
Design Principles for End-to-End
Multicore Schedulers

Simon Peter? Adrian Schüpbach? Paul Barham†

Andrew Baumann? Rebecca Isaacs† Tim Harris†
Timothy Roscoe?

?Systems Group, ETH Zurich † Microsoft Research

HotPar’10

c© Systems Group | Department of Computer Science | ETH Zürich HotPar’10

Context: Barrelfish Multikernel operating system

I Developed at ETHZ and Microsoft Research
I Scalable research OS on heterogeneous multicore hardware

I Operating system principles and structure
I Programming models and language runtime systems

I Other scalable OS approaches are similar
I Tessellation, Corey, ROS, fos, . . .
I Ideas in this talk more widely applicable

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 2

Today’s talk topic

OS Scheduler architecture for today’s
(and tomorrow’s) multicore machines

I General-purpose setting:
I Dynamic workload mix
I Multiple parallel apps
I Interactive parallel apps

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 3

Why this is a problem
A simple example

I Run 2 OpenMP applications concurrently
I On 16-core AMD Shanghai system
I Intel OpenMP library
I Linux OS

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 4

Why this is a problem
Example: 2x OpenMP on 16-core Linux

I One app is CPU-Bound:
#pragma omp parallel
for(;;) iterations[omp_get_thread_num()]++;

I Other is synchronization intensive (eg. BARRIER):
#pragma omp parallel
for(;;) {
#pragma omp barrier
iterations[omp_get_thread_num()]++;

}

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 5

Why this is a problem
Example: 2x OpenMP on 16-core Linux

I Run for x in [2..16]:
I OMP_NUM_THREADS=x ./BARRIER &
I OMP_NUM_THREADS=8 ./cpu_bound &
I sleep 20
I killall BARRIER cpu_bound

I Plot average iterations/thread/s over 20s

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 6

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 7

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 7

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER
Until 8 BARRIER threads

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 7

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER
Until 8 BARRIER threads

CPU-Bound stays at 1
(same thread allocation)

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 7

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER
Until 8 BARRIER threads

CPU-Bound stays at 1
(same thread allocation)

BARRIER degrades
(due to increasing cost)

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 7

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER
Until 8 BARRIER threads

CPU-Bound stays at 1
(same thread allocation)

BARRIER degrades
(due to increasing cost)

Space-partitioning

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 7

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER
From 9 threads
(threads > cores)
Time-multiplexing

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 7

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER
From 9 threads
(threads > cores)
Time-multiplexing

CPU-Bound degrades
linearly

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 7

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER
From 9 threads
(threads > cores)
Time-multiplexing

CPU-Bound degrades
linearly

BARRIER drops sharply
(only makes progress
when all threads run
concurrently)

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 7

Why this is a problem
Example: 2x OpenMP on 16-core Linux

I Gang scheduling or smart core allocation would help

I Gang scheduling:
I OS unaware of apps’ requirements
I The run-time system could’ve known

I Eg. via annotations or compiler
I Smart core allocation:

I OS knows general system state
I Run-time system chooses number of threads

I Information and mechanisms in the wrong place

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 8

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER

Huge error bars
(min/max over 20 runs)

Random placement of
threads to cores

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 9

Why this is a problem
16-core AMD Shanghai system

Core

Core

Core

Core

L3

Core

Core

Core

Core

L3

Core

Core

Core

Core

L3

Core

Core

Core

Core

L3

HT

HT

H
T

H
T

I Same-die L3 access twice as fast as cross-die
I OpenMP run-time does not know about this machine

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 10

Why this is a problem
16-core AMD Shanghai system

Core

Core

Core

Core

L3

Core

Core

Core

Core

L3

Core

Core

Core

Core

L3

Core

Core

Core

Core

L3

HT

HT

H
T

H
T

I Same-die L3 access twice as fast as cross-die
I OpenMP run-time does not know about this machine

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 10

Why this is a problem
16-core AMD Shanghai system

Core

Core

Core

Core

L3

Core

Core

Core

Core

L3

Core

Core

Core

Core

L3

Core

Core

Core

Core

L3

HT

HT

H
T

H
T

I Same-die L3 access twice as fast as cross-die
I OpenMP run-time does not know about this machine

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 10

Why this is a problem
Example: 2x OpenMP on 16-core Linux

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
e

la
ti

ve
 R

a
te

 o
f

P
ro

g
re

ss

Number of BARRIER Threads

CPU-Bound

BARRIER

2 threads case:
Performance difference of 0.4

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 11

Why this is a problem
System diversity

UltraSPARC® IIIi
processor

1x

2004 2005 2006 2007 2008

UltraSPARC® T1
processor
32 threads
eight cores

14x

UltraSPARC T2
processor
64 threads
eight cores

35x

“Victoria Falls”
128 threads

16 cores
65x

(two sockets)

FB DIMM FB DIMM FB DIMM FB DIMM

SPU SPU SPU SPU SPU SPU SPU SPU

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <95 W x8 @ 2.0 GHz

NIU
(Ethernet+)

Sys I/F
Buffer Switch Core PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

FB DIMM FB DIMM FB DIMM FB DIMM

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <100 W x8 @2. GHz

NIU
(E-NET+)

Sys I/F
Buffer Switch Core

PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

Sun Niagara T2
I Flat, fast cache hierarchy

Core

Core

Core

Core

Core

Core

L3

Core

Core

Core

Core

Core

Core

L3

HT3

HT3

AMD Opteron (Magny-Cours)
I On-chip interconnect

Intel Nehalem (Beckton)
I On-die ring network

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 12

Why this is a problem
System diversity

UltraSPARC® IIIi
processor

1x

2004 2005 2006 2007 2008

UltraSPARC® T1
processor
32 threads
eight cores

14x

UltraSPARC T2
processor
64 threads
eight cores

35x

“Victoria Falls”
128 threads

16 cores
65x

(two sockets)

FB DIMM FB DIMM FB DIMM FB DIMM

SPU SPU SPU SPU SPU SPU SPU SPU

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <95 W x8 @ 2.0 GHz

NIU
(Ethernet+)

Sys I/F
Buffer Switch Core PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

FB DIMM FB DIMM FB DIMM FB DIMM

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <100 W x8 @2. GHz

NIU
(E-NET+)

Sys I/F
Buffer Switch Core

PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

Sun Niagara T2
I Flat, fast cache hierarchy

Core

Core

Core

Core

Core

Core

L3

Core

Core

Core

Core

Core

Core

L3

HT3

HT3

AMD Opteron (Magny-Cours)
I On-chip interconnectManual tuning increasingly difficult

Architectures change too quickly
Offline auto-tuning (eg. ATLAS) limited

Intel Nehalem (Beckton)
I On-die ring network

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 12

Online adaptation

I Online adaptation remains viable
I Easier with contemporary runtime systems

I OpenMP, Grand Central Dispatch, ConcRT, MPI, . . .
I Synchronization patterns are more explicit

I But needs information at right places

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 13

The end-to-end approach

I The system stack:
Component Related work
Hardware Heterogeneous, . . .
OS scheduler CAMP, HASS, . . .
Runtime systems OpenMP, MPI, ConcRT, McRT, . . .
Compilers Auto-parallel., . . .
Programming paradigms MapReduce, ICC, . . .
Applications annotations, . . .

I Involve all components, top to bottom
I Need to cut through classical OS abstractions
I Here we focus on OS / runtime system integration

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 14

Design Principles

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 15

Design principles
1. Time-multiplexing cores is still needed

I Resource abundance 6= scheduler freedom

I Asymmetric multi-core architectures
I Contention for “big” cores

I Provide real-time QoS to interactive apps, not wasting cores
I Avoid power wasted through over-provisioning

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 16

Design principles
2. Schedule at multiple timescales

I Interactive workloads are now parallel
I Requirements might change abruptly
I Eg. parallel web browser

I Much shorter, interactive time scales
I Thus need small overhead when scheduling

I Synchronized scheduling on every time-slice won’t scale

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 17

Implementation in Barrelfish

I Combination of techniques at different time granularities
I Long-term placement of apps on cores
I Medium-term resource allocation
I Short-term per-core scheduling

I Phase-locked gang scheduling
I Gang scheduling over interactive timescales

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 18

Implementation in Barrelfish

I Combination of techniques at different time granularities
I Long-term placement of apps on cores
I Medium-term resource allocation
I Short-term per-core scheduling

I Phase-locked gang scheduling
I Gang scheduling over interactive timescales

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 18

Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 19

Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Progress only in
small time
windows

Phase-locked gang scheduling (actual trace):

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 19

Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):

Synchronize core-local clocks

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 19

Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):

Agree on future gang start
time

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 19

Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):

-

...and gang period

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 19

Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):

-

Resync in future when necessary

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 19

Design principles
3. Reason online about the hardware

I We employ a system knowledge base
I Contains rich representation of the hardware
I Queries in subset of first-order logic
I Logical unification aids dealing with diversity

I Both OS and apps use it

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 20

Design principles
4. Reason online about each application

I OS should exploit knowledge about apps for efficiency
I Eg. gang schedule threads in an OpenMP team
I But no sense in gang scheduling unrelated threads

I A single app might go through different phases
I Optimal allocation of resources changes over time

Implementation:
I Apps submit scheduling manifests to planner

I Contain predicted long-term resource requirements
I Expressed as constrained cost-functions
I May make use of any information in the SKB

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 21

Design principles
5. Applications and OS must communicate

I Implementing the end-to-end principle
I Resource allocation may be renegotiated during runtime

Implementation:
I Hardware threads run user-level dispatchers

I Cf. Psyche, inheritance scheduling
I Related dispatchers are grouped into dispatcher groups

I Derived from RTIDs of McRT
I Used as handles when renegotiating

I Scheduler activations [Anderson 1992] to inform app

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 22

Implementation in the Barrelfish OS

Disp Disp DispDisp
D1

Disp Disp
D2

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 23

Open questions

I What are appropriate mechanisms and timescales for
inter-core phase synchronization?

I How can programmers provide useful concurrency
information to the runtime?

I How efficiently can runtime specify requirements to OS?
I Hidden cost (if any) of decoupling scheduling timescales?
I Tradeoffs between centralized and distributed planners?
I Appropriate level of expressivity for the SKB?

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 24

