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Motivation

 Chip Multiprocessor

 Does not support well for sequential workloads

HotPar 2010

P
o

ss
ib

le
 C

o
n

fi
g
u

ra
ti

o
n

s

“Amdahls law in the multicore era”

[IEEE computer, July 2008]
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Motivation

 Asymmetric Chip Multiprocessor

 To satisfy diverse workloads
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Motivation

 Dynamic Multiprocessor

 Flexible to cast to the right configuration based 

on the need
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Core Fusion

[ISCA’07]

Examples of Dynamic Multiprocessors

Intel Turbo Boost

[Nehalem]
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Motivation

 Many mechanisms lead to dynamically variable 

processors

 Performance

 Merging resources: Core Fusion, Speculative 

Multithreading

 Shifting power:  Turbo Boost, Over-provisioned 

systems

 Reliability

 Redundant execution [ISCA’07]
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Why reconfigure the OS?

 What happens if a processor goes to offline 

state without any notification?

 Servicing of interrupts, IPI, Bottom halves is stopped

 Other processors might wait for spinlock

 RCU stall

 Thread execution is stopped
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Can the OS adapt to changing 

processors ?

 Common theme: the number of physical 

execution contexts may change dynamically and 

frequently

 Our work:

 Analysis of Linux mechanisms for changing processors

 Two new techniques for dynamically varying processors

 Processor Proxies

 Deferred/Parallel Hotplug
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Why is changing processors hard?

 Many pieces of code know which processors 

are available

 Scheduler

 Per-CPU structures

 Distributed operations require processors to 

communicate

 Communication between processors - IPI

 Read Copy Update (RCU) mechanism

HotPar 201010



CPU dependence in Linux
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 Analysis of Linux 2.6.31-4 kernel on a 4 CPU 

machine

 Inference: CPU dependences are widespread

Number of per-CPU data 

structures

446 data structures

Number of callbacks when CPU 

set changes

35 callbacks

Frequency of global RCU 

operations

90 callbacks/second
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Current solution: Linux Hotplug

 Hotplug allows dynamic addition/removal of a 

processor

 Partitioning/virtualization

 Physical repair

 Used for long-term reconfigurations

 Assumes that processors, once off lined, never 

comes online

 Notifies all relevant subsystems, creates/deletes all 

per-CPU state
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31 2 4

CPU_DOWN_PREPARE

CPU_DEAD

CPU_POST_DEAD

CPU 3 going down
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take_cpu_down

- disables interrupt

- remove cpu from 

cpu_online_mask

-schedule idle thread on this cpu

CPU_DYING

NOP 

loop

NOP       

loop
NOP 

loop



Hotplug performance

 Good for virtualization but too slow for rapid 

reconfiguration

Hotplug 

Operations

Cores Latency 

(msec)

OFFLINE

1 25

2 60

3 137

ONLINE

1 106

2 214

3 331
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Our approach

 Strategy

 Do very little for short-term changes

 Do long-term changes off line, asynchronously and 

in parallel

 Solutions

 Processor proxies address short-term 

reconfiguration

 Deferred and Parallel hotplug reduces the 

frequency and latency of long-term 

reconfiguration
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Processor Proxies

 A processor proxy is a fill-in for offline 

processor 

 Provides separate execution context on the  

proxying CPU called the proxy context

 Participates in operations that requires the 

offline processor:

 Servicing Inter Processor Interrupts (IPI)

 Ensuring progress in RCU mechanism

 Does not execute threads
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CPU A

Native 

context

Proxy 

context

Interrupts destined to CPU A

Interrupts destined to CPU B

CPU B

Interrupt/Bottom halves servicing

B is offline and A is proxying for B
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Processor Proxy Evaluation Result

 Offline / Online performance compared to 

native

Hotplug 

Operations

Cores Native

(msec)

Proxy 

(msec)

OFFLINE

1 25 1.7

2 60 4

3 137 6.5

ONLINE

1 106 1.2

2 214 2.8

3 331 6
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Deferred and Parallel Hotplug

 Processor proxies are not a long term solution

 Threads don’t run on a proxy

 If the reconfiguration is long lasting, move to a 

stable state

 Solutions:

 Deferred hotplug: remove a CPU that is currently 

proxied

 Parallel hotplug: reconfigure multiple CPUs 

simultaneously
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Evaluation Results

 Performance of CPU online is greatly improved
 Major time spent in initialization for CPU online

 Initialization can happen in parallel

Hotplug 

Operations

Cores Native 

(msec)

Parallel 

(msec)

OFFLINE

1 25 25

2 60 60

3 137 130

ONLINE

1 106 106

2 214 111

3 331 131
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Conclusions

 Dynamic reconfiguration

 Operating systems are not prepared

 Hotplug mechanisms is too slow

 Low latency solutions

 Processor Proxies

 Deferred and Parallel hotplug

 Future work

 Resource management
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