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Abstract Similar workloads to Webtable, which also require
fast insertions and independent searches, are grow-

Many large storage systems use approximateing in importance [7, 11, 15]. Bloom filters are also
membership-query (AMQ) data structures to deal withused for deduplication [24], distributed information re-
the massive amounts of data that they process. An AMQrieval [20], network computing [4], stream comput-
data structure is a dictionary that trades off space for ang [23], bioinformatics [8, 18], database querying [19],
false positive rate on membership queries. Itis designednd probabilistic verification [12]. For a comprehensive
to fit into small, fast storage, and it is used to avoid I/Osreview of Bloom filters, see Broder and Mitzenmacher’s
on slow storage. The Bloom filter is a well-known exam- survey [4].
ple of an AMQ data structure. Bloom filters, however, Bloom filters work well when they fit in main mem-
do not scale outside of main memory. ory. Bloom filters require about one byte per stored data

This paper describes the Cascade Filter, an AMQ dat#gem. Counting Bloom filters—those supporting inser-
structure that scales beyond main memory, supportingions and deletions [10]—require 4 times more space [3].
over half a million insertions/deletions per second and What goes wrong when Bloom filters grow too big to
over 500 lookups per second on a commodity flash<it in main memory? On disks with rotating platters and
based SSD. moving heads, Bloom filters choke. A rotational disk
ducti performs only100—-200 (random) I/Os per second, and
1 Introduction each Bloom filter operation requires multiple 1/0s. Even
Many large storage systems employ data structures tha&n flash-based solid-state drives, Bloom filters achieve
give fast answers to approximate membership queriegnly hundreds of operations per second in contrast to the
(AMQs). The Bloom filter [2] is a well-known exam- order of a million per second in main memory.
ple of an AMQ. One way to improve insertions into Bloom filters for

An AMQ data structure supports the following dic- flash is to employ buffering techniques [5]. The idea is
tionary operations on a set of keys: insert, lookup, and0 uUse an in-memory buffer to collect writes destined for
optionally delete. For a key in the set, lookup returnsthe same flash page, executing multiple writes with one
“present.” For a key not in the set, lookup returns “ab-1/O. Buffering helps to some degree, achieving over a
sent” with probability at least — ¢, wheres is a tunable  factor of two improvement over a simple Bloom filter
false-positive rate. There is a tradeoff betweemd the  in [5]. With larger buffers and data sets, we measured
space consumption. that buffering can give an 80-fold improvement.

To understand how an AMQ data structure such as a However, buffering scales poorly as the Bloom-filter
Bloom filter is used, consider Webtable [6], a databasésize increases compared to the in-memory buffer size,
table that associates domain names of websites witfesulting in only a few buffered updates per flash page
website attributes. An automated web crawler insert$n average.
new entries into the table while users independently per- This paper demonstrates that AMQ data structures can
form queries. The system optimizes for a high insertionbe efficient, scalable, flexible, and cost-effective fordat

rate by splitting the database tables into smaller subtasets much larger than main memory. We describe a

bles. new data structure, called tiigascade Filterdesigned
When a user performs a search, this search is replit0 Scale out of RAM onto flash.

cated on all subtables. To achieve fast lookups, the sys- In our experiments an Intel X25-M 160GB SATA II

tem assigns a Bloom filter to each subtable. Most subtaSSD using a Cascade Filter was able to perform

bles do not contain the queried element, meaning that the70,000 insertions per second and 530 lookups per sec-

system can avoid 1/Os in those subtables. Thus, search&§d on a data set containing more than 8.59 billion ele-

are usually satisfied with one or zero I/Os. ments. The Cascade Filter supports insertions at rates 40
times faster than a Bloom filter with buffering and 3,200
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cade Filter would be relatively inexpensive, costing less | T albol[cldl el flag[n] |
than $35,000, a small fraction of the data-center cost. Figure 1: An example quotient filter and its representation.

Our three cont.ributiqns are as f°_”°W51 @) W_e in- This filter contains valued through H. The table on the right
troduce the Quotient Filter (QF), which supports inser-ghaws, for each value, the corresponding quotient and remain-

tions and deletions, as well as merging/resizing of twoger. The top of the figure shows a chained hash table stor-
QFs. A QF is an in-memory AMQ data structure that is ing the valuesA through H by storing a list of remainders in
functionally similar to a Bloom filter, but lookups incur a bucket identified by the quotient of the values. The bottom
a single cache miss, as opposed to at least two in exsf the figure shows how the remainders are stored in the QF.
pectation for a Bloom filter. QFs are 20% bigger than Each bucket contains three bits in addition to the remainder.
Bloom filters, which compares favorably with the« ~ The three bits are thes occupi ed, i s_cont i nuat i on,
blowup associated with counting Bloom filters. (2) We andi s-shi f ted values, in that order. In this examplé,

introduce the Cascade Filter (CF), an AMQ data struc» and £ have all the same quotient, so together they form
. . _arun. ValueC is stored in its canonical position, so it is the

. . . . rlaeginning of a cluster. Although should have been stored in

of QFs Org.a'_q'zed into a data structure inspired by theoucket 4, it is pushed forward by and E to bucket 6. Values

Cache-Oblivious Lookahead Array (COLA) [1]. (3) We ¢ through H together form a cluster.

theoretically analyze and experimentally verify the per- .

formance of the CF. The CF performs insertions andﬂ:en v;/_e say Wi_ have goft ﬁlt_)"_'s'on Tlh?_ QFtent1-

deletions fast enough to keep pace with Cassandra [17§ Oys finear probing as a cotlision-resoiution strategy,
nd stores the remainders in sorted order. Thus, a re-

TokuDB [21], and other write-optimized indexing sys- . . .

tems, as well as systems such as Vertica [22] and Inn[nalnder may end up shifted forward and stored in a sub-

oDB ’[13] that use insertion buffers sequent slot. The slot in which a fingerprint’s remainder
' i would be stored if there were no collisions is called the

The remainder of this paper is organized as follows. : . )
. . canonical slot All of the remainders with the same quo-
Section 2 describes the QF and CF data structures al .
lent are stored contiguously, and are calleda

presents a theoretical analysis. Section 3 presents our : . .
. . . A clusteris a maximal sequence of occupied slots
experiments. Section 4 offers some concluding remarks. : :
whose first element is the only element of the cluster

2 Design and Implementation stored in its canonical slot. A cluster may contain one or

. . . more runs.
This section presents the CF data structure and gives a The first element of the cluster acts as an anchor that,

brief theoretical analysis of its performance. The CF. o . . o
. . . i . . in combination with three additional bits in each slot,
comprises a collection of quotient filters organized into a I X .
. - ows us to recover the full fingerprint of each stored
data structure resembling a Cache-Oblivious Lookahea?emainder in the cluster
Array (COLA) [1]. The COLA-like CF achieves its fast o Lo .
. . X . The three additional bits in each slot are as follows:
insertion performance by merging and writing QFs onto. _ - _ _
disk in an I/0-efficient manner. The section described S-0ccupi ed specifies whether a slotis the canonical
the QF, and then shows how to combine QFs into a CF.  slot for some value stored in the filter.
The QF storeg-bit fingerprints of elements. The i s_.conti nuati on specifies whether a slot holds a
QF is a compact hash table similar to that described by ~ rémainder that is part of a run (but not the first).

Cleary [9]. The hash table emplogsiotienting a tech- ! s_shift ed. specjfigs Whethgr a slot holds a remain-
nique suggested by Knuth [16, Section 6.4, exercise 13],  der thatis notin its canonical slot.
in which the fingerprint is partitioned into tlgemost sig- Whenever we insert a fingerprint we mark as occupied

nificant bits (the quotient) and theleast significant bits  the slot indexed by its quotient and shift any remainders
(the remainder). The remainder is stored in the buckeforward as necessary, updating the bits accordingly.
indexed by the quotient. Figure 1 illustrates a quotient There is a design that uses two indicator bits instead
filter. of three, and which identifies an empty bucket by stor-
If the quotients of two stored fingerprints are equaling dummy data in reverse sorted order. However, our



O LELSJQRITIW RaM The overall structure of the CF is loosely based on a

LEIEKING L T FLASH data structure called the COLA [1], and is illustrated in

2 (AlCPIFTRITL MTolP V] [ [ 1) Figure 2. The CF comprises an in-memory QF, called
@ QFy. In addition, for RAM of sizeM, the CF comprises

o (T T o (= logz (n/M)+O(1) in-flash QFs of exp_onentially in-

TCLLLLIIT] e creasing size, QFQF; .. .QF, stored contiguously. For

N EEEEEEEEEEEEEEEE simplicity, we explain here the case for insertions (dele-
3 [A[B[C[DIE[F[G[AIT[I[K[LIMIN]O[P QRIS [TIUVIWIX[ [ T [ 1 [ [ 1] tions can be handled with tombstones -at the cost of a
_ ) ) _ fourth tombstone bit). In the case of insertions-only,

Figure 2: Merging QFs. Threg QFs ofdlfferent3|zes are showngach in-flash QF is either empty or has reached its max-
above, and they are merged into a single large QF below. Thgmum load factor. Insertions are made into QRVhen

top of the figure shows a CF before a merge, with one QF . . X
stored in RAM, and two QFs stored in flash. The three QFsQF0 reaches its maximum load factor, we find QRe

above have all reached their maximum load factors (which issmallest empty QF, and merge @'_F'QFi—l into QF..

3/4 in this example). The bottom of the figure shows the samé© Perform a CF lookup, we examine all nonempty QFs,
CF after the merge. Now the QF at level 3 is at its maximumfetching one page from each.

load factor, but the QFs at levels 0, 1, and 2 are empty. The theoretical analysis of CF performance follows

. . . . . . from the COLA: a search requires one block read per
implementation of this scheme is more CPU mtenswe,leveL for a total ofO(log(n/M)) block reads, and an

ggtrjirx\/:n?spted for a three-bit scheme instead in our eXi_nsert requires onlY((log(n/M))/B) amortized block

. writes/erases, wher8 is the natural block size of the
A false positive can occur only when two elements

. : . ~flash. Typically,B > log(n/M), meaning the cost of
map to the same fingerprint. For a good hash funchonan insertion or deletion is much less than one block write
let the load factor of the hash table be= n/m, where

) . per element.
n is the number of elements, and = 27 is the number . . .
of slots. Then the probability of suchhard collisionis Like 2 COLA, a CF can be degmortlzed t(.) pr'owde
approximatelyl — e—/2" < 27 better vgo:st-case b%ugds [1]._ Thlls deamortization re-
, - " oves delays caused by merging large QFs.
e space requred by a QF 1 conpable 0 11 o s poiive rate of he F s smiar s com:
QF and a Bloom filter that can hold the same number mponent QFs. The CF is a multiset of integers, each of

width p bits. If the largest level is configured to store

Zle—mg;]ztlsrzzﬂi\:gtsh ;hze tSirirgse ;&;Isrit?coif Ig;gé:tgéaaQBﬁxrt%%l elements, then the entire CF can staf ele-
filter with 10 hash functions. ments; by the same argument as for the component QF,

_ - the expected false positive ratelis- e /2" < 277,
The QF supports several useful operations efficiently.

One can merge two QFs into a single QF efficiently in3 Evaluation
a manner analogous to a merge of wo sorted arrays beI=his section evaluates the insertion and lookup through-

cause the fingerprints are stored in ascending order. Oqgut of the QF and CF. We compare a OF to a traditional

can also' doublg or halve the size pf a QF.W'thOUt rehaShBIoom filter (BF) in RAM, and we compare a CF with a
ing the fingerprints because the fingerprints can be fully,

; . traditional BF and an elevator BF on flash.
recovered from the quotients and remainders. .
We ran our experiments on a quad-core 2.4GHz Xeon

Since lookups, inserts, and deletes in a quotient ﬁlterE553O with 8MB cache and 24GB RAM, running Linux
all require decoding an entire cluster, we must argue th entOS 5.4). We booted the machin;a with 0.994GB
clusters are small. If we assume that the hash functioa'gﬁ RAM to test out-of-RAM performance. We used a
h generates upiformly distributed independent OUtpm_5159.4GB Intel X-25M SSD (second generation). To en-
then an anal_y_5|s using C_:hern_off bognds shows thal, W'ﬂéure a cold cache and an equivalent block layout on disk,
high probability, a quotient filter withn slots has all we ran each iteration of the relevant benchmark on a
runs of lengthD (log m); most runs have lengi(1). newly formatted file system, which we zeroed out first
with / bi n/ dd. We ensured that there was no swap-
From QF to CF ping. The partition size was fixed at 90GB, or 58%
Updating a QF that fits in main memory is fast. If the of the drive’s capacity which is nearly optimal for the
QF does not fit, then updates may incur random writesSSD [14]. The CF was configured to use 256MB of
Although the 1/0 performance is better than a traditionalRAM. The elevator BF was configured to use 256MB
Bloom filter with the same false-positive rate and max-worth of keys in RAM, but due to memory fragmenta-
imum number of insertions, we can do better by usingtion this algorithm used close to 512MB. The remainder
several QFs to build a CF. of RAM was used for file system caching. The tradi-




9e+09 : : : : : : lowed to use the file cache. The elevator BF has the

86409 | S following optimization: it maintains a large buffer of lo-
E 76409 | ol | cations it has recently written to, and when this buffer is
§ 6er00 | — | full, it flushes each bit to storage in order of offset.
£ 7 The traditional BF achieved an insertion throughput
@ 5er09 ¢ 1 of 200 insertions per second, whereas the elevator BF
£ dev09 | 1 achieved an insertion throughput of 17,000 per second,
S 3e+09 | . which is a considerable improvement, but far less than
g 2e+09 | i that of our CF. The performance for both algorithms
Z e+09 | | was constant as the data structures filled because it was
0 s ‘ ‘ ‘ ‘ ‘ bounded by the flash’s random-write throughput.
0 2000 4000 6000 8000 10000 12000 14000

Lookup throughput. We compare the lookup

_ _ _ throughput of the traditional BF and CF with each
Figure 3: CF Insertion Throughput. Theaxis shows elapsed other as well as with a theoretical prediction of their
time and they axis shows the number of insertions performed performance.

up to that pc_>int. Duerto periqdic cqmpactions, there are long o setup, the CF has at most 6 levels on flash. The
pe.r'OdS of time in which no Insertions tak.e place. The SUSCE performs one read at each level when searching for
tained throughput averages 670,000 insertions per second.

keys that are not in the CF (6 1/0Os). Our drive’s random-
tional BF used all of RAM for buffer CaChing. All filters read throughput is 3,218 4KB pages per Second, and so
had the same false pOSitive rate Of 0.04%. The tradi‘the read throughput Of the CF Shou'd have been about
tional and elevator BFs were configured to use 11 haslg30 |ookups per second. A BF with an equivalent false-
functions, and CF was configured with 1dbits in the  positive rate of 0.04% requires 11 hash functions and
lowest level. 16GB of space. In order to predict its lookup throughput,

QF insertion throughput. We compared the in-RAM note that in an optimally configured BF, each bit is set to
performance of the QF and a BF with the optimal 1 with probability 1/2. A lookup on a BF uses one hash
number of hash functions for the same number of elefunction after another until it finds a 0, meaning that the
ments and false-positive rate. For inserts, the cumulativ€XPected number of I/Os per negative lookup.ighus,
throughputs of BF and QF were 690,000 and 2,400100(§he expected lookup throgghput is h_alf the randqm read
inserts per second, respectively. Although the pencor_throughput of the flash drive, which in this case is 1600
mance of QF deteriorated as the number of elements if90KUPS per second. _
creased, it was always significantly better than that of When measured, the actual BF lookup performance is
BF. For lookups, the behavior of both BF and QF was1609 lookups per second, which is what the model pre-
stable throughout the benchmark. The BF performedicts. Negative CF lookups run at 530 per second, which
1,900,000 lookups per second on average, whereas ifaatches what the model predicts (6 reads per lookup).

QF performed 2,000,000. CF with tombstone bit. We re-ran the CF throughput

CF insertion throughput. We inserted 8.59 billion experiments with_ an identical egperimental setup, ex-
64-bit keys into the CF. Figure 3 shows that the CF susPt We used 4 bits per element instead of 3 to measure
tained an average of 670,000 insertions per second evdR€ overhead of supporting deletes. We found that the
taking into account the time during which long mergesmsertlon throughput dro_pped_from 670,000 insertions
stalled insertions. The largest stall was in the middle,P€" S€cond to 630,000 insertions per second. Lookup
where all but one of the QFs were merged into the largest’roughput remained unchanged.

QF of the CF. Deamortization techniques, which we didgyaluation summary. The CF trades a 3 fold slow-
not implement, can remove the long stalls [1]. We per-down in lookup throughput on flash in exchange for a
formed the largest merge at 8.4MB/s, well below flash’s40x speedup in insertion throughput over a BF optimized
serial write throughput (110MB/s). We found that the to yse all of its buffer for queueing random writes. Un-

system was CPU-bound, spending its time on bitpackingike the traditional BF, the CF is CPU bound and not I/O
operations within the QF. In fact, it was so CPU-boundpqund.

that the disk subsystem ran at only a few percent of ca- .
pacity even at higzinsertion rates.y P 4 Conclusionsand Future Work

For comparison, we evaluated two other data struc\We designed two efficient data structuresQaotient
tures: (1) a traditional BF and (2) a large elevator BF.Filter (QF) and aCascade Filter (CF), specifically
The traditional BF uses the target disk as storage antb utilize the best features of modern flash drives. We
hashes keys into this storage, though its writes are aldesigned them to have high throughput for insertions,
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queries, and deletions. Our analytical results, coupled[9] J. G. Cleary. Compact hash tables using bidirectional lin-

with our evaluations, demonstrate superior performance, ear probing|EEE T. Comput.33(9):828-834, 1984.

beating optimized implementations of traditional Bloom [10] L. Fan, P. Cao, J. Aimeida, and A. Z. Broder. Summary

filters by over two orders of magnitude. cache: a scalable wide-area web cache sharing protocol.
The relative cost of I/O compared to CPU operations _ |EEE/ACMT. Netw.8:281-293, June 2000.

has increased by orders of magnitude over the past seft1 -y _Freeman._l How netapp deduplication works

eral decades, and with the advent of multicore, thattrend jefur;r;iglcﬁgg/ hialgét aztpt Z‘e/d/uz'l ?izt?ztn?r;';ckim

is likely to continue. Most storage systems underuse - '

their CPUs while waiting for I/O. In contrast, our data

o ) 12] G. J. HolzmannDesign and validation of computer pro-
structure makes efficient use of I/O and is CPU-boun tocols Prentice-Hall, Inc., 1991.

for insertions. The merge operation is parallelizable, po{13] innobase Oy. Innodbasw. i nnodb. com 2011.
tentially offering additional performance. [14] Intel.  Over-provisioning an Intel SSD, October
2010. cache- www.intel . conl cd/ 00/ 00/ 45/ 95/ 459555_

Future work. We will explore applications to traf-
459555, pdf .

fic routing, Fiedupllcatlon,.repllcatlon, write offloading, t[15] Kimberly Keeton, Charles B. Morrey, lll, Craig A.N.
load balancing, and S.ecur.lty in a data center or large net- Soules, and Alistair Veitch. Lazybase: freshness vs. per-
work. The Cascade Filter is currently CPU bound; apar-  formance in information managementSIGOPS Oper.
allel implementation could potentially perform upwards Syst. Rey44:15-19, March 2010.

of 50 million inserts and updates per second with a drivg[16] D. E. Knuth.The Art of Computer Programming: Sorting
performing 400MB/s serial writes. An efficient imple- and Searchingvolume 3. Addison Wesley, 1973.
mentation could potentially be made very cost-effective[17] A. Lakshman and P. Malik. Cassandra - a decentralized
by utilizing parallel GPU programming. The Cascade  structured storage systel®S Rev.44(2):35-40, 2010.
Filter is capable of a variety of read/write optimized con-[18] K. Malde and B. O'Sullivan. Using Bloom filters for
figurations, and can dynamically shift between them at ~ |ar9e scale gene sequence analysis in HaskelPADL,

run-time. We will explore application of the Cascade 009. . . I .
Filter to write-optimized indexing. [19] J.K. Mullin. Optimal semijoins for distributed database

systems. IEEE T. Software Eng.16(5):558 —560, May
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