

Seamless execution mode fails when the user
wants the packaged program to access a file from
the native filesystem, but an identically-named
file actually exists within the package. In the
above example, if cde-package/cde-root/var/

sshfs mount of a remote Linux distro's root FS

Local cache (mirrors remote FS)

/ home alice

cde-remote-root

cde-root

bin

usr

bin

usr

eclipse

lib

share

eclipse

lib

share

eclipse-3.6

eclipse-3.6

...

...

eclipse-3.6

eclipse-3.6

...

...

Figure 9: An example use of CDE’s streaming mode to run Eclipse 3.6 on any Linux machine without installation.
cde-exec fetches all dependencies on-demand from a remote Linux distro and stores them in a local cache.

log/httpd/access_log existed, then that file
would be processed by the Python script instead of
/var/log/httpd/access log. There is no auto-
mated way to resolve such name conflicts, but cde-exec
provides a “verbose mode” where it prints out a log
of what paths were redirected within the package.
The user can inspect that log and then manually write
redirection/ignore rules in a configuration file to control
which paths cde-exec redirects into cde-root/. For
instance, the user could tell cde-exec to not redirect
any paths starting with /var/log/httpd/*.

Using seamless execution mode, our users have been
able to run software such as programming language in-
terpreters and compilers, scientific research tools, and
sysadmin scripts from CDE packages and have them be-
have just like regularly-installed programs.

5 On-demand application streaming

We now introduce a new application streaming mode
where CDE users can instantly run any Linux application
on-demand without having to create, transfer, or install
any packages. Figure 2 shows a high-level architectural
overview. The basic idea is that a system administra-
tor first installs multiple versions of many popular Linux
distros in a “distro farm” in the cloud (or an internal com-
pute cluster). When a user wants to run some application
that is available on a particular distro, they use sshfs (an
ssh-based network filesystem [9]) to mount the root di-
rectory of that distro into a special cde-remote-root/
mountpoint on their Linux machine. Then the user can
use CDE’s streaming mode to run any application from
that distro locally on their own machine.

5.1 Implementation and example

Figure 9 shows an example of streaming mode. Let’s say
that Alice wants to run the Eclipse 3.6 IDE on her Linux
machine, but the particular distro she is using makes it
difficult to obtain all the dependencies required to install
Eclipse 3.6. Rather than suffering through dependency
hell, Alice can simply connect to a distro in the farm that
contains Eclipse 3.6 and then use CDE’s streaming mode
to “harvest” the required dependencies on-demand.

Alice first mounts the root directory of the re-
mote distro at cde-remote-root/. Then she
runs “cde-exec -s eclipse” (-s activates
streaming mode). cde-exec finds and executes
cde-remote-root/bin/eclipse. When that exe-
cutable requests shared libraries, plug-ins, or any other
files, cde-exec will redirect the respective paths into
cde-remote-root/, thereby executing the version of
Eclipse 3.6 that resides in the cloud distro. However,
note that the application is running locally on Alice’s
machine, not in the cloud.

An astute reader will immediately realize that running
applications in this manner can be slow, since files are be-
ing accessed from a remote server. While sshfs performs
some caching, we have found that it does not work well
enough in practice. Thus, we have implemented our own
caching layer within CDE: When a remote file is accessed
from cde-remote-root/, cde-exec uses OKAPI to
make a deep-copy into a local cde-root/ directory and
then redirects that file’s path into cde-root/. In stream-
ing mode, cde-root/ initially starts out empty and then
fills up with a subset of files from cde-remote-root/

that the target program has accessed.

To avoid unnecessary filesystem accesses, CDE’s
cache also keeps a list of file paths that the target program
tried to access from the remote server, even keeping paths
for non-existent files. On subsequent runs, when the pro-
gram tries to access one of those paths, cde-exec will
redirect the path into the local cde-root/ cache. It is
vital to track non-existent files since programs often try
to access non-existent files at start-up while doing, say, a
search for shared libraries by probing a list of directories
in a search path. If CDE did not track non-existent files,
then the program would still access the directory entries
on the remote server before discovering that those files
still do not exist, thus slowing down performance.

With this cache in place, the first time an application is
run, all of its dependencies must be downloaded, which
could take several seconds to minutes. This one-time de-
lay is unavoidable. However, subsequent runs simply use
the files already in the local cache, so they execute at
regular cde-exec speeds. An added bonus is that even
running a different application for the first time might
still result in some cache hits for, say, generic libraries
like libc, so the entire application does not need to be
downloaded.

Finally, the package incompleteness problem faced by
regular CDE (see Section 3) no longer exists in streaming
mode. When the target application needs to access new
files that do not yet exist in the local cache (e.g., Alice
loads a new Eclipse plug-in), those files are transparently
fetched from the remote server and cached.

5.2 Synergy with package managers

Nearly all Linux users are currently running one partic-
ular distro with one default package manager that they
use to install software. For instance, Ubuntu users must
use APT, Fedora users must use YUM, SUSE users must
use Zypper, Gentoo users must use Portage, etc. More-
over, different releases of the same distro contain differ-
ent software package versions, since distro maintainers
add, upgrade, and delete packages in each new release4.

As long as a piece of software and all of its depen-
dencies are present within the package manager of the
exact distro release that a user happens to be using, then
installation is trivial. However, as soon as even one de-
pendency cannot be found within the package manager,
then users must revert to the arduous task of compiling
from source (or configuring a custom package manager).

CDE’s streaming mode frees Linux users from this
single-distro restriction and allows them to run software

4We once tried installing a machine learning application that de-
pended on the libcv computer vision library. The required libcv
version was found in the APT repository on Ubuntu 10.04, but it
was not found in the repositories on the two immediately neighboring
Ubuntu releases: 9.10 and 10.10.

that is available within the package manager of any distro
in the cloud distro farm. The system administrator is re-
sponsible for setting up the farm and provisioning access
rights (e.g., ssh keys) to users. Then users can directly in-
stall packages in any cloud distro and stream the desired
applications to run locally on their own machines.

Philosophically, CDE’s streaming mode maximizes
user freedom since users are now free to run any appli-
cation in any package manager from the comfort of their
own machines, regardless of which distro they choose
to use. CDE complements traditional package managers
by leveraging all of the work that the maintainers of
each distro have already done and opening up access to
users of all other distros. This synergy can potentially
eliminate quasi-religious squabbles and flame-wars over
the virtues of competing distros or package management
systems. Such fighting is unnecessary since CDE allows
users to freely choose from amongst all of them.

6 Real-world use cases

Since we released the first version of CDE on Novem-
ber 9, 2010, it has been downloaded at least 3,000 times
as of September 2011 [1]. We cannot track how many
people have directly checked out its source code from
GitHub, though. We have exchanged hundreds of emails
with CDE users and discovered six salient real-world use
cases as a result of these discussions. Table 1 shows that
we used 16 CDE packages, mostly sent in by our users,
as benchmarks in the experiments reported in Section 7.
They contain software written in diverse programming
languages and frameworks. We now summarize the use
case categories and benchmarks (highlighted in bold).

Distributing research software: The creators of two
research tools found CDE online and used it to create
portable packages that they uploaded to their websites:

The website for graph-tool, a Python/C++ module
for analyzing graphs, lists these (direct) dependencies:
“GCC 4.2 or above, Boost libraries, Python 2.5 or above,
expat library, NumPy and SciPy Python modules, GCAL
C++ geometry library, and Graphviz with Python bind-
ings enabled.” [11] Unsurprisingly, lots of people had
trouble compiling it: 47% of all messages on its mailing
list (137 out of 289) were questions related to compila-
tion problems. The author of graph-tool used CDE
to automatically create a portable package (containing
149 shared libraries and 1909 total files) and uploaded
it to his website so that users no longer needed to suffer
through the pain of manually compiling it.
arachni, a Ruby-based tool that audits web appli-

cation security [10], requires six hard-to-compile Ruby
extension modules, some of which depend on versions
of Ruby and libraries that are not available in the pack-

Package name Description Dependencies Creator

Distributing research software

arachni Web app. security scanner framework [10] Ruby (+ extensions) security researcher
graph-tool Lib. for manipulation & analysis of graphs [11] Python, C++, Boost math researcher
pads Language for processing ad-hoc data [19] Perl, ML, Lex, Yacc self
saturn Static program analysis framework [13] Perl, ML, Berkeley DB self

Running production software on incompatible distros

meld Interactive visual diff and merge tool for text Python, GTK+ software engineer
bio-menace Classic video game within a MS-DOS emulator DOSBox, SDL game enthusiast
google-earth 3D interactive map application by Google shell scripts, OpenGL self

Creating reproducible computational experiments

kpiece Robot motion planning algorithm [26] C++, OpenGL robotics researcher
gadm Genetic algorithm for social networks [21] C++, make, R self

Deploying computations to cluster or cloud

ztopo Batch processing of topological map images C++, Qt graduate student
klee Automatic bug finder & test case generator [16] C++, LLVM, µClibc self

Submitting executable bug reports

coq-bug-2443 Incorrect output by Coq proof assistant [2] ML, Coq bug reporter
gcc-bug-46651 Causes GCC compiler to segfault [3] gcc bug reporter
llvm-bug-8679 Runs LLVM compiler out of memory [5] C++, LLVM bug reporter

Collaborating on class programming projects

email-search Natural language semantic email search Python, NLTK, Octave college student
vr-osg 3D virtual reality modeling of home appliances C++, OpenSceneGraph college student

Table 1: CDE packages used as benchmarks in our experiments, grouped by use cases. ‘self’ in the ‘Creator’ column
means package was created by the author; all other packages created by CDE users (mostly people we have never met).

age managers of most modern Linux distributions. Its
creator, a security researcher, created and uploaded CDE
packages and then sent us a grateful email describing
how much effort CDE saved him: “My guess is that it
would take me half the time of the development process
to create a self-contained package by hand; which would
be an unacceptable and truly scary scenario.”

In addition, we used CDE to create portable binary
packages for two of our Stanford colleagues’ research
tools, which were originally distributed as tarballs of
source code: pads [19] and saturn [13]. 44% of
the messages on the pads mailing list (38 / 87) were
questions related to troubles with compiling it (22% for
saturn). Once we successfully compiled these projects
(after a few hours of improvising our own hacks since the
instructions were outdated), we created CDE packages by
running their regression test suites, so that others do not
need to suffer through the compilation process.

Even the saturn team leader admitted in a public
email, “As it stands the current release likely has prob-
lems running on newer systems because of bit rot — some

libraries and interfaces have evolved over the past cou-
ple of years in ways incompatible with the release.” [7]
In contrast, our CDE packages are largely immune to “bit
rot” (until the user-kernel ABI changes) because they
contain all required dependencies.

Running software on incompatible distros: Even
production-quality software might be hard to install on
Linux distros with older kernel or library versions, espe-
cially when system upgrades are infeasible. For exam-
ple, an engineer at Cisco wanted to run some new open-
source tools on his work machines, but the IT department
mandated that those machines run an older, more secure
enterprise Linux distro. He could not install the tools
on those machines because that older distro did not have
up-to-date libraries, and he was not allowed to upgrade.
Therefore, he installed a modern distro at home, ran CDE
on there to create packages for the tools he wanted to
port, and then ran the tools from within the packages
on his work machines. He sent us one of the packages,
which we used as a benchmark: the meld visual diff tool.

Hobbyists applied CDE in a similar way: A game en-
thusiast could only run a classic game (bio-menace)
within a DOS emulator on one of his Linux machines,
so he used CDE to create a package and can now play the
game on his other machines. We also helped a user create
a portable package for the Google Earth 3D map applica-
tion (google-earth), so he can now run it on older dis-
tros whose libraries are incompatible with Google Earth.

Reproducible computational experiments: A funda-
mental tenet of science is that colleagues should be able
to reproduce the results of one’s experiments. In the past
few years, science journals and CS conferences (e.g.,
SIGMOD, FSE) have encouraged authors of published
papers to put their code and datasets online, so that oth-
ers can independently re-run, verify, and build upon their
experiments. However, it can be hard for people to set up
all of the (often-undocumented) dependencies required
to re-run experiments. In fact, it can even be difficult
to re-run one’s own experiments in the future, due to in-
evitable OS and library upgrades. To ensure that he could
later re-run and adjust experiments in response to re-
viewer critiques for a paper submission [16], our group-
mate Cristian took the hard drive out of his computer at
paper submission time and archived it in his drawer!

In our experience, the results of many computational
science experiments can be reproduced within CDE pack-
ages since the programs are output-deterministic [15], al-
ways producing the same outputs (e.g., statistics, graphs)
for a given input. A robotics researcher used CDE to
make the experiments for his motion planning paper
(kpiece) [26] fully-reproducible. Similarly, we helped a
social networking researcher create a reproducible pack-
age for his genetic algorithm paper (gadm) [21].

Deploying computations to cluster or cloud: People
working on computational experiments on their desktop
machines often want to run them on a cluster for greater
performance and parallelism. However, before they can
deploy their computations to a cluster or cloud comput-
ing (e.g., Amazon EC2), they must first install all of the
required executables and dependent libraries on the clus-
ter machines. At best, this process is tedious and time-
consuming; at worst, it can be impossible, since regular
users often do not have root access on cluster machines.

A user can create a self-contained package using CDE
on their desktop machine and then execute that package
on the cluster or cloud (possibly many instances in par-
allel), without needing to install any dependencies or to
get root access on the remote machines. For instance, our
colleague Peter wanted to use a department-administered
100-CPU cluster to run a parallel image processing job
on topological maps (ztopo). However, since he did not
have root access on those older machines, it was nearly
impossible for him to install all of the dependencies re-

quired to run his computation, especially the image pro-
cessing libraries. Peter used CDE to create a package by
running his job on a small dataset on his desktop, trans-
ferred the package and the complete dataset to the cluster,
and then ran 100 instances of it in parallel there.

Similarly, we worked with lab-mates to use CDE to de-
ploy the CPU-intensive klee [16] bug finding tool from
the desktop to Amazon’s EC2 cloud computing service
without needing to compile Klee on the cloud machines.
Klee can be hard to compile since it depends on LLVM,
which is very picky about specific versions of GCC and
other build tools being present before it will compile.

Submitting executable bug reports: Bug reporting is
a tedious manual process: Users submit reports by writ-
ing down the steps for reproduction, exact versions of
executables and dependent libraries, (e.g., “I’m running
Java version 1.6.0 13, Eclipse SDK Version 3.6.1, . . . ”),
and maybe attaching an input file that triggers the bug.
Developers often have trouble reproducing bugs based
on these hand-written descriptions and end up closing re-
ports as “not reproducible.”

CDE offers an easier and more reliable solution: The
bug reporter can simply run the command that triggers
the bug under CDE supervision to create a CDE package,
send that package to the developer, and the developer can
re-run that same command on their machine to reproduce
the bug. The developer can also modify the input file and
command-line parameters and then re-execute, in order
to investigate the bug’s root cause.

To show that this technique works, we asked peo-
ple who recently reported bugs to popular open-source
projects to use CDE to create executable bug reports.
Three volunteers sent us CDE packages, and we were
able to reproduce all of their bugs: one that causes
the Coq proof assistant to produce incorrect output
(coq-bug-2443) [2], one that segfaults the GCC com-
piler (gcc-bug-46651) [3], and one that makes the
LLVM compiler allocate an enormous amount of mem-
ory and crash (llvm-bug-8679) [5].

Since CDE is not a record-replay tool, it is not guar-
anteed to reproduce non-deterministic bugs. However, at
least it allows the developer to run the exact versions of
the faulting executables and dependent libraries.

Collaborating on class programming projects: Two
users sent us CDE packages they created for collaborat-
ing on class assignments. Rahul, a Stanford grad student,
was using NLTK [22], a Python module for natural lan-
guage processing, to build a semantic email search en-
gine (email-search) for a machine learning class. De-
spite much struggle, Rahul’s two teammates were unable
to install NLTK on their Linux machines due to conflict-
ing library versions and dependency hell. This meant
that they could only run one instance of the project at a

time on Rahul’s laptop for query testing and debugging.
When Rahul discovered CDE, he created a package for
their project and was able to run it on his two teammates’
machines, so that all three of them could test and debug
in parallel. Joshua, an undergrad from Mexico, emailed
us a similar story about how he used CDE to collaborate
on and demo his virtual reality class project (vr-osg).

7 Evaluation

7.1 Evaluating CDE package portability
To show that CDE packages can successfully execute on
a wide range of Linux distros and kernel versions, we
tested our benchmark packages on popular distros from
the past 5 years. We installed fresh copies of these dis-
tros (listed with the versions and release dates of their
kernels) on a 3GHz Intel Xeon x86-64 machine:

• Sep 2006 — CentOS 5.5 (Linux 2.6.18)

• Oct 2007 — Fedora Core 8 (Linux 2.6.23)

• Oct 2008 — openSUSE 11.1 (Linux 2.6.27)

• Sep 2009 — Ubuntu 9.10 (Linux 2.6.31)

• Feb 2010 — Mandriva Free Spring (Linux 2.6.33)

• Aug 2010 — Linux Mint 10 (Linux 2.6.35)

We installed 32-bit and 64-bit versions of each distro
and executed our 32-bit benchmark packages (those cre-
ated on 32-bit distros) on the 32-bit versions, and our
64-bit packages on the 64-bit versions. Although all of
these distros reside on one physical machine, none of our
benchmark packages were created on that machine: CDE
users created most of the packages, and we made sure to
create our own packages on other machines.

Results: Out of the 96 unique configurations we tested
(16 CDE packages each run on 6 distros), all executions
succeeded except for one5. By “succeeded”, we mean
that the programs ran correctly, as far as we could ob-
serve: Batch programs generated identical outputs across
distros; regression tests passed; we could interact nor-
mally with the GUI programs; and we could reproduce
the symptoms of the executable bug reports.

In addition, we were able to successfully execute all
of our 32-bit packages on the 64-bit versions of CentOS,
Mandriva, and openSUSE (the other 64-bit distros did
not support executing 32-bit binaries).

In sum, we were able to use CDE to successfully exe-
cute a diverse set of programs (Table 1) “out-of-the-box”
on a variety of Linux distributions from the past 5 years,
without performing any installation or configuration.

5vr-osg failed on Fedora Core 8 with a known error related to
graphics drivers.

7.2 Comparing against a one-click installer
To show that the level of portability that CDE enables
is substantive, we compare CDE against a representative
one-click installer for a commercial application. We in-
stalled and ran Google Earth (Version 5.2.1, Sep 2010)
on our 6 test distros using the official 32-bit installer from
Google. Here is what happened on each distro:

• CentOS (Linux 2.6.18) — installs fine but Google
Earth crashes upon start-up with variants of this
error message repeated several times, because the
GNU Standard C++ Library on this OS is too old:

/usr/lib/libstdc++.so.6:
version ‘GLIBCXX_3.4.9’ not found
(required by ./libgoogleearth_free.so)

• Fedora (Linux 2.6.23) — same error as CentOS

• openSUSE (Linux 2.6.27) — installs and runs fine

• Ubuntu (Linux 2.6.31) — installs and runs fine

• Mandriva (Linux 2.6.33) — installs fine but Google
Earth crashes upon start-up with this error message
because a required graphics library is missing:

error while loading shared libraries:
libGL.so.1: cannot open shared object
file: No such file or directory

• Linux Mint (Linux 2.6.35) — installer program
crashes with this cryptic error message because the
XML processing library on this OS is too new and
thus incompatible with the installer:

setup.data/setup.xml:1: parser error :
Document is empty

setup.data/setup.xml:1: parser error :
Start tag expected, ’<’ not found

Couldn’t load ’setup.data/setup.xml’

In summary, on 4 out of our 6 test distros, a bi-
nary installer for the fifth major release of Google Earth
(v5.2.1), a popular commercial application developed by
a well-known software company, failed in its sole goal
of allowing the user to run the application, despite adver-
tising that it should work on any Linux 2.6 machine.

If a team of professional Linux developers had this
much trouble getting a widely-used commercial applica-
tion to be portable across distros, then it is unreasonable
to expect researchers or hobbyists to be able to easily
create portable Linux packages for their prototypes.

In contrast, once we were able to install Google
Earth on just one machine (Dell desktop running Ubuntu
8.04), we ran it under CDE supervision to create a self-
contained package, copied the package to all 6 test dis-
tros, and successfully ran Google Earth on all of them
without any installation or configuration.

Native CDE slowdown
Benchmark run time pack exec

400.perlbench 23.7s 3.0% 2.5%
401.bzip2 47.3s 0.2% 0.1%
403.gcc 0.93s 2.7% 2.2%
410.bwaves 185.7s 0.2% 0.3%
416.gamess 129.9s 0.1% 0%
429.mcf 16.2s 2.7% 0%
433.milc 15.1s 2% 0.6%
434.zeusmp 36.3s 0% 0%
435.gromacs 133.9s 0.3% 0.1%
436.cactusADM 26.1s 0% 0%
437.leslie3d 136.0s 0.1% 0%
444.namd 13.9s 3% 0.3%
445.gobmk 97.5s 0.4% 0.2%
447.dealII 28.7s 0.5% 0.2%
450.soplex 5.7s 2.2% 1.8%
453.povray 7.8s 2.2% 1.9%
454.calculix 1.4s 5% 4%
456.hmmer 48.2s 0.2% 0.1%
458.sjeng 121.4s 0% 0.2%
459.GemsFDTD 55.2s 0.2% 1.6%
462.libquantum 1.8s 2% 0.6%
464.h264ref 87.2s 0% 0%
465.tonto 229.9s 0.8% 0.4%
470.lbm 31.9s 0% 0%
471.omnetpp 51.0s 0.7% 0.6%
473.astar 103.7s 0.2% 0%
481.wrf 161.6s 0.2% 0%
482.sphinx3 8.8s 3% 0%
483.xalancbmk 58.0s 1.2% 1.8%

Table 2: Quantifying run-time slowdown of CDE
package creation and execution within a package on the
SPEC CPU2006 benchmarks, using the “train” datasets.

7.3 Evaluating CDE run-time slowdown
The primary drawback of executing a CDE-packaged ap-
plication is the run-time slowdown due to extra user-
kernel context switches. Every time the target applica-
tion issues a system call, the kernel makes two extra con-
text switches to enter and then exit the cde-exec mon-
itoring process, respectively. cde-exec performs some
computations to calculate path redirections, but its run-
time overhead is dominated by context switching6.

We informally evaluated the run-time slowdown of
cde and cde-exec on 34 diverse Linux applications. In
summary, for CPU-bound applications, CDE causes al-
most no slowdown, but for I/O-bound applications, CDE
causes a slowdown of up to ∼30%.

We first ran CDE on the entire SPEC CPU2006
6Disabling path redirection still results in similar overheads.

Native CDE slowdown Syscalls
Command time pack exec per sec

gadm (algorithm) 4187s 0%† 0%† 19
pads (inferencer) 18.6s 3%† 1%† 478
klee 7.9s 31% 2%† 260
gadm (make plots) 7.2s 8% 2%† 544
gadm (C++ comp) 8.5s 17% 5% 1459
saturn 222.7s 18% 18% 6477
google-earth 12.5s 65% 19% 7938
pads (compiler) 1.7s 59% 28% 6969

Table 3: Quantifying run-time slowdown of CDE
package creation and execution within a package. Each
entry reports the mean taken over 5 runs; standard devi-
ations are negligible. Slowdowns marked with † are not
statistically significant at p < 0.01 according to a t-test.

benchmark suite (both integer and floating-point bench-
marks) [8]. We chose this suite because it contains CPU-
bound applications that are representative of the types
of programs that computational scientists and other re-
searchers are likely to run with CDE. For instance, SPEC
CPU2006 contains benchmarks for video compression,
molecular dynamics simulation, image ray-tracing, com-
binatorial optimization, and speech recognition.

We ran these experiments on a Dell machine with a
2.67GHz Intel Xeon CPU running a 64-bit Ubuntu 10.04
distro (Linux 2.6.32). Each trial was run three times, but
the variances in running times were negligible.

Table 2 shows the percentage slowdowns incurred
by using cde to create each package (the ‘pack’ col-
umn) and by using cde-exec to execute each package
(the ‘exec’ column). The ‘exec’ column slowdowns are
shown in bold since they are more important for our
users: A package is only created once but executed mul-
tiple times. In sum, slowdowns ranged from non-existent
to∼4%, which is unsurprising since the SPEC CPU2006
benchmarks were designed to be CPU-bound and not
make much use of system calls.

To test more realistic I/O-bound applications, we mea-
sured running times for executing the following com-
mands in the five CDE packages that we created (those
labeled with “self” in the “Creator” column of Table 1):

• pads — Compile a PADS [19] specification into C
code (the “pads (compiler)” row in Table 3), and
then infer a specification from a data file (the “pads
(inferencer)” row in Table 3).

• gadm — Reproduce the GADM experiment [21]:
Compile its C++ source code (‘C++ comp’), run ge-
netic algorithm (‘algorithm’), and use the R statis-
tics software to visualize output data (‘make plots’).

• google-earth — Measure startup time by
launching it and then quitting as soon as the initial
Earth image finishes rendering and stabilizes.

• klee — Use Klee [16] to symbolically execute a
C target program (a STUN server) for 100,000 in-
structions, which generates 21 test cases.

• saturn — Run the regression test suite, which con-
tains 69 tests (each is a static program analysis).

We measured the following on a Dell desktop (2GHz
Intel x86, 32-bit) running Ubuntu 8.04 (Linux 2.6.24):
number of seconds it took to run the original command
(‘Native time’), percent slowdown vs. native when run-
ning a command with cde to create a package (‘pack’),
and percent slowdown when executing the command
from within a CDE package with cde-exec (‘exec’). We
ran each benchmark five times under each condition and
report mean running times. We used an independent two-
group t-test [17] to determine whether each slowdown
was statistically significant (i.e., whether the means of
two sets of runs differed by a non-trivial amount).

Table 3 shows that the more system calls a program
issues per second, the more CDE causes it to slow down
due to the extra context switches. Creating a CDE pack-
age (‘pack’ column) is slower than executing a program
within a package (‘exec’ column) because CDE must cre-
ate new sub-directories and copy files into the package.

CDE execution slowdowns ranged from negligible (not
statistically significant) to ∼30%, depending on system
call frequency. As expected, CPU-bound workloads like
the gadm genetic algorithm and the pads inferencer ma-
chine learning algorithm had almost no slowdown, while
those that were more I/O- and network-intensive (e.g.,
google-earth) had the largest slowdowns.

When using CDE to run GUI applications, we did not
notice any loss in interactivity due to the slowdowns.
When we navigated around the 3D maps within the
google-earthGUI, we felt that the CDE-packaged ver-
sion was just as responsive as the native version. When
we ran GUI programs from CDE packages that users sent
to us (the bio-menace game, meld visual diff tool, and
vr-osg), we also did not perceive any visible lag.

The main caveat of these experiments is that they are
informal and meant to characterize “typical-case” behav-
ior rather than being stress tests of worst-case behavior.
One could imagine developing adversarial I/O intensive
benchmarks that issue tens or hundreds of thousands of
system calls per second, which would lead to greater
slowdowns. We have not run such experiments yet.

Finally, we also ran some informal performance tests
of cde-exec’s seamless execution mode. As expected,
there were no noticeable differences in running times
versus regular cde-exec, since the context-switching
overhead dominates cde-exec computation overhead.

8 Related work

We know of no published system that automatically cre-
ates portable software packages in situ from a live run-
ning machine like CDE does. Existing tools for creating
self-contained applications all require the user to manu-
ally specify dependencies at package creation time. For
example, Mac OS X programmers can create application
bundles using Apple’s developer tools IDE [6]. Research
prototypes like PDS [14], which creates self-contained
Windows apps, and the Collective [23], which aggregates
a set of software into a portable virtual appliance, also
require the user to manually specify dependencies.

VMware ThinApp is a commercial tool that automat-
ically creates self-contained portable Windows applica-
tions. However, a user can only create a package by
having ThinApp monitor the installation of new soft-
ware [12]. Unlike CDE, ThinApp cannot be used to cre-
ate packages from existing software already installed on
a live machine, which is our most common use case.

Package management systems are often used to install
open-source software and their dependencies. Generic
package managers exist for all major operating systems
(e.g., RPM for Linux, MacPorts for Mac OS X, Cygwin
for Windows), and specialized package managers ex-
ist for ecosystems surrounding many programming lan-
guages (e.g., CPAN for Perl, RubyGems for Ruby) [4].

From the package creator’s perspective, it takes time
and expertise to manually bundle up one’s software and
list all dependencies so that it can be integrated into a
specific package management system. A banal but tricky
detail that package creators must worry about is adhering
to platform-specific idioms for pathnames and avoiding
hard-coding non-portable paths into their programs [25].
In contrast, creating a CDE package is as easy as running
the target program, and hard-coded paths are fine since
cde-exec redirects all file accesses into the package.

From the user’s perspective, package managers work
great as long as the exact desired versions of software
exist within the system. However, version mismatches
and conflicts are common frustrations, and installing new
software can lead to a library upgrade that breaks existing
software [18]. The Nix package manager is a research
project that tries to eliminate dependency conflicts via
stricter versioning, but it still requires package creators to
manually specify dependencies at creation time [18]. In
contrast, CDE packages can be run without any installa-
tion, configuration, or risk of breaking existing software.

Virtual machine snapshots achieve CDE’s main goal
of capturing all dependencies required to execute a set of
programs on another machine. However, they require the
user to always be working within a VM from the start of
a project (or else re-install all of their software within a
new VM). Also, VM snapshot disk images are (by defi-

nition) larger than the corresponding CDE packages since
they must also contain the OS kernel and other extrane-
ous applications. CDE is a more lightweight solution be-
cause it enables users to create and run packages natively
on their own machines rather than through a VM.

9 Discussion and conclusions

Our design philosophy underlying CDE is that people
should be able to package up their Linux software and
deploy it to run on other Linux machines with as little ef-
fort as possible. However, we are not proposing CDE as
a replacement for traditional software installation. CDE
packages have a number of limitations. Most notably,

• They are not guaranteed to be complete.

• Their constituent shared libraries are “frozen” and
do not receive regular security updates. (Static link-
ing also shares this limitation.)

• They run slower than native applications due to
ptrace overhead. We measured slowdowns of
up to 28% in our informal experiments (§7.3), but
slowdowns can be worse for I/O-heavy programs.

Software engineers who are releasing production-
quality software should obviously take the time to cre-
ate and test one-click installers or integrate with package
managers. But for the millions of system administra-
tors, research scientists, prototype designers, program-
ming course students and teachers, and hobby hackers
who just want to deploy their ad-hoc software as quickly
as possible, CDE can emulate many of the benefits of tra-
ditional software distribution with much less required la-
bor: In just minutes, users can create a base CDE pack-
age by running their program under CDE supervision, use
our semi-automated heuristic tools to make the package
complete, deploy to the target Linux machine, and then
execute it in seamless execution mode to make the target
program behave like it was installed normally.

In particular, we believe that the lightweight nature of
CDE makes it a useful tool in the Linux system admin-
istrator’s toolbox. Sysadmins need to rapidly and ef-
fectively respond to emergencies, hack together scripts
and other utilities on-demand, and run diagnostics with-
out compromising the integrity of production machines.
Ad-hoc scripts are notoriously brittle and non-portable
across Linux distros due to differences in interpreter ver-
sions (e.g., bash vs. dash shell, Python 2.x vs. 3.x), sys-
tem libraries, and availability of the often-obscure pro-
grams that the scripts invoke. Encapsulating scripts and
their dependencies within a CDE package can make them
portable across distros and minor kernel versions; we
have been able to take CDE packages created on 2010-
era Linux distros and run them on 2006-era distros [20].

Lessons learned: We would like to conclude by shar-
ing some generalizable system design lessons that we
learned throughout the past year of developing CDE.

• First and foremost, start with a conceptually-clear
core idea, make it work for basic non-trivial cases,
document the still-unimplemented tricky cases,
launch your system, and then get feedback from real
users. User feedback is by far the easiest way for
you to discover what bugs are important to fix and
what new features to add next.
• A simple and appealing quick-start webpage guide

and screencast video demo are essential for attract-
ing new users. No potential user is going to read
through dozens of pages of an academic research
paper before deciding to try your system. In short,
even hackers need to learn to be great salespeople.
• To maximize your system’s usefulness, you must

design it to be easy-to-use for beginners but also to
allow advanced users to customize it to their liking.
One way to accomplish this goal is to have well-
designed default settings, which can be adjusted via
command-line options or configuration files. The
defaults must work well “out-of-the-box” without
any tuning, or else beginners will get frustrated.
• Resist the urge to add new features just because

they’re “interesting”, “cool”, or “potentially use-
ful”. Only add new features when there are com-
pelling real users who demand it. Instead, focus
your development efforts on fixing bugs, writing
more test cases, improving your documentation,
and, most importantly, attracting new users.
• Users are the best sources of bug reports, since they

often stress your system in ways that you could have
never imagined. Whenever a user reports a bug, try
to create a representative minimal test case and add
it to your regression test suite.
• If a user has a conceptual misunderstanding of how

your system works, then think hard about how you
can improve your documentation or default settings
to eliminate this misunderstanding.

In sum, get real users, make them happy, and have fun!

Acknowledgments

Special thanks to Dawson Engler for supporting my ef-
forts on this project throughout the past year, to Bill
Howe for inspiring me to develop CDE’s streaming mode,
to Yaroslav Bulatov for being a wonderful CDE power-
user and advocate, to Federico D. Sacerdoti (my pa-
per shepherd) for his insightful critiques that greatly im-
proved the prose, and finally to the NSF fellowship for
funding this portion of my graduate studies.

References
[1] CDE public source code repository, https://github.com/

pgbovine/CDE.

[2] Coq proof assistant: Bug 2443, http://coq.inria.fr/
bugs/show_bug.cgi?id=2443.

[3] GCC compiler: Bug 46651, http://gcc.gnu.org/
bugzilla/show_bug.cgi?id=46651.

[4] List of software package management systems, http:
//en.wikipedia.org/wiki/List_of_software_
package_management_systems.

[5] LLVM compiler: Bug 8679, http://llvm.org/bugs/
show_bug.cgi?id=8679.

[6] Mac OS X Bundle Programming Guide: Introduction,
http://developer.apple.com/library/mac/
#documentation/CoreFoundation/Conceptual/
CFBundles/Introduction/Introduction.html.

[7] Saturn online discussion thread, https://mailman.
stanford.edu/pipermail/saturn-discuss/
2009-August/000174.html.

[8] Spec cpu2006 benchmarks, http://www.spec.org/
cpu2006/.

[9] SSH Filesystem, http://fuse.sourceforge.net/
sshfs.html.

[10] arachni project home page, https://github.com/
Zapotek/arachni.

[11] graph-tool project home page, http://projects.
skewed.de/graph-tool/.

[12] VMware ThinApp User’s Guide, http://www.vmware.
com/pdf/thinapp46_manual.pdf.

[13] AIKEN, A., BUGRARA, S., DILLIG, I., DILLIG, T., HACK-
ETT, B., AND HAWKINS, P. An overview of the Saturn project.
PASTE ’07, ACM, pp. 43–48.

[14] ALPERN, B., AUERBACH, J., BALA, V., FRAUENHOFER, T.,
MUMMERT, T., AND PIGOTT, M. PDS: A virtual execution envi-
ronment for software deployment. VEE ’05, ACM, pp. 175–185.

[15] ALTEKAR, G., AND STOICA, I. ODR: output-deterministic re-
play for multicore debugging. SOSP ’09, ACM, pp. 193–206.

[16] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: unassisted
and automatic generation of high-coverage tests for complex sys-
tems programs. OSDI ’08, USENIX Association, pp. 209–224.

[17] CHAMBERS, J. M. Statistical Models in S. CRC Press, Inc.,
Boca Raton, FL, USA, 1991.

[18] DOLSTRA, E., DE JONGE, M., AND VISSER, E. Nix: A safe
and policy-free system for software deployment. In LISA ’04, the
18th USENIX conference on system administration (2004).

[19] FISHER, K., AND GRUBER, R. PADS: a domain-specific lan-
guage for processing ad hoc data. PLDI ’05, ACM, pp. 295–304.

[20] GUO, P. J., AND ENGLER, D. CDE: Using system call interpo-
sition to automatically create portable software packages (short
paper). In USENIX Annual Technical Conference (June 2011).

[21] LAHIRI, M., AND CEBRIAN, M. The genetic algorithm as a
general diffusion model for social networks. In Proc. of the 24th
AAAI Conference on Artificial Intelligence (2010), AAAI Press.

[22] LOPER, E., AND BIRD, S. NLTK: The Natural Language
Toolkit. In In ACL Workshop on Effective Tools and Method-
ologies for Teaching NLP and Computational Linguistics (2002).

[23] SAPUNTZAKIS, C., BRUMLEY, D., CHANDRA, R., ZEL-
DOVICH, N., CHOW, J., LAM, M. S., AND ROSENBLUM, M.
Virtual appliances for deploying and maintaining software. In
LISA ’03, the 17th USENIX conference on system administration
(2003).

[24] SCAFFIDI, C., SHAW, M., AND MYERS, B. Estimating the num-
bers of end users and end user programmers. In IEEE Symposium
on Visual Languages and Human-Centric Computing (2005).

[25] STAELIN, C. mkpkg: A software packaging tool. In LISA ’98,
the 12th USENIX conference on system administration (1998).

[26] SUCAN, I. A., AND KAVRAKI, L. E. Kinodynamic motion plan-
ning by interior-exterior cell exploration. In Int’l Workshop on the
Algorithmic Foundations of Robotics (2008), pp. 449–464.

