
Dynamic Processors Demand

Dynamic Operating Systems

Sankaralingam Panneerselvam

Michael M. Swift
Computer Sciences Department

University of Wisconsin, Madison, WI

HotPar 20101

Motivation

 Chip Multiprocessor

 Does not support well for sequential workloads

HotPar 2010

P
o

ss
ib

le
 C

o
n

fi
g
u

ra
ti

o
n

s

“Amdahls law in the multicore era”

[IEEE computer, July 2008]

256 128 64 32 16 8 4 2 1
Number of effective cores

Sp
e

ed
u

p
 sy

m
m

et
ri

c

System with up

to 256 cores

250

200

150

100

50

0

2

Motivation

 Asymmetric Chip Multiprocessor

 To satisfy diverse workloads

HotPar 2010

256 255 253 249 241 225 193 129 1
Number of effective cores

Sp
e

ed
u

p
 a

sy
m

m
et

ri
c

“Amdahls law in the multicore era”

[IEEE computer, July 2008]

System with up

to 256 cores

250

200

150

100

50

0

3

Motivation

 Dynamic Multiprocessor

 Flexible to cast to the right configuration based

on the need

HotPar 2010

Sp
e

e
d

u
p

 D
yn

am
ic

Number of elementary cores that gets configured dynamically to
make a powerful core

“Amdahls law in the multicore era”

[IEEE computer, July 2008]

System with up

to 256 cores

1 2 4 8 16 32 64 128 256

250

200

150

100

50

0

4

Core Fusion

[ISCA’07]

Examples of Dynamic Multiprocessors

Intel Turbo Boost

[Nehalem]

HotPar 20105

Motivation

 Many mechanisms lead to dynamically variable

processors

 Performance

 Merging resources: Core Fusion, Speculative

Multithreading

 Shifting power: Turbo Boost, Over-provisioned

systems

 Reliability

 Redundant execution [ISCA’07]

HotPar 20106

Why reconfigure the OS?

 What happens if a processor goes to offline

state without any notification?

 Servicing of interrupts, IPI, Bottom halves is stopped

 Other processors might wait for spinlock

 RCU stall

 Thread execution is stopped

HotPar 20107

Can the OS adapt to changing

processors ?

 Common theme: the number of physical

execution contexts may change dynamically and

frequently

 Our work:

 Analysis of Linux mechanisms for changing processors

 Two new techniques for dynamically varying processors

 Processor Proxies

 Deferred/Parallel Hotplug

HotPar 20108

Outline

 Motivation

 Current Mechanisms

 Processor Proxies

 Deferred/Parallel hotplug

HotPar 20109

Why is changing processors hard?

 Many pieces of code know which processors

are available

 Scheduler

 Per-CPU structures

 Distributed operations require processors to

communicate

 Communication between processors - IPI

 Read Copy Update (RCU) mechanism

HotPar 201010

CPU dependence in Linux

HotPar 2010

 Analysis of Linux 2.6.31-4 kernel on a 4 CPU

machine

 Inference: CPU dependences are widespread

Number of per-CPU data

structures

446 data structures

Number of callbacks when CPU

set changes

35 callbacks

Frequency of global RCU

operations

90 callbacks/second

11

Current solution: Linux Hotplug

 Hotplug allows dynamic addition/removal of a

processor

 Partitioning/virtualization

 Physical repair

 Used for long-term reconfigurations

 Assumes that processors, once off lined, never

comes online

 Notifies all relevant subsystems, creates/deletes all

per-CPU state

HotPar 201012

31 2 4

CPU_DOWN_PREPARE

CPU_DEAD

CPU_POST_DEAD

CPU 3 going down

HotPar 2010

Time

13

take_cpu_down

- disables interrupt

- remove cpu from

cpu_online_mask

-schedule idle thread on this cpu

CPU_DYING

NOP

loop

NOP

loop
NOP

loop

Hotplug performance

 Good for virtualization but too slow for rapid

reconfiguration

Hotplug

Operations

Cores Latency

(msec)

OFFLINE

1 25

2 60

3 137

ONLINE

1 106

2 214

3 331

HotPar 201014

Outline

 Motivation

 Current Mechanisms

 Processor Proxies

 Deferred/Parallel hotplug

HotPar 201015

Our approach

 Strategy

 Do very little for short-term changes

 Do long-term changes off line, asynchronously and

in parallel

 Solutions

 Processor proxies address short-term

reconfiguration

 Deferred and Parallel hotplug reduces the

frequency and latency of long-term

reconfiguration

HotPar 201016

Processor Proxies

 A processor proxy is a fill-in for offline

processor

 Provides separate execution context on the

proxying CPU called the proxy context

 Participates in operations that requires the

offline processor:

 Servicing Inter Processor Interrupts (IPI)

 Ensuring progress in RCU mechanism

 Does not execute threads

HotPar 201017

CPU A

Native

context

Proxy

context

Interrupts destined to CPU A

Interrupts destined to CPU B

CPU B

Interrupt/Bottom halves servicing

B is offline and A is proxying for B

HotPar 201018

Processor Proxy Evaluation Result

 Offline / Online performance compared to

native

Hotplug

Operations

Cores Native

(msec)

Proxy

(msec)

OFFLINE

1 25 1.7

2 60 4

3 137 6.5

ONLINE

1 106 1.2

2 214 2.8

3 331 6

HotPar 201019

Deferred and Parallel Hotplug

 Processor proxies are not a long term solution

 Threads don’t run on a proxy

 If the reconfiguration is long lasting, move to a

stable state

 Solutions:

 Deferred hotplug: remove a CPU that is currently

proxied

 Parallel hotplug: reconfigure multiple CPUs

simultaneously

HotPar 201020

Evaluation Results

 Performance of CPU online is greatly improved
 Major time spent in initialization for CPU online

 Initialization can happen in parallel

Hotplug

Operations

Cores Native

(msec)

Parallel

(msec)

OFFLINE

1 25 25

2 60 60

3 137 130

ONLINE

1 106 106

2 214 111

3 331 131

HotPar 201021

Conclusions

 Dynamic reconfiguration

 Operating systems are not prepared

 Hotplug mechanisms is too slow

 Low latency solutions

 Processor Proxies

 Deferred and Parallel hotplug

 Future work

 Resource management

HotPar 201022

