
Content-aware Load Balancing for Distributed Backup

Fred Douglis
EMC

Fred.Douglis@emc.com

Deepti Bhardwaj
EMC

Deepti.Bhardwaj@emc.com

Hangwei Qian∗

Case Western Reserve Univ.
Hangwei.Qian@case.edu

Philip Shilane
EMC

Philip.Shilane@emc.com

Abstract
When backing up a large number of computer systems
to many different storage devices, an administrator has
to balance the workload to ensure the successful com-
pletion of all backups within a particular period of time.
When these devices were magnetic tapes, this assign-
ment was trivial: find an idle tape drive, write what fits on
a tape, and replace tapes as needed. Backing up data onto
deduplicating disk storage adds both complexity and op-
portunity. Since one cannot swap out a filled disk-based
file system the way one switches tapes, each separate
backup appliance needs an appropriate workload that fits
into both the available storage capacity and the through-
put available during the backup window. Repeating a
given client’s backups on the same appliance not only
reduces capacity requirements but it can improve per-
formance by eliminating duplicates from network traf-
fic. Conversely, any reconfiguration of the mappings of
backup clients to appliances suffers the overhead of re-
populating the new appliance with a full copy of a client’s
data. Reassigning clients to new servers should only be
done when the need for load balancing exceeds the over-
head of the move.

In addition, deduplication offers the opportunity for
content-aware load balancing that groups clients to-
gether for improved deduplication that can further im-
prove both capacity and performance; we have seen a
system with as much as 75% of its data overlapping other
systems, though overlap around 10% is more common.
We describe an approach for clustering backup clients
based on content, assigning them to backup appliances,
and adapting future configurations based on changing re-
quirements while minimizing client migration. We de-
fine a cost function and compare several algorithms for
minimizing this cost. This assignment tool resides in a
tier between backup software such as EMC NetWorker
and deduplicating storage systems such as EMC Data
Domain.
∗Work done during an internship.
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1 Introduction

Deduplication has become a standard component of
many disk-based backup storage environments: to keep
down capacity requirements, repeated backups of the
same pieces of data are replaced by references to a single
instance. Deduplication can be applied at the granular-
ity of whole files, fixed-sized blocks, or variable-sized
“chunks” that are formed by examining content [12].

When a backup environment consists of a handful of
systems (or “clients”) being backed up onto a single
backup appliance (or “server”), provisioning and config-
uring the backup server is straightforward. An organi-
zation buys a backup appliance that is large enough to
support the capacity requirements of the clients for the
foreseeable future, as well as capable of supporting the
I/O demands of the clients. That is, the backup appliance
needs to have adequate capacity and performance for the
systems being backed up.

As the number of clients increases, however, opti-
mizing the backup configuration is less straightforward.
A single backup administration domain might manage
thousands of systems, backing them up onto numerous
appliances. An initial deployment of these backup appli-
ances would require a determination of which clients to
back up on which servers. Similar to the single-server en-
vironment, this assignment needs to ensure that no server
is overloaded in either capacity or performance require-
ments. But the existence of many available servers adds
a new dimension of complexity in a deduplicating en-
vironment, because some clients may have more con-
tent in common than others. Assigning similar clients
to the same server can gain significant benefits in capac-
ity requirements due to the improved deduplication; in a
constrained environment, assigning clients in a content-
aware fashion can make the difference between meeting



one’s capacity constraints and overflowing the system.
The same considerations apply in other environments.

For example, the “clients” being backed up might ac-
tually be virtual machine images. VMs that have been
cloned from the same “golden master” are likely to have
large pieces in common, while VMs with different his-
tories will overlap less. As another example, the sys-
tems being copied to the backup appliance might be
backup appliances themselves: some enterprises have
small backup systems in field offices, which replicate
onto larger, more centralized, backup systems for disas-
ter recovery.

Sending duplicate content to a single location can not
only decrease capacity requirements but also improve
performance, since content that already exists on the
server need not be transferred again. Eliminating dupli-
cates from being transmitted is useful in LAN environ-
ments [5] and is even more useful in WAN environments.

Thus, in a deduplicating storage system, content-
aware load balancing is desirable to maximize the ben-
efits of deduplication. There are several considerations
relating to how best to achieve such balance:

Balancing capacity and throughput Above all, the
system needs to assign the clients in a fashion that min-
imizes hot spots for storage utilization or throughput.
Improvements due to overlap can further reduce capac-
ity requirements.

Identifying overlap How does the system identify how
much different clients have in common?

Efficiency of assignment What are the overheads asso-
ciated with assignment?

Coping with overload If a server becomes overloaded,
what is the best way to adapt, and what are the costs of
moving a client from that server?

Our paper has three main contributions:

1. We define a cost function for evaluating potential as-
signments of clients to backup servers. This function
permits different configurations to be compared via a
single metric.

2. We present several techniques for performing these
assignments, including an iterative refinement heuris-
tic for optimizing the cost function in a content-aware
fashion.

3. We compare multiple methods for assessing content
overlap, both for collecting content and for clustering
that content to determine the extent of any overlap.

Our assignment algorithm serves as a middleware
layer that sits between the backup software and the un-
derlying backup storage appliances. Our ultimate goal is

a fully automated system that will dynamically reconfig-
ure the backup software as needed. As an initial pro-
totype, we have developed a suite of tools that assess
overlap, perform initial assignments by issuing recom-
mendations for client-server assignments, and compute
updated assignments when requirements change. Client
assignments can be converted into a sequence of com-
mands to direct the backup software to (re)map clients to
specific storage appliances.

The rest of this paper is as follows. The next section
provides more information about deduplication for back-
ups and other related work. §3 provides use cases for
the tool. §4 describes load balancing in more detail, in-
cluding the “cost” function used to compare configura-
tions and various algorithms for assignment of clients to
servers. §5 discusses the question of content overlap and
approaches to computing it. §6 presents results of sim-
ulations on several workloads. §7 examines some alter-
native metrics and approaches. Finally, §8 discusses our
conclusions and open issues.

2 Background and Related Work

2.1 Evolving Media
In the past decade, many backup environments have
evolved from tape-centric to disk-centric. Backup soft-
ware systems, such as EMC NetWorker [6], IBM Tivoli
Storage Manager [9], or Symantec NetBackup [19], date
to the tape-based era. With tapes, a backup server could
identify a pool of completely equivalent tape drives on
which to write a given backup. When data were ready
to be written, the next available tape drive would be
used. Capacity for backup was not a critical issue,
since it would usually be simple to buy more magnetic
tape. The main constraint in sizing the backup envi-
ronment would be to ensure enough throughput across
the backup devices to meet the “backup window,” i.e.,
the time in which all backups must complete. Some
early work in this area includes the Amanda Network
Backup Manager [16, 17], which parallelized worksta-
tion backups and created schedules based on anticipated
backup sizes. Interleaving backup streams is necessary
to keep the tapes busy and avoid “shoe-shining” from un-
derfull buffers, but this affects restore performance [20].
The equivalence of the various tape drives, however,
made parallelization and interleaving relatively straight-
forward.

Disk-based backup grew out of the desire to have
backup data online and immediately accessible, rather
than spread across numerous tapes that had to be located,
mounted, and sequentially accessed in case of data loss.
Deduplication was used to reduce the capacity require-
ments of the backup system, in order to permit disk-
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based backup to compete financially with tape. The most
common type of deduplication breaks a data stream into
“chunks,” using features of the data to ensure that most
small changes to the data do not affect the chunk bound-
aries. This way, inserting a few bytes early in a file
might change the chunk where the insertion occurs, but
the rest of the file will deduplicate. Deduplicating sys-
tems use a strong hash (known as a “fingerprint”) of the
content to identify when a chunk already exists in the
system [15, 21].

2.2 Deduplication: Challenges and Oppor-
tunities

With deduplicated disk backups replacing tape, the
equivalence of appliances is partly lost. Writing to the
same storage system gains efficiencies by suppressing
duplicate data; these efficiencies can be further reflected
back to the backup server or even the client being backed
up, if the duplicates are identified before data cross the
network [5]. The effort of dividing the content into
chunks and computing fingerprints over the chunks can
be distributed across the backup infrastructure, allowing
the storage appliance to scale to more clients and reduc-
ing network traffic when the deduplication rate is high.

Thus, the “stickiness” of the assignment of a client to a
storage appliance changes the role of the backup admin-
istrator. Instead of simply pooling many clients across
many tape drives, the mapping of clients to storage ap-
pliances needs to be done a priori. Once a client has
been paired with a particular storage appliance, it gets
great benefits from returning to that appliance and omit-
ting duplicates. Should it move to a different appliance,
it must start over, writing all of its data anew. But if its
target appliance is overloaded, the client queues up and
waits longer than desired, possibly causing the backup
not to complete within its “backup window.” Capacity is
similarly problematic, since a client that is being backed
up onto a full storage appliance either is not protected or
must move to another less loaded system and pay a cost
for copying data that would otherwise have been sup-
pressed through deduplication.

In summary, once a client is backed up onto a particu-
lar storage appliance, there is a tension between the bene-
fits of continuing to use it and the disadvantages that may
ensue from overload; at some tipping point, the client
may move elsewhere. It then pays a short-term overhead
(lack of deduplication) but gets long-term benefits.

Another interesting challenge relating to deduplicating
storage is anticipating when it will fill up. One needs to
consider not only how much is written but also how well
that data will deduplicate. Predictions of future capac-
ity requirements on a device-by-device basis, based on
mining past load patterns [2], would feed into our load
balancing framework.

2.3 Load Balancing
Finally, the idea of mapping a set of objects to a set
of appropriate containers is well-known in the systems
community. Load balancing of processor-intensive ap-
plications has been around for decades [3, 8], includ-
ing the possibility of dynamically reassigning tasks when
circumstances change or estimates prove to be inaccu-
rate [13]. More recently, allocating resources within grid
or cloud environments is the challenge. Allocating vir-
tual resources within the constraints of physical datacen-
ters is particularly problematic, as one must deal with
all types of resources: processor, memory, storage, and
network [18]. There are many examples of provisioning
systems that perform admission control, load balancing,
and reconfiguration as requirements change (e.g., [7]),
but we are unaware of any work that does this in the con-
text of deduplication.

3 Use Cases

In this section we describe the motivation behind this
system in greater detail. Figure 1 demonstrates the
basic problem of assigning backups from clients to
deduplicated storage systems, and there are a number of
ways in which automated content-aware assignment can
be useful.

Sizing and deployment Starting with a “clean slate,”
an administrator may have a large number of client ma-
chines to be backed up on a number of deduplicating
storage appliances. The assignment tool can use in-
formation about the size of each client’s backups, the
throughput required to perform the backups, the rate
of deduplication within each client’s backups, the rate
at which the backup size is expected to change over
time, and other information. With this data it can es-
timate which storage appliances will be sufficient for
this set of clients. Such “sizing tools” are common-
place in the backup industry, used by vendors to aid
their customers in determining requirements. Using
information about overlapping content across clients
allows the tool to refine its recommendations, poten-
tially lowering the total required storage due to im-
proved deduplication.

First assignment Whether the set of storage appliances
is determined via this tool or in another fashion, once
the capacity and performance characteristics of the
storage appliances are known, the tool can recom-
mend which clients should be assigned to which stor-
age system. For the first assignment, we assume that
no clients are already backed up on any storage ap-
pliance, so there is no benefit (with respect to dedu-
plication) to preferring one appliance over another for
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Figure 1: Backups from numerous clients are handled
by the backup manager, which assigns clients to dedu-
plicated storage while accounting for content overlap be-
tween similar clients. In this case, there was insufficient
room on a single storage node for all three large servers,
so one was placed elsewhere.

individual clients, though overlapping content is still a
potential factor.

Reconfigurations Once a system is in steady state, there
are a number of possible changes that could result in
reconfiguration of the mappings. Clients may be added
or removed, and backup storage appliances may be
added. Storage may even be removed, especially if
backups are being consolidated onto a smaller num-
ber of larger-capacity servers. Temporary failures may
also require reconfiguration. Adding new clients and
backup storage simultaneously may be the simplest
case, in which the new clients are backed up to the
new server(s). More commonly, extra backup capac-
ity will be required to support the growth over time of
the existing client population, so existing clients will
be spread over a larger number of servers.

Disaster recovery As mentioned in the introduction,
the “clients” might be backup storage appliances them-

selves, which are being replicated to provide disaster
recovery (DR). In terms of load balancing, there is lit-
tle distinction between backing up generic computers
(file servers, databases, etc.) and replicating dedupli-
cating backup servers. However, identifying content
overlap is easier in the latter case because the con-
tent is already distilled to a set of fingerprints. Also,
DR replication may be performed over relatively low-
bandwidth networks, increasing the impact of any re-
configuration that results in a full replication to a new
server.

4 Load Balancing and Cost Metrics

In order to assign clients to storage appliances, we need
a method for assessing the relative desirability of differ-
ent configurations, which is done with a cost function
described in §4.1. Given this metric, there are different
ways to perform the assignment and evaluate the results.
In §4.2, we describe and compare different approaches,
both simple single-pass techniques that do not explicitly
optimize the cost function and a heuristic for iteratively
minimizing the cost.

4.1 Cost Function
The primary goal of our system is to assign clients
to backup servers without overloading any individual
server, either with too much data being stored or too
much data being written during a backup window. We
define a cost metric to provide a single utility value for
a given configuration. The cost has several components,
representing skew, overload, and movement, as shown in
Table 1.

The basic cost represents the skew across storage and
throughput utilizations of the various servers, and when
the system is not heavily loaded it is the dominant com-
ponent of the total cost metric. Under load, the cost goes
up dramatically. Exceeding capacity is considered fatal,
in that it is not a transient condition and cannot be recov-
ered from without allocating new hardware or deleting
data. Exceeding throughput is not as bad as exceeding
capacity, as long as there is no “hard deadline” by which
the backups must complete — in that event, data will not
be backed up. Even if not exceeded, the closer capacity
or throughput is to the maximum allowable, the higher
the “cost” of that configuration. In contrast, having a
significantly lower capacity utilization than is allowable
may be good, but being 50% full is not “twice as good”
as being 100% full. As a result, the cost is nonlinear,
with dramatic increases close to the maximum allowed
and jumps to extremely high costs when exceeding the
maximum allowed. Finally, there are costs to reassign-
ing clients to new servers. We cover each in turn.
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Variable Description Scope Typical
values

Cbasic
weighted sum
of skews

system-wide 0-2

C f it fit penalty
overloaded
server

1000’s

Cutil

sum of storage
and
throughput
utilization
metrics

server 0-1000’s

Cmovement

sum of
movement
penalties

server 0-10’s

DS, DT

standard
deviation
(skew) of
{storage,
throughput}
utilizations

system-wide 0-1

Ui,s

storage
utilization of
node i

server 0-1

Ui,t

throughput
utilization of
node i

server 0-1

α

weight for
storage skew
relative to
throughput

0.8

m
number of
servers

Table 1: Components of the cost function and related
variables.

Skew

The basic cost starts with a weighted sum of the standard
deviations of the capacity and throughput utilizations of
the storage appliances:

Cbasic = αDS +(1−α)DT ,

where α is a configurable weight (defaulting to 0.8), DS
is the standard deviation of storage utilizations Ui,s (the
storage utilization of node i is between 0 and 1, or above
1 if node i is overloaded), and DT is the standard devia-
tion of throughput utilizations Ui,t (similar definition and
range). The notion is that if predicted utilization is com-
pletely equal, there is no benefit to adjusting assignments
and increasing that skew; however, one might redefine
this metric to exclude one or more systems explicitly tar-
geted to have excess capacity for future growth. Since
throughput is more dynamic than capacity, the default

weights emphasize capacity skew (80%) over through-
put skew (20%).

Overflowing Clients

There are then some add-ons to the cost to account for
penalties. First and foremost, if a server would be unable
to fit all the clients assigned to it, there is a penalty for
each client that does not fit:

C f it = fit penalty factor
m

∑
i=1

Fi,

Fi is the number of clients not fitting on node i, and the
penalty factor used in our experiments is a value of 1000
per excess host. We use 1000 as a means of ensuring
a step function: even if one out of many servers is just
minimally beyond its storage capacity (i.e., a utilization
of 1.00...01) the cost will jump to 1000+. In addition,
when several clients do not fit, the contribution to total
cost from the fit penalty is in the same range as the con-
tribution from the utilization (see below).

To count excess clients, we choose to remove from
smallest to largest until capacity is not exceeded: this
ensures that the greatest amount of storage is still allo-
cated, but it does have the property that we could pe-
nalize many small clients rather than removing a single
large one. We consider the alternate approach, removing
the largest client first, in §7.2.

Utilization

There are also level-based costs. There are two thresh-
olds, an upper threshold above (100%), a clearly unac-
ceptable state, and a lower threshold (80% of the max-
imum capacity or throughput) that indicates a warning
zone. The costs are marginal, similar to the U.S. tax
system, with a very low cost for values below the lower
threshold, a moderate cost for values between the lower
and upper thresholds, and a high cost for values above
the upper threshold, the overload region. Since the costs
are marginal, the penalty for a value just above a thresh-
old is only somewhat higher than a value just below
that threshold, but then the increase in the penalty grows
more quickly with higher values.

The equation for computing the utilization cost of a
configuration is as follows. Constant scaling factors
ranging from 10–10000 are used to separate the regions
of bad configurations: all are bad, but some are worse
than others and get a correspondingly higher penalty.
The weight of 0.1 for the more lightly loaded utiliza-
tion makes adjustments in the range of the other penalties
such as utilization skew. Each range of values inherits
from the lower ranges; for example, if Ui,s > 1 then its
penalty is 10,000 for everything above the threshold of
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Figure 2: The cost associated with storage on a node,
Si, depends on whether the utilization falls into the low
region, the warning region, or the overload region. The
costs are cumulative from one region to a higher one.

1, added to the penalty for values between 0.8 and 1 (100
* .2, the size of that region) and the penalty for values be-
tween 0 and 0.8 (.1 * .8, the size of that region). Figure 2
provides an example with several possible utilization val-
ues within and between the regions of interest.

Cutil =
m

∑
i=1

Si +Ti

Si =


.1∗Ui,s, Ui,s < .8

.1∗ .8+ 100 ∗ (Ui,s− .8), .8 < Ui,s ≤ 1
.1∗ .8+100∗ .2+10000 ∗ (Ui,s−1), Ui,s > 1

Ti =


0, Ui,t < .8

10 ∗ (Ui,t − .8), .8 < Ui,t ≤ 1
10∗ .2+1000 ∗ (Ui,t −1), Ui,t > 1

The highest penalty is for being > 100% storage ca-
pacity, followed by being > 100% throughput. If an
appliance is above the lower threshold for capacity or
throughput, a lesser penalty is assessed. If it is below
the lower threshold, no penalty is assessed for through-
put, and a small cost is applied for capacity to reflect
the benefit of additional free space. (Generally, a de-
crease on one appliance is accompanied by an increase
on another and these costs balance out across configu-
rations, but content overlap can cause unequal changes.)
These penalties are weights that vary by one or more or-
ders of magnitude, with the effect that any time one or
more storage appliances is overloaded, the penalty for
that overload dominates the less important factors. Only
if no appliance has capacity or throughput utilization sig-
nificantly over the lower threshold do the other penalties

such as skew, data movement, and small differences in
utilization, come into play.

Within a given cost region, variations in load still pro-
vide an ordering: for instance, if a server is at 110% of its
capacity and a change in assignments brings it to 105%,
it is still severely loaded but the cost metric is reduced.
As a result, that change to the configuration might be ac-
cepted and further improved upon to bring utilization be-
low 100% and, hopefully, below 80%. Dropping capac-
ity below 100% and avoiding the per-client penalties for
the clients that cannot be satisfied is a big win; this could
result in shifting a single large client to an overloaded
server in order to fit many smaller ones. Conversely, the
reason for the high penalty for each client that does not fit
is to ensure that the cost encompasses not only the mag-
nitude of the capacity gap but also the number of clients
affected, but there is a strong correlation between C f it
and Cutil in cases of high overload.

Movement

The final cost is for data movement: if a client was pre-
viously assigned to one system and moves to another, a
penalty is assessed in proportion to that client’s share of
the original system’s capacity. This penalty is weighted
by a configurable “movement penalty factor.” Thus, a
client with 1TB of post-dedupe storage, moving from a
30-TB server, would add movement penalty f actor ∗ 1

30
to the configuration cost.

Mi = ∑
clientsi

movement penalty factor∗ sizeclient

sizei

Cmovement =
m

∑
i=1

Mi

Movement penalty factor defaults to 1, which also re-
sults in the adjustment to the cost being in the same range
as skew, though the movement penalty factor could be
higher in a WAN situation. We discuss other values be-
low.

In total, the cost C for a given configuration is:

C = Cbasic +C f it +Cutil +Cmovement

The most important consideration in evaluating a cost
is whether it indicates overload or not; among those with
low enough load, any configuration is probably accept-
able. In particular, penalties for movement are inher-
ently lower than penalties for overload conditions, and
then among the non-overloaded configurations, any with
movement is probably worse than any that avoids such
movement. Thus the weight for the movement penalty,
if at least 1 and not orders of magnitude higher, has little
effect on the configuration selected.
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4.2 Algorithmic Approaches

We considered four methods of assigning clients; three
are fairly simple and efficient but tend to work badly
in overloaded environments, while the fourth is much
more computationally expensive but can have significant
benefits. In all cases, if a configuration includes prede-
termined assignments, those assignments are made first,
and then these methods are used to assign the remaining
clients. Existing assignments can constrain the possible
assignments in a way that makes imbalance and overload
likely, if not unavoidable.

The three “simple” algorithms are as follows. None
of them takes content overlap into account in selecting a
server for a particular client. However, they do a limited
form of accounting for content overlap once the server is
assigned. The next section discusses extensive analysis
to compute pair-wise overlaps between specific hosts,
but computing the effects of the pair-wise overlaps
as each client is assigned is expensive. The simple
algorithms instead consider only class-wise overlaps, in
which the presence of another client in the same “class”
as the client most recently added is assumed to provide a
fixed reduction to the newer client’s space requirements.
That reduction is applied to that client before continuing,
so servers with many overlapping clients can be seen
to have additional capacity. The final, more precise,
cost calculation is performed after all assignments are
completed.

Random (RAND) Randomly assign clients to backup
servers. RAND picks from all servers that have avail-
able capacity. If a client does not fit on the selected
server, it then checks each server sequentially. If it
wraps around to the original selection and the client
does not fit, the client is assigned to the first choice,
whose utilization will now be > 1, and the cost metric
will reflect both the high utilization and the overflow-
ing client. By default, we run RAND 10 times and take
the best result, which dramatically improves the out-
come compared to a single run [14].

Round-robin (RR) Assign clients to servers in order, re-
gardless of the size of the client. Again, if a server does
not have sufficient capacity, the next server in order
will be tried; if no server is sufficient, the first one will
be used and an overflowing client will be recorded.

Bin-packing (BP) Assign based on capacity, in decreas-
ing order of required capacity, to the server with the
most available space. If no server has sufficient ca-
pacity, the one with the most remaining capacity (or
the least overflow) will be selected and the overflow-
ing client will be recorded.

Figure 3: With simulated annealing, the system tries
swapping or moving individual clients to improve the
overall system cost. Here, the different shapes are as-
sumed to deduplicate well against each other, so swap-
ping a circle with a triangle reduces the load of both
machines. Then moving a circle and a triangle from
the overloaded server on the left onto the other systems
increases their loads but decreases the leftmost server’s
load. The arrows represent storage utilization, with the
red ones highlighting overload. The dark borders and
unshaded shapes represent new or removed assignments,
respectively.

The fourth algorithm bears additional detail. It is the
only one that dynamically reassigns previously assigned
clients, trading a movement penalty for the possible ben-
efit of lowered costs in other respects. It does a full cost
calculation for each possible assignment, and does many
possible assignments, so it is computationally expensive
by comparison to the three previous approaches.

Simulated annealing (SA) [11] Starting with the result
from BP, perturb the assignments attempting to lower
the cost. At each step, a small number of servers are
selected, and clients are either swapped between two
servers or moved from one to another (see Figure 3).
The probability of movement is higher initially, and
over time it becomes more likely to swap clients as
a way of reducing the impact. The cost of the new
configuration is computed and compared with the cost
of the existing configuration; the system moves to the
new configuration if it lowers the cost or, with some
smaller probability, if the cost does not increase dra-
matically. The configuration with the lowest cost is
always remembered, even if the cost is temporarily in-
creased, and used at the end of the process.

We use a modified version of the Perl
MachineLearning::IntegerAnnealing library,1

1This library appears to have been superseded by the
AI::SimulatedAnnealing library, http://search.cpan.org/

~bfitch/AI-SimulatedAnnealing-1.02/.
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which allows some control over the way in which the
assignments are perturbed:

• The algorithm accepts a set of initial assign-
ments, rather than starting with random assign-
ment.

• It accepts a specification of the percent of as-
signments to change in a given “trial,” when it
tries to see if a change results in a better out-
come. This percentage, which defaults to 10%,
decreases over time.

• The probability of moving a client from one stor-
age appliance to another or swapping it with a
client currently assigned to the other appliance is
configurable. It starts at 2

3 and declines over time.

• The choice of the target systems for which to
modify assignments can be provided externally.
This allows it to focus on targets that are over-
loaded rather than moving assignments among
equally underloaded systems.

By default, SA is the only algorithm that reassigns a
client that has already been mapped to a specific stor-
age appliance (we consider a simple alternative to this
for the other algorithms in §7.1).

We evaluate the effectiveness of these algorithms in
§6.3. In general, RAND and RR work “well enough” if
the storage appliances are well provisioned relative to
the client workload and the assignments are made on an
empty system. However, if we target having each sys-
tem around 80–90% storage utilization or adjust a sys-
tem that was overloaded prior to adding capacity, these
approaches may result in high skew and potential over-
load. BP works well in many of the cases, and SA further
improves upon BP to a limited extent in a number of cases
and to a great extent in a few extreme examples. SA has
the greatest benefit when the system is overloaded, es-
pecially if the benefits of content overlap are significant,
but in some cases it is putting lipstick on a pig: it lowers
the cost metric, but the cost is still so high that the dif-
ference is not meaningful. Naturally, the solution in such
cases is to add capacity.

5 Computing Overlap

There are a number of ways by which one can deter-
mine the overlap of content on individual systems. In
each case we start with a set of “fingerprints” represent-
ing individual elements of deduplication, such as chunks.
These fingerprints need not be as large as one would use
for actual deduplication. (For instance, a 12-byte finger-
print with a collective false positive rate of 1

232 is fine for

estimating overlap even if it would be terrible for actu-
ally matching chunks – for that one might use 20 bytes or
more, with a false positive rate of 1

296 .) The fingerprints
can be collected by reading and chunking the file system,
or by looking at existing backups that have already been
chunked.

Given fingerprints for each system, we considered two
basic approaches to computing overlap: sort-merge and
Bloom filters [1].

With sort-merge, the fingerprints for each system are
sorted, then the minimal fingerprint across all systems is
determined. That fingerprint is compared to the mini-
mal fingerprint of all the systems, and a counter is incre-
mented for any systems that share that fingerprint, such
that the pair-wise overlap of all pairs of systems is calcu-
lated. After that fingerprint is removed from the ordered
sets containing it, the process repeats.

With Bloom filters, the systems are processed sequen-
tially. Fingerprints for the first system are inserted into
its Bloom Filter. Then for each subsequent system, fin-
gerprints are added to a new Bloom filter, one per system.
When these fingerprints are new to that system, they are
checked against each of the previous systems, but not
added to them.

The sort-merge process can be precise, if all finger-
prints are compared. Bloom filters have an inherent error
rate, due to false positives when different insertions have
collectively set all the bits checked by a later data ele-
ment. However, that false positive rate can be fairly low
(say 0.001%), depending on the size of the Bloom filter
and the number of functions used to hash the data.

If the Bloom filters are all sufficiently sparse after
all insertions have taken place, another way to estimate
overlap is to count the number of intersecting bits that
have been set in the bit-vector; however, for “standard-
size” Bloom filters setting multiple bits per element in-
serted, we found it is easy to have a 1% overlap of fin-
gerprints result in 20–30% overlap in bits. Each filter
would need to be scaled to be significantly larger than
would normally be required for a given number of ele-
ments, which would in turn put more demands on system
memory, or the number of bits set for each entry would
have to be reduced, increasing the rate of false positives.
(Consistent with this result, Jain, et al. [10], reported a
detailed analysis of the false positive rate of intersect-
ing Bloom filters, finding that it is very accurate when
there is high overlap but remarkably misleading in cases
of little or no overlap. Since we expect many systems
to overlap by 0–20% rather than 75–100%, Bloom filter
intersection would not be helpful here.)

Regardless of which approach is used, there is an ad-
ditional concern with respect to clustering more than two
clients together. Our goal is to identify what fraction of
a new client A already exists on a system containing data
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(a) Complete overlap (b) Subset overlap (c) Distinct sets (d) Partial overlap

Figure 4: Four views of possible overlap among A, B, and C. The red or magenta areas indicate overlap that can be
attributed to a single pair. The yellow area indicates overlap that must be attributed to multiple intersecting datasets.

from clients B, C, . . . Z. This is equivalent to taking the
intersection of A’s content with the union of the content
of the clients already present:

Dup(A) = A∩ (B∪C∪ . . .∪Z)

However, we cannot store the contents of every client
and recompute the union and intersection on the fly. To
get an accurate estimate of the intersection, we ideally
want to precompute and store enough information to es-
timate this value for all combinations of clients. If we
only compute the number of chunks in common between
A and B, A and C, and B and C, then we don’t know how
many are shared by all of A, B, and C. For example, if
A∩B = 100, A∩C = 100, and B∩C = 100, A∩B∩C
may be 100 as well, or it may be 0. If A and B are al-
ready assigned to a server and then C is added to it, C
may have as little as 100 in common with the existing
server or it may have as many as 200 overlapping. The
value of A∩B∩C provides that quantity.

Figure 4 depicts some simple scenarios in a three-
client example. In the first two cases, C ⊂ B, so even
though C overlaps with A the entire overlap can be com-
puted by looking at A and B. In the third case, B and C
are completely distinct, and so if A joined a storage appli-
ance with B and C the content in A∩B and A∩C would
all be duplicates and the new data would consist of the
size of A minus the sizes of A∩B and A∩C. The last
case shows the more complicated scenario in which B
and C partially intersect, and each intersects A. Here, the
yellow region highlights an area where A intersects both
B and C, so subtracting A∩B and A∩C from A’s size
would overestimate the benefits of deduplication. The
size of the region A∩B∩C must be counted only once.

Therefore, the initial counts are stored for the largest
group of clients. By counting the number of chunks in
common among a set S of clients, we can enumerate the
2|S| subsets and add the same number of matches to each
subset. Then, for each client C, we can compute the frac-
tion of its chunks that are shared with any set of one or
more other clients; this similarity metric then guides the
assignment of clients to servers.

To keep the overhead of the subset enumeration from
being unreasonable, we cap the maximum value of |S|.
Fingerprints that belong to > Smax clients are shared
widely enough not to be interesting from the perspec-
tive of content-aware assignment, for a couple of rea-
sons: first, if more clients share content than would be
placed on a single storage appliance, the cluster will be
broken up regardless of overlap; and second, the more
clients sharing content, the greater the odds that the con-
tent will exist on many storage appliances regardless of
content-aware assignment. Empirically, a good value of
Smax is in the range [ S

3 , S
2 ].

In summary, for each client, we can compute the fol-
lowing information:

• What fraction of its chunks are completely unique
to that client, and will not deduplicate against any
other client? This value places an upper bound on
possible deduplication.

• What fraction of its chunks are shared with at
least Smax − 1 clients? We assume these chunks
will deduplicate on any appliance that already
stores other clients, providing an approximate lower
bound on deduplication, but there is an inherent er-
ror from such an assumption: if the Smax−1 clients
are all on a single appliance, the Sth client will only
get the additional deduplication if it is co-resident
with these others.

• How much does the client deduplicate against each
other client, excluding the common chunks?

Combining the per-pair overlaps with per-triple data, we
can identify the best-case client with which to pair a
given client for maximum deduplication, then the best-
case second client that provides the most additional
deduplication beyond the first matching client. §6.2 de-
scribes the results of this analysis on a set of 21 Linux
systems. Since even the 3rd client is usually a marginal
improvement beyond the 2nd , we do not use overlap be-
yond pairwise intersections in our experiments.
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5.1 Approximation Techniques

Dealing with millions of fingerprints, or more, is un-
wieldy. In practice, as long as the fingerprints are uni-
formly distributed, it is possible to estimate overlap by
sampling a subset of fingerprints. This sampling is sim-
ilar to the approach taken by Dong, et al., when routing
groups of chunks based on overlapping content [4], ex-
cept that the number of chunks in a group was limited
to a relatively small number (200 or so). Thus in that
work, the quality of the match degraded when sampling
fewer than 1

8 fingerprints, but when characterizing en-
tire multi-GB or multi-TB datasets, we have many more
fingerprints to choose from. Empirically, sampling 1 in
1024 fingerprints has proven to be about as effective as
using all of them; we discuss this further in §6.2.1.

In addition, it is possible to approximate the effect of
larger clusters by pruning the counts of matches when-
ever the number is small enough. For instance, if A∩B is
10% of A and 5% of B, A∩C is 15% of A and 5% of C,
and A∩B∩C is 0.5% of A, then we estimate from A∩B
and A∩C that adding A to B and C will duplicate 25% of
A’s content. This overestimates the duplication by 0.5%
of A since it counts that amount twice, but the adjustment
is small enough not to affect the outcome. Similarly, in
Figure 4d, the yellow region of overlap A∩B∩C is much
greater than the intersection only between A and C that
does not include B: adding A to B and C is approximately
the same as adding A to B alone, and C can be ignored if
it is co-resident with B.

This approximation does not alleviate the need to com-
pute the overlap in the first place, since it is necessary to
do the comparisons in order to determine when overlap is
negligible. But the state to track each individual combi-
nation of hosts adds up; therefore, it is helpful to compute
the full set, then winnow it down to the significant over-
laps before evaluating the best way to cluster the hosts.
This filter can be applied all the way at the level of pairs
of clients, ignoring pairs that have less than some thresh-
old (such as 5%) of the content of at least one client in
common.

6 Evaluation

In this section we describe the use of the client as-
signment tool in real-world and simulated environments.
§6.1 discusses the datasets used, §6.2 reports some exam-
ples of overlapping content and the impact of sampling
the dataset fingerprints, and §6.3 compares the various
algorithms introduced in §4.2.

6.1 Datasets

To evaluate our approach, we draw from three datasets:

1. Linux workstations, full content. We have a set of 21
collections of fingerprints of content-defined chunks
on individual Linux workstations and file servers.
Most of these are drawn from a canonical internal test
dataset2 from 2005-6 containing full and incremental
backups of workstations over a period of months; since
duplicate fingerprints are ignored, this is the union of
all content on these systems over that period (exclud-
ing any data that never makes it to a backup). About 1

4
are from a set of workstations and file servers currently
in the Princeton EMC office, collected in 2011 through
a single pass over each local file system.

2. Artificial dataset, no content. In order to show the ef-
fect of repeatedly adding clients to a system over time,
we generated an artificial dataset with a mix of three
client sizes. Each iteration, the system adds 20 clients:
10 small clients with full backups of 20GB, 7 medium
100GB clients, and 3 big 2TB clients. This adds up to
6.9TB of total full backups, which scales to about 8TB
of unique data to be retained over a period of several
months. We simulate writing the datasets onto a num-
ber of DD690 backup systems with 35.3TB storage
each; after deduplication, about 5 sets of clients (100
clients in total) can fit on one such appliance. We start
with 2 servers and then periodically add capacity: the
goal is to go from comfortable capacity to overload,
then repeatedly add a server and add more clients until
overloaded once again. This can be viewed as an outer
loop, in which DD690 appliances are added, and an in-
ner loop, in which 20 clients are assigned per iteration.
Once assigned to a server, a client starts with a pref-
erence for that server, except for when a new backup
server is added: to give the the non-migrating algo-
rithms a chance to rebalance, the previous assignments
are forgotten with 1

3 probability.

We consider two types of overlap, one in which there
is a small set of clients with high overlap, and one in
which all clients of a “class” have small overlap. In
the former case, each client added during an iteration
of the outer loop deduplicates 30% of its content with
the corresponding clients from previous iterations of
the outer loop: the ith client added when there were 6
DD690s dedupes well with the ith client added when
there were [2..5] DD690s present. It deduplicates 10%
with all other clients of the same type (big, medium,
or small). In the latter case, only the 10% per-class
overlap applies.

2This is the “workstations” dataset in a previous paper [4].
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ID

Best
Possi-

ble
(%)

Best2
(%) =

Widely
Shared
(%) +

Saved1
(%) +

Add’l
Saved
(%)

Chunks Unique
Chunks

Match1
host

Match2
host

Pct
Saved2
(in iso-
lation)

host1 73.87 73.75 0.77 48.9 24.08 823,256 215,083 host21 host16 30.9
host2 32.06 31.53 0.53 27.8 3.19 9,065,414 6,158,755 host16 host20 3.6
host3 18.68 17.21 0.80 14.9 1.51 3,843,577 3,125,766 host4 host20 12.1
host4 15.03 14.53 0.84 13.2 0.50 4,852,119 4,122,931 host5 host20 10.2
host5 14.34 13.04 0.74 10.5 1.80 6,645,378 5,692,506 host9 host20 7.8
host6 13.00 12.43 2.82 8.9 0.71 7,853,942 6,832,555 host9 host11 1.1
host7 11.67 10.19 5.94 3.3 0.95 3,460,930 3,057,042 host11 host16 2.4
host8 10.88 10.7 8.14 2.5 0.06 2,458,516 2,191,010 host19 host13 1.2
host9 10.3 8.05 0.44 5.7 1.91 31,410,032 28,176,318 host16 host5 2.2
host10 9.41 8.91 5.32 2.7 0.89 4,195,226 3,800,335 host13 host18 2.2
host11 8.73 6.16 2.81 1.9 1.46 8,066,949 7,362,355 host9 host13 1.6
host12 8.36 7.38 4.67 1.6 1.11 4,512,393 4,135,327 host6 host13 1.4
host13 7.89 6.47 3.61 2.1 0.76 6,231,280 5,739,526 host11 host18 1.3
host14 7.88 7.28 5.07 1.9 0.31 4,361,658 4,018,166 host19 host11 1.6
host15 7.70 7.08 4.34 2.4 0.34 5,141,613 4,745,660 host11 host13 1.0
host16 7.36 6.28 0.10 3.9 2.28 64,735,211 59,973,773 host2 host9 2.7
host17 7.17 6.52 2.27 3.3 0.96 3,035,582 2,817,910 host16 host5 1.2
host18 6.27 5.55 2.44 2.2 0.91 9,220,185 8,641,937 host16 host11 1.6
host19 4.73 3.99 2.39 1.2 0.40 9,359,512 8,917,158 host11 host5 0.4
host20 3.07 2.33 0.15 1.8 0.38 28,381,188 27,508,835 host5 host2 1.1
host21 1.77 1.70 0.03 0.9 0.77 43,045,905 42,284,086 host1 host16 0.9

Average 8.13 260,699,866 239,517,034

Table 2: Inter-host deduplication of 21 workstations

3. Customer backup metadata, no content. We have a
collection of 480 logs of customer backup metadata,
including such data as the size of each full or incre-
mental backup, the duration of each backup, the reten-
tion period, and so on. These logs do not include actual
content, though they include the “class” that each ma-
chine being backed up is in: one can infer better over-
lap between machines in the same class than machines
in different classes, but not quantify the extent of the
overlap. (We assume a 10% overlap for clients in the
same class.) We preprocess these logs to estimate the
requirements for each client within a given customer
environment, compute the size and number of backup
storage appliances necessary to support these clients,
then assign the clients to this set of storage appliances.
By adjusting the desired threshold of excess capacity,
we can vary the contention for storage capacity and
I/O. In this paper we consider only the largest of these
customer logs, with nearly 3,000 clients.

6.2 Content Overlap
Table 2 and Figure 5 describe the intersection of the 21
Linux datasets. Hosts are anonymized via the names
“host1” to “host21,” shown in the first column of the
table. The next column shows the idealized deduplica-

Figure 5: This is a visual depiction of the data in Table 2,
showing the components contributions to the deduplica-
tion of each host.

tion, computed by dividing the number of unique chunks
by the number of chunks and subtracting the result from
100%. (We assume that all chunks are the same size,
although in practice they are statistically an average of
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8 Kbytes.) Hosts are sorted by the best possible dedupli-
cation rate. The average across all hosts is about 8%.

The next column, Best2, reports the deduplication ob-
tained by matching a given host against the best two
hosts, as described in §5. It is the sum of the widely
shared data appearing on that host (typically around 1–
2% but as high as 8%), the additional deduplication
specifically against the Match1 host, and the additional
deduplication against Match2 host. Since the second
match excludes both common chunks and anything on
Match1, the added benefit from the second host is usu-
ally under 2%, but in the case of host1, the second
matching host provides about half as much deduplica-
tion as the first host, over 24%. Pct Saved2 indicates
how much deduplication could have been achieved by
the second host without the first.

The columns listing which hosts provided the best and
second-best deduplication indicate that a handful of hosts
provide most of the matches. Also, the relationships are
not always symmetric, in part because of varying dataset
sizes. Host2 is the best match for Host16 and vice-
versa, but in other cases it is more of a directed graph.

Figure 5 shows this data visually. The height of each
bar corresponds to the best possible deduplication, The
blue bar at the bottom is the percent of chunks on that
host that appear on many other hosts, the red bar shows
the additional benefit from the best single match, the
green bar shows the additional benefit from a second
host, and the purple bar shows extra deduplication that
might be obtained through three or more co-resident
hosts. Not all bars are visible for each host. For the first
three hosts, arrows identify the matching hosts shown in
the table. A host with relatively little data may dedupli-
cate well against a larger host, while the larger host gets
relatively little benefit from deduplicating in turn against
the smaller one; in this case the host with the best overall
deduplication matches the host with the poorest dedupli-
cation, as a fraction of its total data.

Lest there be a concern that there is a small num-
ber of examples reflecting good deduplication, while
the average is relatively low, there are other meaning-
ful datasets with substantial overlap. For example, two
VMDK files representing different Windows VMware
virtual machine images used by an EMC release engi-
neering group overlapped by 49% of the chunks in each.

6.2.1 Sampling

Our goal for sampling is to ensure that even with approx-
imation, the system will find the same “best match” as
with perfect data (a.k.a. the “ground truth”), or at least a
close approximation to it. We use the following criteria:

• If a host H had a significant match with at least one
other host H1 of 5% of its data, above and beyond

the “widely shared” fingerprints, we want the ap-
proximated best match to be close to the ground
truth. We define “close” as a window β around
the correct value, which is within either 5%, 10%,
or 20% of the value, with a minimum of 1%. For
example, if the ground truth is 50%, acceptable
β = 5% approximations would be 47.5–52.5%, but
if the ground truth is 5%, values from 4–6% would
be acceptable. Note that if the estimated match were
outside that range but H1 was believed to be the best
match, we might cluster the two together but misest-
imate the benefit of the overlap.

• If the best match found via approximation is with
another host H2, rather than the ground truth best
match, it may still be acceptable. The approximate
overlap needs to be close to the actual overlap of H2,
or we would misestimate the benefits, but we only
would find the alternate host H2 acceptable if it was
within β of the value of H1. Thus the approximate
match H2,approx must be > (1− β )H1 and < (1 +
βH2).

• If the host had no significant match (> 5%) with
another single host, we want the approximation to
reflect that. But again, a small change is accept-
able. For example, if the best match were 4.5% and
we would have ignored it, but the approximation re-
ports that the best match is 5.5%, that is a reason-
able variance. If the best match was 1% and is now
reported as 5.5%, that would be a significant error.

The ranges of overlap are important because in prac-
tice a high relative error is inconsequential if the extent
of the match is limited to begin with. If we believe two
clients match in only 0.5% of their data, we are unlikely
to do much differently if we estimate this match is 1%
or 2%, or if we believe there is no match at all. On the
other hand, if we think that a 50% match is only 25%
or is closer to 100%, the assignment tool might make a
bad choice. Even if it picks the right location due to the
overlap, it will underestimate or overestimate the impact
on available capacity.

Figure 6 depicts the effect of sampling fingerprints, us-
ing the same 21-client fingerprint collection. The x-axis
depicts the sampling rate, with the left-most point corre-
sponding to the ground truth of analyzing all fingerprints.
As the graph moves to the right, the sampling rate is re-
duced. There are three curves, corresponding to margins
of error β = 5%, β = 10%, and β = 20%. The y-axis
shows the fraction of clients with an error outside the
specified β range. For a moderate margin of error there
is little or no error until the sampling rate is lower than

1
1024 , though if one desires a tighter bound on β , the error
rate increases quickly.
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Figure 6: For a given sampling rate, on the x-axis, of 1
2N ,

we compute what fraction of clients have their biggest
overlap approximated within an given error threshold β .

6.3 Algorithm Comparison
In general, any of the algorithms described in §4.2 work
well if the system is not significantly loaded. As capac-
ity or throughput limits are reached, however, the sys-
tem can accommodate the greatest workloads through
intelligent resource allocation. This is especially true if
there is significant overlap among specific small subsets
of clients.

In our analysis here, we focus on capacity limitations
rather than throughput. This is because backup stor-
age appliances are generally scaled to match throughput
and capacity, so it is rare to experience throughput bot-
tlenecks without also experiencing capacity shortages.
Since it can occur with high-turnover data (a good deal
of data being written but then quickly deleted), the cost
function does try to optimize for throughput as well as
capacity.

Incremental Assignment

We first compare the four algorithms as clients and
backup storage are repeatedly added, using the artifi-
cial dataset described in §6.1 and new servers every 120
clients.

Figure 7 shows the results of this process with the
number of clients increasing across the horizontal axis
and cost shown on the left vertical axis. (Part (a) shows
the full range of cost values on a log scale, while (b)
zooms in on the values below 150, on a standard scale,
to enable one to discern the smaller differences.) The two
capacity curves in 7(a) reflect the ratio of the estimated
capacity requirements to the available backup storage,
with or without considering the effects of the best-case
deduplication, and are plotted against the right axis. A
value over 1 even with deduplication would indicate a
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Figure 7: An artificial, homogeneous client population
is added 20 hosts at a time, with new backup storage
added every 120 hosts after the first 240. A small set
of clients match each other with 30% deduplication and
otherwise hosts of the same type match 10% of their data.
The costs are shown by the curves marked on the left
axis. The capacity requirements are shown by the curves
at the bottom of the top graph, marked on the right axis.

condition in which insufficient capacity is available, but
any values close to or above 1 indicate potential difficul-
ties.

In Figure 7, the general pattern is for the “simple”
algorithms to fail to fit all the clients within available
constraints, once the collective requirements first exceed
available capacity, while SA cycles between being able to
accommodate the clients and failing to do so (but still be-
ing an order of magnitude lower cost even when failing
to fit them). There is a stretch between 600–700 clients
in which it does particularly well; this is because in this
iteration of the outer loop, the number of distinct clus-
ters of highly overlapping clients equals the number of
storage appliances, and the system balances evenly.

While the sequence depicted in Figure 7 is a case in
which explicit pair-wise overlap is essential to fitting
the clients in available capacity, the sequence in Fig-
ure 8 adds fewer clients per storage appliance. Clients
almost always fit, though SA improves upon the other ap-
proaches some of the time. As expected, RR is not quite
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Figure 8: The same artificial, homogeneous client popu-
lation is added 20 hosts at a time, with new backup stor-
age added every 100 hosts after the first 200. The costs
are shown by the higher curves, marked on the left axis.
The capacity requirements are shown by the curves at the
bottom of the graph, marked on the right axis.

as good as BP; when the number of clients is high, there
are cases where RR exceeds capacity because it consid-
ers only whether a client fits and not how well it fits, and
because it is constrained by earlier assignments. RAND
similarly fails when 1000 clients are present.

In summary, we find that under high load RAND, RR,
and even BP fail to have acceptable costs in a large num-
ber of cases, but SA shuffles the assignments to better
take advantage of deduplication and fits within available
capacity when possible. While the SA results overlap
the BP results in some cases, whenever there is a pur-
ple square without a matching aqua + overlaid upon it in
Figure 7, SA has improved.

Full-Content Client Dataset

Here we describe the effect of assigning the 21-client
dataset to a range of backup appliances. The overlaps of
the datasets are derived from the full set of fingerprints
of each client, but in the case of Host1, which is the host
that is relatively small but has high overlap, we artifi-
cially increase its backup sizes by two orders of magni-
tude to represent a significant host rather than a trivially
small one. Including this change, the clients collectively
require 2.92TB before deduplication and 2.46TB or more
after deduplication. They are assigned to 2–4 storage
appliances with either 0.86TB (“smaller”) or 1.27TB
(“larger”) capacity each.3 For the smaller servers, the
clients take from about 70–140% (post-dedupe) of the
available storage as the number of backup systems is

3These numbers are taken from early-generation Data Domain ap-
pliances and are selected to scale the backup capacity to the offered
load. In practice, backup appliances are 1–2 orders of magnitude larger
and growing.
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Figure 9: Cost as a function of relative capacity, pre-
dedupe, for the modified 21-host dataset, for two backup
appliance sizes. Algorithms are either content-aware
(CA) or not content-aware (NC).

reduced, corresponding to 85–170% pre-deduplication.
For the larger ones, they take 46–92% (deduplicated) or
58–115% (undeduplicated). That is, even with dedupli-
cation, at the highest utilization the clients cannot fit on
only two of the smaller servers, but they fit acceptably
well on the larger ones.

Figure 9 shows the cost as a function of pre-
deduplication utilization. For RAND and SA, it presents
two variants: one, the content-aware version, is the de-
fault; the other selects the lowest cost assuming there is
no overlap, then recomputes the cost of the selected con-
figuration with overlap considered. For BP and RR, over-
lap is considered only to the extent that two clients are in
the same class, and the adjustment is made after a given
client is assigned to a server (refer to §4.2).

Using smaller servers (9(a)), RR has a slightly higher
cost under the lowest load; both RR and RAND (NC) are
overloaded under moderate load, and all algorithms are
overloaded under the highest load with just two servers.
While it is not visible in the figure, SA without factoring
content overlap into its decisions is about 6% higher cost
than the normal SA which uses that information.
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Using larger servers (9(b)), the costs across all algo-
rithms are comparable in almost all cases. The notable
exception is SA at the highest load: it is overloaded if it
ignores content overlap, but fine otherwise. Interestingly,
RAND does just as well with or without content overlap,
as its best random selection without taking overlap into
account proves to be a good selection once overlap is
considered.

In other words, at least for this workload, there are
times when it is sufficient to load balance blindly, ig-
noring overlap, and have overlap happen by happy co-
incidence. But there are times when using overlap infor-
mation is essential to finding a good assignment: an ap-
proach that considers overlap can better take advantage
of shared data.

Large Customer Dataset

We ran the assignment tool on the clients extracted from
the largest customer backup trace, as described in §6.1. It
has nearly 3,000 clients requiring about 325TB of post-
deduplicated storage. Using 3 Data Domain DD880s to-
taling 427TB, these use about 76% of capacity, and all
four algorithms assign the clients with a low cost: the
maximum is 0.80 for round robin, while BP and SA are
0.24 and 0.23 respectively. It is worth noting that most of
the ten RAND runs had costs over 2, but one was around
0.4 and the best was identical to the BP result. SA took
over four hours and only improved it from 0.24 to 0.23.

What about overload conditions? If these were just 2
DD880s (285TB), the average storage utilization goes to
114% so no approach can accommodate all the clients.
Even so, the cost metric is a whopping 184K for BP,
183K for RR, and 159K for RAND (which, by taking the
lower costs of client overlap into account when com-
paring alternatives is able to find a slightly better as-
signment). These high costs are dominated by the “fit
penalty” due to about 130–160 clients, out of 2983, not
fitting on a server. SA, however, brought the cost down to
25K (of which 12K is from 12 clients not fitting). How-
ever, it did this by running for 5.5 cpu-days (see the next
subsection).

Obviously one would not actually try and place 3,000
clients, totaling 325TB of post-dedupe storage, on a pair
of 142TB servers. This example is intended to show how
the different approaches fair under overload, and it also
provides an example of a large-scale test of SA. The large
number of clients to choose from poses a challenge, in
that a cursory attempt to move or swap assignments may
miss great opportunities, but an extensive search adds
significant computation time (see the next subsection).
Tuning this algorithm to adapt to varying workloads and
scales and deciding the best point to prune the search are
future work.
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Figure 10: Cost as a function of simulated annealing
analysis time for several cases. Both axes use a log scale.
Except for the right-most points, any points that appear
within a factor of 1.5 in both the x and y values of a point
already plotted are suppressed for clarity.

6.4 Resource Usage

While our results have shown that SA can produce better
assignments than the other algorithms in certain cases,
there is a cost in terms of resource requirements. All
three “simple” algorithms are compact and efficient.
For example, the unoptimized Perl script running bin-
packing on the nearly 3,000 clients and two small servers
in the preceding subsection took 163M of memory and
ran in 23s on a desktop linux workstation. Running SA
on the same configuration took over 5 days, and the com-
plexity of the problem is only increased when pair-wise
rather than per-class overlaps are included. For the itera-
tive problem with up to about 1,000 clients and pair-wise
overlaps, the script takes several gigabytes of memory
and runs for over a half day on a compute server.

Figure 10 shows timing results for five examples of
earlier experiments. Two are the large-scale assignments
described in the previous subsection, with nearly 3,000
clients that either fit handily or severely overload the
servers. The horizontal line at the bottom represents the
case where SA runs for over four hours with no effective
improvement over a cost that is already extremely low.
The curve toward the top with open squares is the same
assignment for 2

3 of the server capacity. SA dramatically
reduces the cost, but it is still severely overloaded. The
curve (with open triangles) near that one represents one
of the incremental assignment cases in which the system
is overloaded regardless of SA, while the one just below
that has 20 more clients but one additional server and,
in the case of SA, has a relatively low cost after a long
period of annealing (the sharp drop around the 10-hour
mark is an indication of SA finally succeeding in rear-
ranging the assignments to fit capacity). Finally, the re-
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maining triangle curve represents a smaller test case in
which the cost starts low but SA improves it beyond what
BP initially did.

In some cases (not plotted), there is a drop followed
by a long tail without improvement. Ideally the process
would end after a large score decrease if and only if no
substantial decreases are still possible; since there is the
potential to miss out on other large improvements, we
let SA continue to search and hope for further decreases.
Generally, with our default parameters, SA runs for sec-
onds to hours on a desktop computer, but when config-
uring or updating a backup environment, that is not un-
reasonable, and the “best solution to date” can be used at
any time. The more excess capacity there is, the easier
it is for SA to hone in on a good solution quickly. For
assignments of thousands of clients in an overloaded en-
vironment, some sort of “divide and conquer” approach
will be necessary to keep the problem manageable.

7 Variations

In this section we discuss a couple of variations on the
policies previously described: “forgetting” assignments
and biasing in favor of small clients in the cost function.

7.1 Forgetting Assignments
As described to this point, whenever new clients are
added to an existing set of assignments, the first assign-
ments are “carved in stone” for the simple algorithms:
they cannot be modified, and only the new unassigned
clients can be mapped to any server. The SA algorithm
is an exception to this, in that it can perturb existing as-
signments in exchange for a small movement penalty.

Here we consider a simple but extreme change to this
policy: ignore all existing assignments, map the clients
to servers using one of the algorithms, and pay move-
ment penalties depending on which clients change as-
signments. When the assignment that takes previous as-
signments into account does not cause overflow, start-
ing with a clean slate usually results in a higher cost be-
cause the movement penalties are higher than the other
low costs from the “good” and “warning” operating re-
gions. But when there would be overflow, it is often the
case that rebalancing from start avoids the overflow.

Figure 11 repeats Figure 7(a), with one change: for
RR, RAND, and BP, each point is the minimum between
the original datapoint and a new run in which the previ-
ous assignments were ignored during assignment.4 Ig-

4Due to the high cost of SA, we do not re-run each SA experiment
but instead take the minimum of the SA run and the “forgotten” BP run;
that is, SA could have started from the lower BP point rather than the
previous one that considered previous assignments. It might improve
the cost beyond that point, something not reflected in this graph.
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Figure 11: The same clients and servers are assigned as
in Figure 7(a), but previous assignments can be ignored
in exchange for a movement penalty.

noring initial assignments improved the cost metric in
35% of the cases overall, and in 43% of the cases in
which the cost was over 1000 (indicating significant
overload): it is frequently useful but no panacea.

The most notable difference between Figure 7(a) and
Figure 11 is in the range of 600–700 clients. Previously
we noted that SA does especially well in that range be-
cause of overlap, but if BP and RR start there with com-
pletely new assignments, they too have a low cost due to
keeping better deduplicating clients together.

7.2 Counting Overflow

As described, the cost function biases in favor of large
clients: it assumes that it is more important to back up
a larger client than a smaller one, so it removes clients
in order of size, smallest first, to count the number of
clients that do not fit on a server. This approach is in-
tuitive, in that a large client probably is more important
than a small one, and it also simplifies accounting be-
cause if clients are added in decreasing order of size, we
can remove a small client without affecting the dedupli-
cation of a larger one that remains.

An alternative cost function would minimize the num-
ber of occurrences of overflow by removing the largest
client(s) to see if what remains will fit. This has the effect
of minimizing the extra per-client penalty while still pe-
nalizing for exceeding the capacity threshold. In essence,
it encourages filling N-1 servers to just below 100% uti-
lization, then placing all the remaining (large) clients on
the Nth server.

Figure 12 compares the smallest-first and biggest-first
penalties for the example used in Figure 7, modified to
exclude the pair-wise 30% deduplication of specific com-
binations of clients. (This is because recomputing the
impact of removing a client against which other clients
have deduplicated would require a full re-evaluation of
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(a) Smaller first
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(b) Bigger first

Figure 12: The same clients and servers are assigned as
in Figure 7, but deduplication is only considered within a
class (big, medium, or small) rather than having greater
deduplication for specific pairs. C f it is computed by re-
moving the (a) smallest or (b) largest clients first.

the cost function, compared with class-wise deduplica-
tion, and has not been implemented.) The two graphs
look quite similar, but because of the change to the value
of C f it the peak values are about one order of magnitude
lower when the largest clients are counted. There is no
qualitative difference in this example beyond a narrowed
gap between SA and the other approaches.

8 Discussion and Future Work

Assigning backups from clients to deduplicated stor-
age differs from historical approaches involving tape be-
cause of the stickiness of repeated content on the same
server and the ability to leverage content overlap between
clients to further improve deduplication. We have ac-
counted for this overlap in a cost function that attempts to
balance capacity and throughput requirements and have
presented and compared several techniques for assigning
clients to backup storage appliances.

When a backup system has plenty of resources for the
clients, any assignment technique can work well, and

there is little difference between RAND and our most ad-
vanced technique with SA. The more interesting case
is when capacity requirements reach beyond 80% of
what is allocated. We have found that RAND and RR
tend to degrade rapidly, while bin-packing and SA con-
tinue to maintain a low cost until capacity becomes over-
subscribed. In cases of significant overlap, SA is able to
use client overlap to increase the effective capacity of a
set of deduplicating backup servers, deferring the point
at which the system is overloaded.

There are a number of open issues we would like to
address:

• evaluation of overlap in a wider range of backup
workloads
• evaluation of overlap beyond the “best match” for

those cases where cumulative deduplication beyond
one other host is significant
• full integration between client assignment and

backup software
• use of the assignment tool to manage transient

bursts in load due to server failures or changes in
workload
• additional evaluation of the various weights and

cost function
• optimization of the SA algorithm for large-scale en-

vironments; and
• additional differentiation of clients and servers, for

instance to route backups to different types of de-
vices automatically depending on their update pat-
terns and deduplication rates.

Efforts to integrate content affinity with pre-sales sizing
are already underway.
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