On the limits of (and opportunities for?) GPU acceleration

Aparna Chandramowlishwaran, Jee Choi, Kenneth Czechowski, Murat (Efe) Guney, Logan Moon, Aashay Shringarpure, Richard (Rich) Vuduc

HotPar'10, Berkeley - June 15, 2010

Georgia college of

Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers David H. Bailey
 June 11, 1991
 Ref: Supercomputing Review, Aug. 1991, pg. 54--55

6. Compare your results against scalar, unoptimized code on Crays.

It really impresses the audience when you can state that your code runs several times faster than a Cray, currently the world's dominant supercomputer. Unfortunately, with a little tuning many applications run quite fast on Crays. Therefore you must be careful not to do any tuning on the Cray code. Do not insert vectorization directives, and if you find any, remove them. In extreme cases it may be necessary to disable all vectorization with a command line flag. Also, Crays often run much slower with bank conflicts, so be sure that your Cray code accesses data with large, power-of-two strides whenever possible. It is also important to avoid multitasking and autotasking on Crays --- imply in your paper that the one processor Cray performance rates you are comparing against represent the full potential of a $\$ 25$ million Cray system.

Q: Port to GPU?

(Posed to me by Scott Klasky at ORNL)

- A: Given roughly same level of tuning \& power*, ...

GPU

- Meta-analysis, for semi-irregular sci. comp. + data analytics apps (sparse iterative + direct solvers; tree-based particle methods)

Summary of "limits"

- Bandwidth-bound: Aggregate bandwidth $<3 x$, restricted access patterns
- Compute-bound: 5 to 10x peak potential, but there is a multithreading granularity mismatch
- PCle: Will architects replicate GPU memory system in on-die CPU/GPU?
- Productivity: To Oth order, tuning required on all platforms I.e., Bailey's Rule \#6

Limitations of this meta-analysis

- Mix of partial results, very rough back-of-the envelope, apples vs. oranges
- But: "ll's all fruit" - My Big Fat Greek Wedding
- Narrow: Scientific computing? (yawn)
- But: More physically realistic games \& graphics, signal analysis, data analytics
- Limited to today's platforms, and excludes Fermi. What about tomorrow?
- But: "Prediction is very difficult, especially if it's about the future." - N. Bohr

Other voices

- Vishkin, et al., HotPar'10 poster!
- Bordawekar, et al. (IBM). "Believe it or Not! Multi-core CPUs Can Match GPU Performance for FLOP-intensive Application!" IBM Technical Report RC24982, April 2010.
- Lee, et al. (Intel). "Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU."
 ISCA, June 2010.
- Performance and productivity expectations

Worth the effort?

- Case study 1: Sparse iterative solvers

Anatomy of a sparse iterative solver

$$
\begin{aligned}
& \text { do }\{ \\
& \ldots \\
& y \leftarrow A^{*} x \quad \text { "SpMV" } \\
& \ldots \\
& \} \text { while (!converged) }
\end{aligned}
$$

- Bottleneck: Sparse matrix-vector multiply (SpMV)
- Memory bandwidth-limited (stream A): GPU / CPU ~ 3x

S. Williams, N. Bell, J. Choi, M. Garland, L. Oliker, R. Vuduc. "SpMV on MC \& Acc." In BDK book (2010).

S. Williams, N. Bell, J. Choi, M. Garland, L. Oliker, R. Vuduc. "SpMV on MC \& Acc." In BDK book (2010).

S. Williams, N. Bell, J. Choi, M. Garland, L. Oliker, R. Vuduc. "SpMV on MC \& Acc." In BDK book (2010).

Beyond the kernel...

- Optimal data structures differ between CPU \& GPU \Rightarrow Startup, transfer cost
- In distributed memory, need to transfer vectors
$\Rightarrow \mathrm{PCle}$ limits
- Need ~ 100 iterations to break even, ~ 840 to get $2 x$ on actual solver \Rightarrow Big or not? Depends on app \& input
- Case study 2: The Fast Multipole Method

Blood cell simulation

Anatomy of an FMM

Want:

All pair interactions among green dots
$\rightarrow \mathrm{O}\left(n^{2}\right)$

FMM idea:

Build tree, traverse \& prune (approx.)
$\rightarrow \mathrm{O}(n \log n)$, with accuracy guarantee

- Bottleneck: "Little" all-pair interactions (b^{2}) among leaves
- High compute intensity: 12 x possible?

The story

- Baseline: Lashuk, et al., SC’09
- FMM that scales to 100k cores of "Kraken" machine @ UTK
- Good overall scalability, but low within-node performance
- Try GPUs?
- Gumerov \& Duraiswami (JCP’08) suggest 30—60x speedups on GPUs
- We successfully replicate on 256 GPU system at UIUC (1 MPI task / GPU)
- But, stubborn student (Aparna C.) is skeptical of speedup

Recall: Anatomy of an FMM

Want:
All pair interactions among green dots
$\rightarrow \mathrm{O}\left(n^{2}\right)$

FMM idea:

Build tree, traverse \& prune (approx.)
$\rightarrow \mathrm{O}(n \log n)$, with accuracy guarantee

- Bottleneck: "Little" all-pair interactions (b^{2}) among nodes
- High compute intensity: 12x possible?

Direct O($n^{\wedge} 2$) n-body algorithm

Direct $O\left(n^{\wedge} 2\right) n$-body algorithm

Direct $O\left(n^{\wedge} 2\right) n$-body algorithm

- Case study 3: Sparse direct solvers

Anatomy of a sparse direct solver

- Sparse Cholesky factorization, $A=L \cdot L^{\top}$, where $A \& L$ are sparse
- Mixed compute intensity, average of ~ 4 flops : byte for sample problem

Real elimination tree example

Independent subtrees may be processed in parallel.

Finer-grained dependencies

Colored circles on the right are BLAS calls on operands of varying size.

Depth

BLAS

- dgemm
- dpotrf
- dsyrk
- dtrsm

GPU Gflop/s	GPU Gflop/s	-1 -core CPU Gflop/s
+ copy	(no copy $)$	+ copy

Summary:
 Definite potential, but no "magic"

- For a set of semi-irregular computations, $\mathbf{1} \mathrm{GPU} \cong 1$ to $\mathbf{2}$ CPUs. \Rightarrow Study heterogeneous computing, but scale-back expectations.
- Barriers?
- Bandwidth-bound: Aggregate GPU : CPU bandwidth < 3x
- PCle: Will we really replicate GPU memory system in on-die CPU/GPU?
- Compute-bound: 5 to 10x potential, but how? E.g., FMM granularity mismatch
- Productivity: To Oth order, tuning required on all platforms (Bailey's Rule \#6)

