Collaborative Threads

Exposing and Leveraging Dynamic Thread State for
Efficient Computation

Georgia GCollege cff
Tech | Compuiing

Outline

* Views on Parallelism

® Thread Collaboration and Semantic State

* Representation of Semantic State with the CST

* Experimental Results
* Result reuse

® Orienting a Computation

Outline

* Views on Parallelism

¢ Thread Collaboration and Semantic State

* Representation of Semantic State with the CST

® Experimental Results
® Result reuse

® Orienting a Computation

Parallelism and Threads

Parallelism and Threads

* Parallelism today relies on threads
* Splitting-up of data with data-parallelism

* Splitting-up of work with task-parallelism

Georgia | College of
Tech || Computting

=

Parallelism and Threads

* Parallelism today relies on threads
* Splitting-up of data with data-parallelism
* Splitting-up of work with task-parallelism
* Higher-level models exist as well

* TBB, Cilk to express task-parallelism
Implements the fork-join paradigm

Provides higher-level parallel abstractions (parallel_for, parallel_do,...)

* CnC to express natural parallelism

What is Missing?

What is Missing?

* Thread interactions is restricted to
* Locks, barriers and TMs for synchronization

* Shared memory and message passing for shared data

What is Missing?

Current Use of Parallelism

Current Use of Parallelism

* Current models break-up a computation

* Distribution of work is done just in time at best
* Break-up oblivious to the state of the computation

* Only the state of data-structures (what threads read/write
to them) is used (for example, the Galois model)

* Higher-level semantic information is lost

Alternative Uses Required

Alternative Uses Required

* Many HPC combinatorial optimization problems and
search problems

e Are resource bound

* Have a performance dependency on more than how work is
split-up

Alternative Uses Required

* Many HPC combinatorial optimization problems and
search problems

e Are resource bound

* Have a performance dependency on more than how work is
split-up

* Performance depends on the direction of computation,
scheduling of tasks, ordering of computations, pruning of
the search space, efc...

* For example: certain orderings will lead to a faster space
pruning

Alternate Views on Parallelism

Alternate Views on Parallelism

* N-way parallelism leverages competition [HotPar 2009]

* Pick the best through competition amongst diverse ways

Alternate Views on Parallelism

* N-way parallelism leverages competition [HotPar 2009]

* Pick the best through competition amongst diverse ways
* We propose to allow threads to collaborate
* Share higher-level semantic information

* Allows the dynamic adaptation of work and leveraging of
the state of the entire computation

Outline

¢ Views on Parallelism

® Thread Collaboration and Semantic State

* Representation of Semantic State with the CST

® Experimental Results
® Result reuse

® Orienting a Computation

What is Thread Collaboration?

What is Thread Collaboration?

* Programmer identification of useful semantic state

What is Thread Collaboration?

* Programmer identification of useful semantic state

* Sharing of identified state and meta-information to
dynamically determine the best way to

* optimize for computational efficiency (do no more than
required)

* orient the computation (do what is most likely to yield
results)

o ytilize resources (select adapted resources)

Examples of Semantic Information

Examples of Semantic Information

* Partially computed results (in a highly parallel
computational problem)

Georgia | College eff
Tech || Computting

Examples of Semantic Information

* Partially computed results (in a highly parallel
computational problem)

* Successfulness (problems with searches over large
spaces)

Georgia | College of
Tech || Computting

Examples of Semantic Information

* Partially computed results (in a highly parallel
computational problem)

* Successfulness (problems with searches over large
spaces)

* Execution time (similar computations on various types of
cores)

Georgia | College of
Tech || Computting

Examples of Semantic Information

* Partially computed results (in a highly parallel
computational problem)

* Successfulness (problems with searches over large
spaces)

* Execution time (similar computations on various types of
cores)

* Data footprints (problems with irregular read/write
patterns)

11

Georgia | College of
Tech || Computting

Examples of Semantic Information

* Partially computed results (in a highly parallel
computational problem)

* Successfulness (problems with searches over large
spaces)

* Execution time (similar computations on various types of
cores)

* Data footprints (problems with irregular read/write
patterns)

11

Uses of Semantic State

Uses of Semantic State

* Semantic state can answer various questions, such as:

Uses of Semantic State

* Semantic state can answer various questions, such as:

* Which other solved sub-problem can | leverage?

Uses of Semantic State

* Semantic state can answer various questions, such as:

* Which other solved sub-problem can | leverage?

* If | am looking for work amongst several possibilities,

which should | choose?

Georgia | College of
Tech || Computting

Uses of Semantic State

* Semantic state can answer various questions, such as:
* Which other solved sub-problem can | leverage?

* If | am looking for work amongst several possibilities,
which should | choose?

* Which resource is the best for my sub-problem?

12

Uses of Semantic State

* Semantic state can answer various questions, such as:
* Which other solved sub-problem can | leverage?

* If | am looking for work amongst several possibilities,
which should | choose?

* Which resource is the best for my sub-problem?

* What data are other threads likely to touch?

Challenges for the Model

Challenges for the Model

* Expression of higher-level semantic state

* Flexible and easy way to express state

Challenges for the Model

* Expression of higher-level semantic state
* Flexible and easy way to express state

* Organization of semantic information in a useful way
e Compact representation of shared state

* Low-overhead storage and retrieval

Outline

¢ Views on Parallelism

¢ Thread Collaboration and Semantic State

* Representation of Semantic State with the CST

® Experimental Results
® Result reuse

® Orienting a Computation

@ . Represents thread state

Computational State Tree (CST)

* Clusters “Similar Sub-problems” together into a tree

@ : Represents thread state

e Hierarchical
* I[ncremental

* Approximate

Computational State Tree (CST)

* Hierarchical

* Logarithmic lookup time on the clusters
* Incremental

* Incrementally build without rebuilding from scratch
* Approximate

* Not guaranteed to form best clusters

® Results in quick lookups but not optimal

What Can We Do With This?

® Results re-use

® Orient a computation

* Sub-problem prioritization

e Core selection

Outline

¢ Views on Parallelism

¢ Thread Collaboration and Semantic State

* Representation of Semantic State with the CST

* Experimental Results
* Result reuse

® Orienting a Computation

Results Re-use

* Leverage results of “Similar sub-problems”

* Locate sub-problems which are similar
* Share partial results
* Examples

e Sum of subsets

e K-Means

Tech || Computting

=

Georgia & College of

Sum of Subsets

* Given a set of integers and ’s’, does any non-empty subset sum
to ‘s’

* Naive parallelization makes each subset computation a

different task
{3,4,5,6, 7,8, 9}

{2! 3’ 4’ 51 6! 7! 8’ 9}
{3! 4’ 5! 61 9}

{3! 4’ 5! 61 7! 8! 91 12}

Tech || Computting

=

Georgia @‘ College of

Sum of Subsets

* Given a set of integers and ’s’, does any non-empty subset sum
to ‘s’

* Naive parallelization makes each subset computation a

different task
{3,4,5,6,7,8, 9}

* Large amount of redundancy can be exploited

i2,3,4,5,6,7,8,9;

{3! 41 51 6! 7! 8’ 9! 12}

Sum of Subsets

* Programmer specifies a similarity metric:
* Here, cardinality of the symmetric difference
|(A-B) U (B-A)|
* Threads can share their current computation:
e share ({1, 10, 9, 8, 3, 4}, 35);

* share ({8, 3, 4}, 15);

Sum of Subsets

* Before computing a sum, threads can lookup the
currently best available result:

* lookup_closest({10, 9, 8, 3, 4});
* The return value varies based on scheduling

* Might need to add or subtract a few values to generate
needed sum

* Automatically makes best use of previously computed
values

* Partitions ‘n’ points into 'k’ clusters

® Choose ‘k’ random centroids

* Associate point to closest centroid

* Re-compute centroids

° |terate

* Each point performs ‘k’ computations to determine closest
centroid

* Points which are close to each other can potentially share
their closest centroid

K-Means

* Points which are close to each other can potentially share
their closest centroid

share((x1, v1),
(A));

K-Means

* Points which are close to each other can potentially share
their closest centroid

° o
v

lookup_closest(
(X2, y2));

* Points which are close to each other can potentially share
their closest centroid

Georgia | College eff
Tech & Compuiiing

Results

Random dataset with clusters

2.4

Without result sharing -+
With result sharing —<— |
Speedup ---*-- 4 23

3

2.2

2.1

2

1.9

1.8

s

1.7

@
E
S
c
ke,
N
©
o}
=
@
c
o
B
@
£
-
| =
ke,
-
3
0
@
>
L

1.6

1.5

1.4

0 . 1.3
2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of clusters (K)

* Ran more than twice as fast with collaboration turned on

Georgia | College of
Tech || Computting

Where Does the Speedup Come From?

* Computation Reduction
* Original: Makes 'k’ comparisons for each point

* Collaborative: Single point computes, and those around it
share the value (the more dense the points, the more
potential for collaboration)

* More efficient computation with collaboration

* Re-wrote key sub-step in a collaborative manner

31

Outline

¢ Views on Parallelism

¢ Thread Collaboration and Semantic State

* Representation of Semantic State with the CST

* Experimental Results
® Result reuse

® Orienting a Computation

Orienting a Computation

* Computational space is large
* Some parts of this space may be more fruitful to process
* Guide threads to these parts of the space

* Example: SAT Solver, Finding maxima/minima for non-
convex spaces

Georgia | College eff
Tech || Computting

=

SAT Computational Difficulty

variables

o k-SAT with m clauses
and n variables

w
O
S
©
-
=
I
3
o
&
O
S
-
a
D
D
=

*x=m/n=4.26

ratio of clauses to variables

* Satisfiable solutions are clustered in small pockets

o Similar to WalkSAT

* Local Search Algorithm

e Start with Random Assignment

* Flip a variable, minimizing number of unsatisfied clauses

* lterate till you find a solution

Orienting GSat

* Use GSat as an All-Solutions finder

* When one Satisfiable solutions is found

* Publish the location of the successful solution
* share (current_truth_assignment)

* Guide other close-by threads into these pockets

Guiding other threads

Solution space

Guiding other threads

Solution space

Results

B Solutions found in 120 seconds

No collaboration Collaboration

n=38,d=m/n=4.26

Georgia | College of
Tech || Computting

=

Conclusion

* For some problems, everything is parallel, but not everything is
useful

* We proposed an alternative view of parallelism

* State exposure coupled with collaboration, facilitates a new
paradigm for writing parallel algorithms

* It provides improved computational efficiency, orientation and
dynamic scheduling.

* We showed improvements for K-Means and GSat

* We are exploring more applications of the collaborative
paradigms and different representations of the CST

Georgia
Tech

Georgia
Tech

Georgia | College off
Tech & Compurting

Georgia

Tech

Te Compurting

Georgig I& College of
C

