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Reflective Parallelism

• Reflection: Ability for a program to reason 
about its own structure

• Reflective Parallelism: Ability for a program to 
reason about its own schedule.

• Schedule: the (partial) order in which 
parallel tasks execute.
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Reflection Example
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Reflection Example
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A B Parallel 
Tasks or 
Threads
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Reflection Example

3

A B

Unordered tasks?

Parallel 
Tasks or 
Threads
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Reflection Example
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A

B

A must end before B starts?
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Reflective Parallelism
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• Reflective queries should 
return results that hold 
for all executions

• Reflection also allows 
interaction

• Add scheduling 
constraints, etc.

A

B
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Static Evaluation

• When possible, should be able to analyze 
schedule statically.

• Only partial schedule known at compile 
time.
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Applications

• Data-race detection

• Schedule visualization

• Testing frameworks

• ...and more
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Outline

• What is reflective parallel programming?

• Why do we need a new model?

• Intervals model

• Example: Data-race detection
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Traditional Threading

• Traditional APIs use operational primitives:

• start, join a thread

• wait for a signal, acquire a lock

• Program schedule not defined in advance

• Can only query after execution!
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Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
  threads[i] = new Thread(...);
  threads[i].start();
}

for(int i = 0; i < N; i++)
  threads[i].join();

Difficult to 
Analyze Statically
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Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
  threads[i] = new Thread(...);
  threads[i].start();
}

for(int i = 0; i < N; i++)
  threads[i].join();

Difficult to 
Analyze Statically
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Have all threads been joined?
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Reverse Engineering
is Risky
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Write buffer

Lock / Unlock Lock / Unlock

Read buffer
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Reverse Engineering
is Risky

11

Write buffer

Lock / Unlock Lock / Unlock

Read buffer

Observed: Wr happened before Rd

Conclusion: Wr happens before Rd?

Past performance is no guarantee of future results.
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Summary
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• Traditional model unsuitable for reflection

• Cannot know schedule in advance

• Difficult to analyze statically

• Can draw false conclusions

Friday, June 18, 2010



Outline

• What is reflective parallel programming?

• Why do we need a new model?

• Intervals model

• Example: Data-race detection
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Intervals Approach

• Schedule is a first-class entity

• Users builds desired schedule through 
declarative methods

• Runtime executes simultaneously

• Schedule can be queried during execution

14

Friday, June 18, 2010



Schedule Model

15

Intervals 
represent 

asynchronous tasks
or group of tasks.
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Schedule Model

16

Start Point

Points represent the moments in time 
when the interval begins or ends execution.

End Point
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Schedule Model

17

Happens-Before Edges
partially order points.

a.end.addHb(b.start);

a

b
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Schedule Model

18

End → Start Start → Start Start → End
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Schedule Model
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End → Start Start → Start Start → End
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Schedule Model
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Lock lock = context.newLock();

Locks allow
intervals to

be sequential but
unordered.
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Schedule Model

20

Intervals may 
hold lock(s)

for their 
duration.

a.addLock(theLock);
b.addLock(theLock);

b
(theLock)

a
(theLock)
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Schedule Model

21

Interval inter = ...;

// add edges, locks

inter.ready();

Invoked by creator of inter when 
initial dependencies have been added.
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Summary
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• Schedule Model

• Intervals represent tasks

• Points represents moments in time

• Happens-before edges order points

• Locks permit mutual exclusion of tasks
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Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?
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Monotonicity

24

• Edges and locks can only be added, not 
removed

• Necessary for static analysis:

• Compiler knows that edges and locks it 
sees cannot be removed at runtime
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Outline

• What is reflective parallel programming?

• Why do we need a new model?

• Intervals model

• Example: Data-race detection
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Data Race Detection

• Key Idea:

• User defines conditions in which a field 
can be accessed

• Use the reflective API to determine 
whether conditions are met
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Locked Fields

27

class TheClass {
    
    final Lock theLock;
    
    @GuardedBy(theLock) 
    String theString;

    ...
}
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Dynamic Checking

28

  void setString() {
    assert current.locks(theLock); 
    theString = "...";
  }
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Static Checking

29

void staticCheck() {
  Interval x = interval {
    assert current.locks(theLock); 
    theString = "...";
  }
  x.addLock(theLock);
  x.ready();
}
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Guard Objects

• Our compiler automatically enforces these 
kind of checks using guard objects

• Guard object defines methods that check 
each read and write for validity

• When possible, checks are performed 
statically

30
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Guard Object 
Annotations
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class TheClass {
    
    final Lock theLock;
    
    @GuardedBy(theLock) 
    String theString;

    ...
}
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Custom Guards
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• Example Conditions

• Written only by one interval

• Dynamic monitoring

• Lock only on writes, not reads

• Select lock dynamically
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Summary

• User defines conditions to access a field by 
writing code against the reflective API

• Compiler runs checks statically if possible

• Runtime can run checks with live schedule
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Related Work

• Smalltalk

• Reflective objects for stack frames, etc

• Debuggers and other tools require no 
special support from VM

• Traditional threading model

• More in the paper

34
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Conclusion

• Reflective parallelism empowers users:

• Custom tools for safety checking and 
monitoring

• Reflective parallelism as foundation for 
static analysis:

• Seamless integration of static and 
dynamic checks

35
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Thank You

• Intervals library is available for download:

• http://intervals.inf.ethz.ch

36
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Spare Slides
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Schedule Model
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Hierarchical Structure
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Illegal Additions
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• Schedule is being built and executed 
simultaneously

• Certain additions are illegal
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Adding Edges

40

void method(
  Interval a, 
  Interval b) 
{
  a.end.addHb(b.start);
}

a

b
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Adding Edges

40

void method(
  Interval a, 
  Interval b) 
{
  a.end.addHb(b.start);
}

a

b

What if b had already begun execution?
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Adding Edges
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void method(
  Interval a, 
  Interval b) 
{
  a.end.addHb(b.start);
}

a

b

If method is part of c, b cannot have started.

c
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// Signal this thread is done
sync[id]++;

// Wait for neighbors;
while(sync[id-1] < sync[id])
	 ;
while(sync[id+1] < sync[id])
	 ;

Point to Point

42
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// Signal this thread is done
sync[id]++;

// Wait for neighbors;
while(sync[id-1] < sync[id])
	 ;
while(sync[id+1] < sync[id])
	 ;

Point to Point

42

Complex patterns are even worse.

Friday, June 18, 2010



Quake Lock

43

• Game map 
represented as 
tree

• Lock depends on 
location in volume 
tree 
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Mirrors
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• Mirrors allow many implementations

• Compile-time approximations / previews

• Programs on a different machine
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Guard Interface
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class Guard {

  void checkRead(Interval inter);

  void checkWrite(Interval inter);

}
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Reflective Parallelism 
with Intervals

• Query and manipulate program 
schedule both statically and 
during execution

• “Roll your own” data-race 
detectors and other tools
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