
Collaborative Threads
Exposing and Leveraging Dynamic Thread State for

Efficient Computation

Outline
•Views on Parallelism

•Thread Collaboration and Semantic State

•Representation of Semantic State with the CST

•Experimental Results

•Result reuse

•Orienting a Computation

2

Outline
•Views on Parallelism

•Thread Collaboration and Semantic State

•Representation of Semantic State with the CST

•Experimental Results

•Result reuse

•Orienting a Computation

3

Parallelism and Threads

4

Parallelism and Threads
•Parallelism today relies on threads

•Splitting-up of data with data-parallelism

•Splitting-up of work with task-parallelism

4

Parallelism and Threads
•Parallelism today relies on threads

•Splitting-up of data with data-parallelism

•Splitting-up of work with task-parallelism

•Higher-level models exist as well

•TBB, Cilk to express task-parallelism

•Implements the fork-join paradigm

•Provides higher-level parallel abstractions (parallel_for, parallel_do,...)

•CnC to express natural parallelism
4

What is Missing?

5

What is Missing?
•Thread interactions is restricted to

•Locks, barriers and TMs for synchronization

•Shared memory and message passing for shared data

5

What is Missing?

5

Current Use of Parallelism

6

Current Use of Parallelism
•Current models break-up a computation

•Distribution of work is done just in time at best

•Break-up oblivious to the state of the computation

•Only the state of data-structures (what threads read/write
to them) is used (for example, the Galois model)

•Higher-level semantic information is lost

6

Alternative Uses Required

7

Alternative Uses Required
•Many HPC combinatorial optimization problems and

search problems

•Are resource bound

•Have a performance dependency on more than how work is
split-up

7

Alternative Uses Required
•Many HPC combinatorial optimization problems and

search problems

•Are resource bound

•Have a performance dependency on more than how work is
split-up

•Performance depends on the direction of computation,
scheduling of tasks, ordering of computations, pruning of
the search space, etc...

•For example: certain orderings will lead to a faster space
pruning

7

Alternate Views on Parallelism

8

Alternate Views on Parallelism
•N-way parallelism leverages competition [HotPar 2009]

•Pick the best through competition amongst diverse ways

8

Alternate Views on Parallelism
•N-way parallelism leverages competition [HotPar 2009]

•Pick the best through competition amongst diverse ways

•We propose to allow threads to collaborate

•Share higher-level semantic information

•Allows the dynamic adaptation of work and leveraging of
the state of the entire computation

8

Outline
•Views on Parallelism

•Thread Collaboration and Semantic State

•Representation of Semantic State with the CST

•Experimental Results

•Result reuse

•Orienting a Computation

9

What is Thread Collaboration?

10

What is Thread Collaboration?
•Programmer identification of useful semantic state

10

What is Thread Collaboration?
•Programmer identification of useful semantic state

•Sharing of identified state and meta-information to
dynamically determine the best way to

•optimize for computational efficiency (do no more than
required)

•orient the computation (do what is most likely to yield
results)

•utilize resources (select adapted resources)

10

Examples of Semantic Information

11

Examples of Semantic Information
•Partially computed results (in a highly parallel
computational problem)

11

Examples of Semantic Information
•Partially computed results (in a highly parallel
computational problem)

•Successfulness (problems with searches over large
spaces)

11

Examples of Semantic Information
•Partially computed results (in a highly parallel
computational problem)

•Successfulness (problems with searches over large
spaces)

•Execution time (similar computations on various types of
cores)

11

Examples of Semantic Information
•Partially computed results (in a highly parallel
computational problem)

•Successfulness (problems with searches over large
spaces)

•Execution time (similar computations on various types of
cores)

•Data footprints (problems with irregular read/write
patterns)

11

Examples of Semantic Information
•Partially computed results (in a highly parallel
computational problem)

•Successfulness (problems with searches over large
spaces)

•Execution time (similar computations on various types of
cores)

•Data footprints (problems with irregular read/write
patterns)

•...
11

Uses of Semantic State

12

Uses of Semantic State
•Semantic state can answer various questions, such as:

12

Uses of Semantic State
•Semantic state can answer various questions, such as:

•Which other solved sub-problem can I leverage?

12

Uses of Semantic State
•Semantic state can answer various questions, such as:

•Which other solved sub-problem can I leverage?

•If I am looking for work amongst several possibilities,
which should I choose?

12

Uses of Semantic State
•Semantic state can answer various questions, such as:

•Which other solved sub-problem can I leverage?

•If I am looking for work amongst several possibilities,
which should I choose?

•Which resource is the best for my sub-problem?

12

Uses of Semantic State
•Semantic state can answer various questions, such as:

•Which other solved sub-problem can I leverage?

•If I am looking for work amongst several possibilities,
which should I choose?

•Which resource is the best for my sub-problem?

•What data are other threads likely to touch?

12

Challenges for the Model

13

Challenges for the Model

•Expression of higher-level semantic state

•Flexible and easy way to express state

13

Challenges for the Model

•Expression of higher-level semantic state

•Flexible and easy way to express state

•Organization of semantic information in a useful way

•Compact representation of shared state

•Low-overhead storage and retrieval

13

Outline
•Views on Parallelism

•Thread Collaboration and Semantic State

•Representation of Semantic State with the CST

•Experimental Results

•Result reuse

•Orienting a Computation

14

Computational State Tree (CST)

•Clusters “Similar Sub-problems” together into a tree

: Represents thread state

15

Computational State Tree (CST)

•Clusters “Similar Sub-problems” together into a tree

: Represents thread state

15

•Hierarchical

•Incremental

•Approximate

Computational State Tree (CST)
•Hierarchical

•Logarithmic lookup time on the clusters

•Incremental

•Incrementally build without rebuilding from scratch

•Approximate

•Not guaranteed to form best clusters

•Results in quick lookups but not optimal

16

What Can We Do With This?
•Results re-use

•Orient a computation

•Sub-problem prioritization

•Core selection

17

Outline
•Views on Parallelism

•Thread Collaboration and Semantic State

•Representation of Semantic State with the CST

•Experimental Results

•Result reuse

•Orienting a Computation

18

Results Re-use

•Leverage results of “Similar sub-problems”

•Locate sub-problems which are similar

•Share partial results

•Examples

•Sum of subsets

•K-Means

19

Sum of Subsets

{3, 4, 5, 6, 7, 8, 9}

{2, 3, 4, 5, 6, 7, 8, 9}

{3, 4, 5, 6, 9}

{3, 4, 5, 6, 7, 8, 9, 12}

•Given a set of integers and ‘s’, does any non-empty subset sum
to ‘s’?

•Naive parallelization makes each subset computation a
different task

20

Sum of Subsets

{3, 4, 5, 6, 7, 8, 9}

{2, 3, 4, 5, 6, 7, 8, 9}

{3, 4, 5, 6, 9}

{3, 4, 5, 6, 7, 8, 9, 12}

•Given a set of integers and ‘s’, does any non-empty subset sum
to ‘s’?

•Naive parallelization makes each subset computation a
different task

•Large amount of redundancy can be exploited

21

Sum of Subsets
•Programmer specifies a similarity metric:

•Here, cardinality of the symmetric difference

•|(A-B) U (B-A)|

•Threads can share their current computation:

•share ({1, 10, 9, 8, 3, 4}, 35);

•share ({8, 3, 4}, 15);

22

Sum of Subsets
•Before computing a sum, threads can lookup the
currently best available result:

•lookup_closest({10, 9, 8, 3, 4});

•The return value varies based on scheduling

•Might need to add or subtract a few values to generate
needed sum

•Automatically makes best use of previously computed
values

23

K-Means

•Partitions ‘n’ points into ‘k’ clusters

•Choose ‘k’ random centroids

•Associate point to closest centroid

•Re-compute centroids

•Iterate

24

K-Means

•Each point performs ‘k’ computations to determine closest
centroid

25

K-Means

•Points which are close to each other can potentially share
their closest centroid

26

K-Means

•Points which are close to each other can potentially share
their closest centroid

A

B

C

share((x1, y1) ,
(A));

27

K-Means

•Points which are close to each other can potentially share
their closest centroid

A

B

C

lookup_closest(
(x2, y2));

28

K-Means

•Points which are close to each other can potentially share
their closest centroid

A

B

C

29

Results

•Ran more than twice as fast with collaboration turned on
30

Where Does the Speedup Come From?
•Computation Reduction

•Original: Makes ‘k’ comparisons for each point

•Collaborative: Single point computes, and those around it
share the value (the more dense the points, the more
potential for collaboration)

•More efficient computation with collaboration

•Re-wrote key sub-step in a collaborative manner

31

Outline
•Views on Parallelism

•Thread Collaboration and Semantic State

•Representation of Semantic State with the CST

•Experimental Results

•Result reuse

•Orienting a Computation

32

Orienting a Computation

•Computational space is large

•Some parts of this space may be more fruitful to process

•Guide threads to these parts of the space

•Example: SAT Solver, Finding maxima/minima for non-
convex spaces

33

SAT Computational Difficulty

•k-SAT with m clauses
and n variables

•α = m/n ≈ 4.26

•Satisfiable solutions are clustered in small pockets
34

GSat

•Similar to WalkSAT

•Local Search Algorithm

•Start with Random Assignment

•Flip a variable, minimizing number of unsatisfied clauses

•Iterate till you find a solution

35

Orienting GSat

•Use GSat as an All-Solutions finder

•When one Satisfiable solutions is found

•Publish the location of the successful solution

•share (current_truth_assignment)

•Guide other close-by threads into these pockets

36

Guiding other threads

Solution space

37

Guiding other threads

Solution space

37

Results

0

4

7

11

14

No collaboration Collaboration

Solutions found in 120 seconds

n = 38, α = m/n ≈ 4.26
38

Conclusion
•For some problems, everything is parallel, but not everything is

useful

•We proposed an alternative view of parallelism

•State exposure coupled with collaboration, facilitates a new
paradigm for writing parallel algorithms

•It provides improved computational efficiency, orientation and
dynamic scheduling.

•We showed improvements for K-Means and GSat

•We are exploring more applications of the collaborative
paradigms and different representations of the CST

39

Q & A

40

Q & A
•?

40

Q & A
•?

•?

40

Q & A
•?

•?

•?

40

Q & A
•?

•?

•?

•?

40

