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Twelve Ways to Fool the Masses When Giving
Performance Results on Parallel Computers
David H. Bailey
June 11, 1991
Ref: Supercomputing Review, Aug. 1991, pg. 54--55

6. Compare your results against scalar, unoptimized code on Crays.

It really impresses the audience when you can state that your code runs several times
faster than a Cray, currently the world's dominant supercomputer. Unfortunately, with a
little tuning many applications run quite fast on Crays. Therefore you must be careful not
to do any tuning on the Cray code. Do not insert vectorization directives, and if you find
any, remove them. In extreme cases it may be necessary to disable all vectorization with
a command line flag. Also, Crays often run much slower with bank conflicts, so be sure
that your Cray code accesses data with large, power-of-two strides whenever possible. It
is also important to avoid multitasking and autotasking on Crays --- imply in your paper
that the one processor Cray performance rates you are comparing against represent the
full potential of a $25 million Cray system.
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Q: Port to GPU?

(Posed to me by Scott Klasky at ORNL)

» A: Given roughly same level of tuning & power”, ...

» Meta-analysis, for semi-irregular sci. comp. + data analytics apps
(sparse iterative + direct solvers; tree-based particle methods)
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Summary of “limits”

Bandwidth-bound: Aggregate bandwidth < 3x, restricted access patterns

Compute-bound: 5 to 10x peak potential, but there is a multithreading
granularity mismatch

PCle: Will architects replicate GPU memory system in on-die CPU/GPU?

Productivity: To Oth order, tuning required on all platforms
l.e., Bailey’s Rule #6
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Limitations of this meta-analysis

» Mix of partial results, very rough back-of-the envelope, apples vs. oranges
» But: “lt’'s all fruit” — My Big Fat Greek Wedding
» Narrow: Scientific computing? (yawn)
» But: More physically realistic games & graphics, signal analysis, data analytics
» Limited to today’s platforms, and excludes Fermi. What about tomorrow??

» But: “Prediction is very difficult, especially if it's about the future.” — N. Bohr
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Other voices

» Vishkin, et al., HotPar’10 poster!

» Bordawekar, et al. (IBM). “Believe
it or Not! Multi-core CPUs Can
Match GPU Performance for
FLOP-intensive Application!” IBM
Technical Report RC24982, April
2010.

Lee, et al. (Intel). “Debunking the
100X GPU vs. CPU Myth: An
Evaluation of Throughput
Computing on CPU and GPU.”
ISCA, June 2010.
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http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/9192e6536facfcef85257720005a0265!OpenDocument&Highlight=0,Bordawekar
http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/9192e6536facfcef85257720005a0265!OpenDocument&Highlight=0,Bordawekar

» Performance and productivity expectations
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Nesl C Cilk++ Tuned library CUDA
(16-cores) (1-core) (16-cores) (16-core) (GPU)

Worth the effort? Algorithm: Parallel sorting
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» Case study 1: Sparse iterative solvers

S. Williams, N. Bell, J. Choi, M. Garland, L. Oliker, R. Vuduc. “SpMV on MC & Acc.” In BDK book (2010).
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Anatomy of a sparse Iterative solver

do {

y < A*x “SpMV”

} while (!converged)

» Bottleneck: Sparse matrix-vector multiply (SpMV)

» Memory bandwidth-limited (stream A): GPU / CPU ~ 3x
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S. Williams, N. Bell, J. Choi, M. Garland, L. Oliker, R. Vuduc. “SpMV on MC & Acc.” In BDK book (2010).
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Beyond the kernel...

» Optimal data structures differ between CPU & GPU
= Startup, transfer cost

In distributed memory, need to transfer vectors
= PCle limits

Need ~ 100 iterations to break even, ~ 840 to get 2x on actual solver
= Big or not? Depends on app & input
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» Case study 2: The Fast Multipole Method

(1) Lashuk, et al., SC’09. (2) Chandramowlishwaran, Williams, et al., IPDPS’10.
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BlOOd Ce” SImU|at|Oﬂ (movie) In 2-D with deformations
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Anatomy of an FMM

Want:
All pair interactions among green dots

— O(n?)
FMM idea;

Build tree, traverse & prune (approx.)
— O(n log n), with accuracy guarantee

» Bottleneck: “Little” all-pair interactions (b%) among leaves

» High compute intensity: 12x possible?
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The story

» Baseline: Lashuk, et al., SC'09
» FMM that scales to 100k cores of “Kraken” machine @ UTK
» Good overall scalability, but low within-node performance
» Try GPUs?
» Gumerov & Duraiswami (JCP’08) suggest 30—60x speedups on GPUs
» \We successfully replicate on 256 GPU system at UIUC (1 MPI task / GPU)

» But, stubborn student (Aparna C.) is skeptical of speedup
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Recall: Anatomy of an FMM

Want:
All pair interactions among green dots

— O(n?)
FMM idea;

Build tree, traverse & prune (approx.)
— O(n log n), with accuracy guarantee

» Bottleneck: “Little” all-pair interactions (b%?) among nodes

» High compute intensity: 12x possible?
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Direct O(n"2) n—-body algorithm
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Direct O(n”*2) n—body algorithm
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Direct O(n*2) n—body algorithm
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» Case study 3: Sparse direct solvers

(1) M. Efe Guney, Ph.D. Thesis, Georgia Tech, May ’10. (2) Guney, Czechowski, et al. (in progress)
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Anatomy of a sparse direct solver

» Sparse Cholesky factorization, A =L-L', where A & L are sparse

» Mixed compute intensity, average of ~ 4 flops : byte for sample problem
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Real elimination tree example

Independent subtrees may be processed in parallel.
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Finer-grained dependencies

Colored circles on the right are BLAS calls on operands of varying size.

32
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Summary:
Definite potential, but no “magic”

» For a set of semi-irregular computations, 1 GPU = 1 to 2 CPUs.
= Study heterogeneous computing, but scale-back expectations.

» Barriers?
» Bandwidth-bound: Aggregate GPU : CPU bandwidth < 3x
PCle: Will we really replicate GPU memory system in on-die CPU/GPU?
Compute-bound: 5 to 10x potential, but how? E.g., FMM granularity mismatch

Productivity: To Oth order, tuning required on all platforms (Bailey’s Rule #6)
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