Deploying Nagios in a
Large Enterprise

Carson Gaspar
Goldman Sachs

carson.gaspar(@gs.com

or...
If you strap enough

rockets to a brick, you
can make it fly

In the beginning...

® New Linux HPC skunkworks project
® (Catastrophic success

® Need monitoring added yesterday

Looking for Solutions

® Why not use what we already had!?
® Stability problems
Resource utilization problems
Custom agents were hard

No support for our new Linux platform

Why Nagios?

® Purchasing a new commercial solution was
politically difficult

® At the time (2003) nagios was the most mature
of the open source solutions

® Good community support

The Naive Approach
(and why it didn’t work)

® Performance Problems
® Configuration Management Problems
® Availability Problems

® Integration / Automation Requirements

Performance Problems

® State check performance

® Active checks: ~3 checks / second maximum
® Statistics performance

® fork()/exec() for every sample
® Web Ul performance

® |arge configurations take a long time to display
(much improved in 2.x)

Configuration
Management Problems

® Configuration files are very verbose (even with
templates)

® Syntax errors are easy

® Keeping up with a high churn rate in monitored
servers is expensive

Availability Problems

Hardware / software failures
Building power-downs
Patches / upgrades

Who watches the watchers?

Integration / Automation
Requirements

Alarms need to be dispatched to our existing
alerting and escalation system

Alarms need to be suppressed by existing
maintenance tools

Provisioning should flow from our existing
provisioning system

Solving the Problems

Move to passive checks

Run multiple nagios instances

Deploy HA nagios servers

Use data-driven configuration file generation

Create a custom notification back end

Passive Checks

Move most of the work to the clients

Batch server updates unless a state change
occurs

Randomize server update times to avoid spikes
Queue the results on the server

Send statistics to a different back end

Passive Data Flow

Client 1 Client n

Cnagios-agent) neE Cnagios-agent)

: monqgueue :

C nagios 1 Cstats-catcher)

& ... hagios n

Server 1

... Servern

Multiple Nagios Instances

Run many copies of nagios on one server

Improve web Ul performance

Show each group only their own servers, so the
top level dashboard is more useful

Allow per-group customizations

HA Nagios Servers

Run multiple nagios servers on different
machines in different buildings

All clients update all servers

A heartbeat is published through each server to
Its counterpart

Notifications are suppressed on slaves if the
heartbeat service is OK

Partitioned masters can cause duplicate alerts

HA Data Flow

primary server

(nagios >—>< notify

(monqueue)
heartbeat

ping

secondary server

notify)H nagios)

(monqueue)
heartbeat

ping

nagios-agent

client

Data-driven Configuration
File Generation

® | everage our existing host database and
provisioning tools

® Generate client and server configurations via
cfengine based on templates and database
lookups

® Mostly driven by database data, with some per-
server threshold overrides managed in cfengine
master files

Custom Notification
Back End

® Custom code integrates with our Netcool
infrastructure

® Alarm suppression based on external criteria

® Also supports email alerts, optionally batched

Design Trade-offs

Batch updates mean slow detection of “zombie”
hosts (ping-able, but not running user processes)

nagios’ notification escalation doesn’t work well

without active checks, especially if updates are
batched

Requires configuration management

More complexity = more bugs

nagios-agent
Design Criteria
Lightweight
Easy to write and deploy additional agents

Avoid fork()/exec() where possible

Support agent callbacks to avoid blocking

Support “proxy” agents to monitor other devices
where we can’t deploy nagios-agent

Evaluate all thresholds locally and batch server
updates

nagios-agent

nagios-agent

Agent
Class: Ping
Instance: db

Categories: appdev, sa

Args:
hostlist => /my/dblist,
latency => [50, 100],
losspct => [66, 100],
count =>3

Agent
Class: Ping
Instance: LDN
Categories: sa
Args:
hostlist => /my/ldnlist,
latency => [100, 200],
losspct =>[66, 100 |,
count =>3

Server
Class: monqueue
Categories: appdev
Args:
auth => GSSAPI
keytab => mykeytab
server => myserver,
queue =>0

Server
Class: monqueue
Categories: sa
Args:
auth => GSSAPI
keytab => mykeytab
server => myserver,
queue => 1

monqueue
Design Criteria

Fast
Secure

Accept data from clients, and dispatch to multiple
output queues

Supply heartbeats to nagios

Supply queue depth stats to stats-catcher

Client Evolution

® nagios-agent slowly grew features as they became
required

multiple agent instances
agent instance to server mapping

auto reload of configuration, modules on
update

auto re-exec of nagios-agent on update

stats collection

SASL authentication to monqueue

Server Evolution

Started as one monolithic instance

As deployment spread, split into multiple
instances based on administrative domain

added HA
added SASL authentication and authorization

added monitoring of monqueue itself, and service
dependencies (so a monqueue failure didn’t
trigger alarms for all services)

Kudzu

® Oiriginally for one project, fewer than 200 hosts

® Eventually used for large sections of the
environment

® Documentation and internal consultancy are
critical for user acceptance

One of Our Servers

A single HP DL385 GI (dual 2.6GHz Opteron,
4GB RAM), running RHEL4 U4, nagios 2.9

| | nagios instances

27,000+ services (mostly 2 minute intervals)

6,600+ hosts
~10% CPU
~500 MB RAM

Still to Come

Source code release

Encryption of nagios-agent / monqueue
communications

Support for “pulling” status from nagios-agent to

better support DMZ environments

Statistical analysis of multiple data samples to
determine service status

Yet more agent plugins

nagios-agent support for traditional nagios
plugins

Deploying Nagios in a
Large Enterprise

Carson Gaspar
Goldman Sachs

carson.gaspar(@gs.com

