
Deploying Nagios in a 
Large Enterprise

Carson Gaspar
Goldman Sachs

carson.gaspar@gs.com



or...
If you strap enough 

rockets to a brick, you 
can make it fly



In the beginning...

• New Linux HPC skunkworks project

• Catastrophic success

• Need monitoring added yesterday



Looking for Solutions

• Why not use what we already had?

• Stability problems

• Resource utilization problems

• Custom agents were hard

• No support for our new Linux platform



Why Nagios?

• Purchasing a new commercial solution was 
politically difficult 

• At the time (2003) nagios was the most mature 
of the open source solutions

• Good community support



The Naive Approach
(and why it didn’t work)

• Performance Problems

• Configuration Management Problems

• Availability Problems

• Integration / Automation Requirements



Performance Problems

• State check performance

• Active checks: ~3 checks / second maximum

• Statistics performance

• fork()/exec() for every sample

• Web UI performance

• Large configurations take a long time to display 
(much improved in 2.x)



Configuration 
Management Problems

• Configuration files are very verbose (even with 
templates)

• Syntax errors are easy

• Keeping up with a high churn rate in monitored 
servers is expensive



• Hardware / software failures

• Building power-downs

• Patches / upgrades

• Who watches the watchers?

Availability Problems



Integration / Automation 
Requirements

• Alarms need to be dispatched to our existing 
alerting and escalation system

• Alarms need to be suppressed by existing 
maintenance tools

• Provisioning should flow from our existing 
provisioning system



Solving the Problems

• Move to passive checks

• Run multiple nagios instances

• Deploy HA nagios servers

• Use data-driven configuration file generation

• Create a custom notification back end



Passive Checks

• Move most of the work to the clients

• Batch server updates unless a state change 
occurs

• Randomize server update times to avoid spikes

• Queue the results on the server

• Send statistics to a different back end



Passive Data Flow
Client 1 Client n

...

... Server n

monqueue

stats-catcher

... nagios n

nagios 1

Server 1

nagios-agent nagios-agent

monqueue

stats-catcher

... nagios n

nagios 1



Multiple Nagios Instances

• Run many copies of nagios on one server

• Improve web UI performance

• Show each group only their own servers, so the 
top level dashboard is more useful

• Allow per-group customizations



HA Nagios Servers

• Run multiple nagios servers on different 
machines in different buildings

• All clients update all servers

• A heartbeat is published through each server to 
its counterpart

• Notifications are suppressed on slaves if the 
heartbeat service is OK

• Partitioned masters can cause duplicate alerts



HA Data Flow
primary server secondary server

client

nagios-agent

nagios

monqueue
heartbeat

notify

monqueue

nagios

ping

notify

heartbeat

ping



Data-driven Configuration 
File Generation

• Leverage our existing host database and 
provisioning tools

• Generate client and server configurations via 
cfengine based on templates and database 
lookups

• Mostly driven by database data, with some per-
server threshold overrides managed in cfengine 
master files



Custom Notification
Back End

• Custom code integrates with our Netcool 
infrastructure

• Alarm suppression based on external criteria

• Also supports email alerts, optionally batched



Design Trade-offs

• Batch updates mean slow detection of “zombie” 
hosts (ping-able, but not running user processes)

• nagios’ notification escalation doesn’t work well 
without active checks, especially if updates are 
batched

• Requires configuration management

• More complexity = more bugs



nagios-agent
Design Criteria

• Lightweight

• Easy to write and deploy additional agents

• Avoid fork()/exec() where possible

• Support agent callbacks to avoid blocking

• Support “proxy” agents to monitor other devices 
where we can’t deploy nagios-agent

• Evaluate all thresholds locally and batch server 
updates



nagios-agent
nagios-agent

Agent

Class: Ping

Instance: db 

Categories: appdev, sa

Args:

 hostlist => /my/dblist,

latency => [ 50, 100],

losspct => [ 66, 100 ],

count => 3

Agent

Class: Ping

Instance: LDN 

Categories: sa

Args:

 hostlist => /my/ldnlist,

latency => [ 100, 200],

losspct => [ 66, 100 ],

count => 3

Server

Class: monqueue

 Categories: appdev

Args:

auth => GSSAPI

keytab => mykeytab

server => myserver,

queue => 0

Server

Class: monqueue

 Categories: sa

Args:

auth => GSSAPI

keytab => mykeytab

server => myserver,

queue => 1



monqueue
Design Criteria

• Fast

• Secure

• Accept data from clients, and dispatch to multiple 
output queues

• Supply heartbeats to nagios

• Supply queue depth stats to stats-catcher



Client Evolution
• nagios-agent slowly grew features as they became 

required

• multiple agent instances

• agent instance to server mapping

• auto reload of configuration, modules on 
update

• auto re-exec of nagios-agent on update

• stats collection

• SASL authentication to monqueue



Server Evolution

• Started as one monolithic instance

• As deployment spread, split into multiple 
instances based on administrative domain

• added HA

• added SASL authentication and authorization

• added monitoring of monqueue itself, and service 
dependencies (so a monqueue failure didn’t 
trigger alarms for all services)



Kudzu

• Originally for one project, fewer than 200 hosts

• Eventually used for large sections of the 
environment

• Documentation and internal consultancy are 
critical for user acceptance



One of Our Servers

• A single HP DL385 G1 (dual 2.6GHz Opteron, 
4GB RAM), running RHEL4 U4, nagios 2.9

• 11 nagios instances

• 27,000+ services (mostly 2 minute intervals)

• 6,600+ hosts

• ~10% CPU

• ~500 MB RAM



Still to Come
• Source code release 

• Encryption of nagios-agent / monqueue 
communications

• Support for “pulling” status from nagios-agent to 
better support DMZ environments

• Statistical analysis of multiple data samples to 
determine service status

• Yet more agent plugins

• nagios-agent support for traditional nagios 
plugins



Deploying Nagios in a 
Large Enterprise

Carson Gaspar
Goldman Sachs

carson.gaspar@gs.com


