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Abstract
We address the problem of minimizing the I/O needed

to recover from disk failures in erasure-coded storage
systems. The principal result is an algorithm that finds
the optimal I/O recovery from an arbitrary number of
disk failures for any XOR-based erasure code. We also
describe a family of codes with high-fault tolerance and
low recovery I/O, e.g. one instance tolerates up to 11 fail-
ures and recovers a lost block in 4 I/Os. While we have
determined I/O optimal recovery for any given code, it
remains an open problem to identify codes with the best
recovery properties. We describe our ongoing efforts to-
ward characterizing space overhead versus recovery I/O
tradeoffs and generating codes that realize these bounds.

1 Introduction

Recovery from failures has become a critical component
of disk storage systems because they have reached such
a massive scale that failures must be expected and dealt
with as a matter of regular operation [8]. Large scale de-
ployments now typically tolerate multiple failures both to
keep service available and to avoid data loss, e.g. three
replicas has become the de facto standard in Hadoop!
and systems utilizing RAID-6 are widely deployed.

We answer a fundamental question in recovery perfor-
mance: what are the fewest number of I/Os needed to
recover from an arbitrary number of disk failures? As
the amount of redundancy grows, storage system codes
offer many different schedules to recover a lost disk that
vary widely in their I/O requirements. For example, in
row-diagonal parity [23] and Even-Odd codes [22] that
tolerate two disk failures, I/O can be reduced by 25%
by recovering a combination of rows and diagonals that
share blocks, rather than the standard practice of recov-
ering each row independently. We provide an algorithm
that minimizes the I/O recovery cost for any XOR-based
code.

Two application contexts, cloud storage systems and
deep archival storage, motivate the need for I/O effi-
cient coding (Section 2). Cloud storage systems per-
form erasure decoding when recovering from disk fail-
ures and when performing system upgrades. Upgrades
occur frequently—they are often continuous [7]—and
minimizing I/O limits performance degradation. Deep
archival stores include data that are almost never read,
but need to be stored for regulatory or archival purposes.
For these data, the only workload is introspection and
recovery. Therefore, highly fault-tolerant recovery I/O
efficient codes allow us to increase scale and save power.

Many advances have been made in improving re-
covery performance in disk redundancy coding. These
include hardware to minimize data copying [6], load-
balancing recovery among disks [12], recovering popular
data first to decrease read degradation [21], and only re-
covering blocks that contain live data [19]. Recently, the
issue of minimizing I/O recovery schedules has emerged
as a research topic. The results for Even-Odd codes [22]
and row-diagonal parity [23] represent solutions for two
specific codes. We present an algorithm that defines the
I/O lower bound for any matrix code and allows multiple
codes to be compared for I/O recovery cost.

Optimizing the recovery I/O of existing erasure codes
shows benefits, but does not transform recovery. In
contrast, codes designed specifically for recovery rad-
ically reduce I/O. Our algorithm applied to Liberation
codes and Cauchy Reed-Solomon codes reduce I/O by
20-30%: on the same order as previous results [22, 23].
We present a family of codes (Section 4) that leverage
the constrained data dependencies of Weaver codes [10]
and 2-dimensional properties of Grid codes [15]. One in-
stance of these codes tolerates up to 11 failures and can
recover a lost encoded block in 4 I/Os! A Reed-Solomon
code with similar properties uses 12 I/Os.

The design of recovery I/O optimal codes remains an
open problem. We conjecture that there are tradeoffs be-
tween recovery I/O and storage efficiency, i.e. that an



increase in storage can reduce I/O at a given fault toler-
ance. We are pursuing the fundamental bounds for this
problem. At the same time, we are exploring the struc-
ture of recovery I/O by searching for the best feasible
codes using our optimization algorithm.

Note: Regenerating codes provide minimal recovery
bandwidth and storage overhead [5]. They were designed
for distributed systems in which wide-area bandwidth
limits recovery performance. They achieve minimum
bandwidth by transferring a smaller amount of data from
as many shares of the data as are available. For storage
systems, minimizing I/O is more valuable than minimiz-
ing bandwidth and regenerating codes that access all ex-
isting shares of data increase I/O.

2 Applications of I/O-Optimal Recovery

Cloud File Systems: Cloud storage systems, such as
Amazon S3 and Windows Azure Storage, assemble mas-
sive amounts of unreliable hardware and rely on software
to deliver highly reliable and available storage services.
Typically, they store three replicas [8] to guard against
failures. Erasure coding provides an alternative that im-
proves fault tolerance at reduced storage costs [1].

Cloud storage uses erasure decoding when recovering
from failures and, more frequently, when storage nodes
are unavailable. Scheduled events, such as patches and
software updates, and unscheduled events, such are re-
boots, make nodes unvailable. For example, an update
of the storage software stack rolls out in phases. Small
batches of the storage nodes are suspended and the up-
date applied. Then, the entire system is left running until
performance metrics stabilize. The entire update process
can last hours [7]. During updates, read requests to the
unavailable nodes invoke erasure decoding and recovery
dictates overall I/O performance.

Deep Archival Stores: Regulatory requirements and
preservation dictate that data needs to be archived for fu-
ture availability. However, a large fraction of this data
will never be read. The workload for these systems con-
sists of introspection, checking that data are intact, and
error recovery. Pergamum [20] defined archival sys-
tems of this type based on massive arrays of idle disks
(MAID). They demonstrate that 95% of disks may be
powered off at all times. We extend Pergamum’s vision
of infrequent error detection and look to employing un-
trusted cloud storage. To increase power savings, we
take a much more passive approach to introspection and
recovery. Encoding data with large amounts of redun-
dancy allows for the lazy detection of failed devices/sites
and recovery from multiple drive and latent sector errors.
Combining I/O-efficient erasure coding with secure au-

diting for outsourced data [4] enables cost reduction in
cloud archives.

3 Finding I/O Optimal Recovery Schedules

Any erasure code based on exclusive-or operations may
be represented by a bit-matrix-vector product as in Fig-
ure 1. A vector of k data bits is multiplied by a (n × k)
Generator matrix to yield an n-element vector called the
codeword. In our simplified example, each bit (or row)
of the input data vector, and consequently the codeword,
can represent one or more disk sectors. The code rep-
resented in Figure 1 is a RAID-6 code for a four-disk
system, where each disk stores two bits (or rows), of the
codeword. All XOR-based codes can be represented by
a Generator matrix. The difference between the various
codes lies in different Generator matrices, and different
ways to store the bits on different disks. For example,
Greenan et al define a “flat” code as one where each bit
is stored on a different disk [9]. Thus, Figure 1 could
represent a flat code for an 8-disk system.

Figure 1: Erasure-coding as a matrix-vector product.

Each bit in the codeword is represented by a row of
the Generator matrix. When data is lost, the standard
methodology for reconstruction is to create an invertible
(k × k) matrix from k rows of the Generator matrix that
correspond to surviving bits in the codeword. This ma-
trix is inverted, and multiplying the inverse by the sur-
viving bits yields the original data [16, 11].

While this technique is general-purpose, it produces
one of the many possible ways to reconstruct the lost
data. We solve the problem of determining how to re-
calculate the lost data while minimizing the total number
of surviving bits that are read. With each bit representing
one or more sectors on disk, minimizing the bits read will
minimize the number of disk I/O’s required for recovery.

We present an algorithm for this task that is computa-
tionally expensive, but feasible for systems of sizes typi-
cally used today. In practice, one calculates the recovery
strategies for all potential failure scenarios a priori and
stores them for later use.
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We use the code in Figure 1 as an illustrative exam-
ple. Consider a collection of bits in the codeword whose
corresponding rows in the Generator matrix sum to zero.
One example is D0, D2 and C0. We call such a collec-
tion of bits a decoding equation, because the fact that
their sum is zero allows us to decode any one of its bits
as long as the remaining bits are not lost. For example,
if D2 is lost, and both D0 and C0 are not, then this equa-
tion may be used to decode D2.

Suppose that we enumerate all decoding equations for
a given Generator matrix, and suppose some subset F of
the codeword bits are lost. Then for each bit fi ∈ F ,
we determine the set Ei of decoding equations for fi.
Formally, an equation ei ∈ Ei if ei∩F = {fi}. Our goal
is to select one equation ei from each Ei such that the
number of elements in the union of all ei is minimized.

For example, suppose bits D0 and D1 in Figure 1
are lost. A standard way to decode the failed bits
is to use coding bits C0 and C1. In equation form,
F = {D0, D1}, eD0 = {D0, D2, C0}, and eD1 =
{D1, D3, C1}. Since eD0

and eD1
have distinct ele-

ments, their union is composed of six elements, which
means that four are required for recovery. However, if
we use {D1, D2, C3} for eD1

, then |eD0
∪ eD1

| is five
elements, meaning that three are required for recovery.
This saves one I/O operation.

Thus, our problem is as follows: Given |F | sets of
decoding equations E0, E1, . . . E|F |−1, we wish to se-
lect one equation from each set such that the size of the
union of these equations is minimized. Unfortunately,
this problem is NP-Hard in |F | and |Ei|.1 However, we
can solve the problem for practical values of |F | and |Ei|
by converting the equations into a directed, weighted
graph and finding the shortest path through the graph.

Given an instance of the problem, we convert it to
a graph as follows. First, we represent each decoding
equation in set form as an n-element bit string. For ex-
ample, {D0, D2, C0} is represented by 10101000.

Each graph node is also represented by an n-element
bit string. There is a starting node Z whose string is all
zeroes. The remaining nodes are partitioned into |F | sets
labeled S0, S1, . . . S|F |−1. Each node in Si is at the same
depth (number of edges) relative to Z as any other node
in Si. For each equation e0 ∈ E0, there is a node s0 ∈ S0

whose bit string equals e0’s bit string. There is an edge
from Z to each s0 whose weight is equal to the number
of ones in s0’s bit string.

Traversing a single level (or edge) in the graph signi-
fies the recovery of a single bit in F . For each node si ∈
Si, there is an edge that corresponds to each ei+1 ∈
Ei+1. This edge is to a node si+1 ∈ Si+1 whose bit
string is equal to the bitwise OR of si and ei+1’s bit

1Adam Buchsbaum, personal communication, reduction from Ver-
tex Cover.

strings. The OR calculates the union of the equations
leading up to si and ei+1, with si+1 denoting the cumu-
lative number of elements required for recovery up to that
point. The weight of the edge is equal to the difference
between the number of ones in si and si+1’s bit strings.
The shortest path from Z to any node in S|F |−1 denotes
the minimum number of elements required for recovery.
If we annotate each edge with the decoding equation that
creates it, then the shortest path contains the equations
that are used for recovery.

To illustrate, suppose again that F = {D0, D1},
meaning f0 = D0 and f1 = D1. The decoding equa-
tions for E0 and E1 are enumerated below:

E0 E1

e0,0 = 10101000 e1,0 = 01010100

e0,1 = 10010010 e1,1 = 01101110

e0,2 = 10011101 e1,2 = 01100001

e0,3 = 10100111 e1,3 = 01011011

These equations may be converted to the graph de-
picted in Figure 2, which has two shortest paths of length
five: {e0,0, e1,2} and {e0,1, e1,0}. Both require three bits
for recovery: {D2, C0, C3} and {D3, C1, C2}.

While the graph clearly contains an exponential num-
ber of nodes, one may program Dijkstra’s algorithm to
determine the shortest path and only create the graph
on demand. For example, in Figure 2, the dotted edges
and grayed nodes will not be constructed, because the
shortest path is discovered before nodes 10011101 and
10100111 are evaluated by the algorithm.

Figure 2: Recovery graph when D0 and D1 are lost.
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Greenan et al. [9] use a similar approach to enumer-
ate the recovery equations for flat-XOR codes. Their al-
gorithm employs pruning heuristics on the search space,
rather than converting the problem into a graph.

Figure 3 presents the results of running the algorithm
on eleven different RAID-6 erasure codes for 8-disk sys-
tems (six data, two parity). The first two codes are RDP
and Even-Odd, for which I/O minimization results exist
already [23, 13]. The next three are “Minimal Density”
that best fit 8-disk systems (Blaum-Roth [2], Libera-
tion [17] and Liber8tion [18]), and the last six are Cauchy
Reed-Solomon codes where the variable w, which spec-
ifies the number of bits stored per disk, varies from three
to eight [3]. For each code, we calculated the average
number of bits required for recovery when one data disk
fails, plotted as a percentage of the number of bits that
are required when matrix inversion is used to decode.

The results show that the Miminal Density codes re-
quire fewer bits than RDP and Even-Odd, with the quirky
Liber8tion code requiring the fewest bits of all codes.
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Figure 3: Minimum bits needed for recovering from sin-
gle failures in RAID-6 codes.

4 An I/O Efficient Recovery Code

Our search for codes which exhibit both low recovery
I/O and high fault tolerance led us to consider GRID
codes [15] as a suitable candidate. In a GRID code (Fig-
ure 4), the disks form a logical grid with each dimen-
sion being encoded using (potentially) different schemes.
The GRID code allows us to use recovery I/O efficient
Weaver codes in conjunction with fault tolerant STAR
codes [14], thereby enabling us to capture the desirable
properties of both. Weaver codes are parameterized by
W(k, t) in which k is the in-degree to a parity symbol
and t (fault tolerance) is the in-degree to a data symbol.
The fixed in-degree limits the recovery I/O regardless of
the stripe size (number of disks). This differs from all
systematic erasure codes. Failures within Weaver’s fault
tolerance in any column are recovered entirely by the
Weaver code and benefit from Weaver’s efficient recov-
ery I/O.

With a Weaver code, recovery from a single disk fail-
ure can be done in two ways. The naive way of recover-
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Figure 4: The GRID/Weaver code. The dashed boxes
indicate the two separate code dimensions.

I/Os for
recov-

ery

# disks
ac-

cessed

Storage
effi-

ciency

Fault
toler-
ance

GRID(STAR, W(2,2)) 4 3 31.25% 11
GRID(STAR, W(3,3)) 6 3 31.25% 15
GRID(STAR, W(2,4)) 7 4 20.8% 19

Table 1: Performance of GRID/Weaver codes.

ing from a failure entails accessing the t connected parity
disks. But when k < t, one can also recover a failed disk
by accessing any one of the t parity symbols and then
using its connected k data symbols to recover the failed
data symbol. Therefore, the cost to recover the failed
data symbol is k + 1 I/Os. Parity symbols are recovered
using their own k connected disks. Thus, recovery of an
entire encoded block takes (k+1)r+ qk = r(t+ k+1)
I/Os (since rt = qk), where r and q are the number of
data and parity symbols per disk respectively. In some
cases, Weaver codes can also recover data and parity
from the same disk. This does not reduce the number of
I/Os, i.e. block transfers, but does benefit MAID systems
in that fewer disks must be spun up.

Examining the GRID/Weaver construction reveals that
the codes use very few I/Os in recovery relative to their
fault tolerance and access even fewer disks (Table 1). We
experiment with the most efficient (minimum distance
separable–MDS) instances of Weaver codes: W(2,2),
W(3,3), and W(2,4). We combine this with a STAR code
with 5 data disks and 3 parity disks. The GRID(STAR,
W(2,2)) tolerates 11 failures and recovers a lost encoded
block (data and parity) using 4 I/Os from three disks, in
one case accessing data and parity from the same disk.
The number of disks that needs to be accessed remains
small as fault tolerance increases. Storage overheads for
these codes are substantial, but are reasonable given the
high fault tolerance and their intended use in archival ap-
plications.
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5 Discussion and Open Problems

We have corroborated our conjecture that for all XOR-
based erasure codes, there is a fundamental tradeoff be-
tween recovery I/O and storage overhead at a given fault
tolerance. We know the extrema in this tradeoff. Replica-
tion has maximum storage overhead and recovers a data
block in a single I/O. Minimum distance separable codes
provide maximum storage efficiency and the algorithm
we present for minimizing recovery I/O gives optimal re-
covery schedules. We evaluated optimal recovery for the
most prevalent XOR-based erasure codes. In between
these extrema, lie codes that increase storage overhead
and reduce recovery I/O. We demonstrate meaningful in-
termediate points in the GRID/Weaver code.

It remains an open problem to formalize the tradeoff
between storage efficiency and recovery I/O and con-
struct codes that are recovery optimal. We are pursu-
ing this problem both analytically and through automatic
erasure code generation. At present, we are conduct-
ing a programmatic search of feasible generator matri-
ces and their optimal recovery I/O schedules to find the
codes with minimum I/O requirements. The exponen-
tial growth of possible codes as a function of matrix size
means that we need to develop methods to prune the
search both in matrix generation and in the finding of op-
timal recovery schedules. However, exploring the space
for reasonable sized systems, up to one hundred disks,
seems within reach.
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