
Reflective Parallel
Programming

Nicholas D. Matsakis, Thomas R. Gross
ETH Zurich

1

Friday, June 18, 2010

Reflective Parallelism

• Reflection: Ability for a program to reason
about its own structure

• Reflective Parallelism: Ability for a program to
reason about its own schedule.

• Schedule: the (partial) order in which
parallel tasks execute.

2

Friday, June 18, 2010

Reflection Example

3

A B

Friday, June 18, 2010

Reflection Example

3

A B Parallel
Tasks or
Threads

Friday, June 18, 2010

Reflection Example

3

A B

Unordered tasks?

Parallel
Tasks or
Threads

Friday, June 18, 2010

Reflection Example

4

A

B

A must end before B starts?

Friday, June 18, 2010

Reflective Parallelism

5

• Reflective queries should
return results that hold
for all executions

• Reflection also allows
interaction

• Add scheduling
constraints, etc.

A

B

Friday, June 18, 2010

Static Evaluation

• When possible, should be able to analyze
schedule statically.

• Only partial schedule known at compile
time.

6

Friday, June 18, 2010

Applications

• Data-race detection

• Schedule visualization

• Testing frameworks

• ...and more

7

Friday, June 18, 2010

Outline

• What is reflective parallel programming?

• Why do we need a new model?

• Intervals model

• Example: Data-race detection

8

Friday, June 18, 2010

Outline

• What is reflective parallel programming?

• Why do we need a new model?

• Intervals model

• Example: Data-race detection

8

Friday, June 18, 2010

Traditional Threading

• Traditional APIs use operational primitives:

• start, join a thread

• wait for a signal, acquire a lock

• Program schedule not defined in advance

• Can only query after execution!

9

Friday, June 18, 2010

Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
 threads[i] = new Thread(...);
 threads[i].start();
}

for(int i = 0; i < N; i++)
 threads[i].join();

Difficult to
Analyze Statically

10

Friday, June 18, 2010

Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
 threads[i] = new Thread(...);
 threads[i].start();
}

for(int i = 0; i < N; i++)
 threads[i].join();

Difficult to
Analyze Statically

10

Friday, June 18, 2010

Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
 threads[i] = new Thread(...);
 threads[i].start();
}

for(int i = 0; i < N; i++)
 threads[i].join();

Difficult to
Analyze Statically

10

Friday, June 18, 2010

Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
 threads[i] = new Thread(...);
 threads[i].start();
}

for(int i = 0; i < N; i++)
 threads[i].join();

Difficult to
Analyze Statically

10

Friday, June 18, 2010

Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
 threads[i] = new Thread(...);
 threads[i].start();
}

for(int i = 0; i < N; i++)
 threads[i].join();

Difficult to
Analyze Statically

10

Friday, June 18, 2010

Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
 threads[i] = new Thread(...);
 threads[i].start();
}

for(int i = 0; i < N; i++)
 threads[i].join();

Difficult to
Analyze Statically

10

Friday, June 18, 2010

Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
 threads[i] = new Thread(...);
 threads[i].start();
}

for(int i = 0; i < N; i++)
 threads[i].join();

Difficult to
Analyze Statically

10

Friday, June 18, 2010

Thread[] threads = new Thread[N];

for(int i = 0; i < N; i++) {
 threads[i] = new Thread(...);
 threads[i].start();
}

for(int i = 0; i < N; i++)
 threads[i].join();

Difficult to
Analyze Statically

10

Have all threads been joined?

Friday, June 18, 2010

Reverse Engineering
is Risky

11

Write buffer

Lock / Unlock Lock / Unlock

Read buffer

Friday, June 18, 2010

Reverse Engineering
is Risky

11

Write buffer

Lock / Unlock Lock / Unlock

Read buffer

Friday, June 18, 2010

Reverse Engineering
is Risky

11

Write buffer

Lock / Unlock Lock / Unlock

Read buffer

Observed: Wr happened before Rd

Friday, June 18, 2010

Reverse Engineering
is Risky

11

Write buffer

Lock / Unlock Lock / Unlock

Read buffer

Observed: Wr happened before Rd

Conclusion: Wr happens before Rd?

Friday, June 18, 2010

Reverse Engineering
is Risky

11

Write buffer

Lock / Unlock Lock / Unlock

Read buffer

Observed: Wr happened before Rd

Conclusion: Wr happens before Rd?

Past performance is no guarantee of future results.

Friday, June 18, 2010

Summary

12

• Traditional model unsuitable for reflection

• Cannot know schedule in advance

• Difficult to analyze statically

• Can draw false conclusions

Friday, June 18, 2010

Outline

• What is reflective parallel programming?

• Why do we need a new model?

• Intervals model

• Example: Data-race detection

13

Friday, June 18, 2010

Outline

• What is reflective parallel programming?

• Why do we need a new model?

• Intervals model

• Example: Data-race detection

13

Friday, June 18, 2010

Intervals Approach

• Schedule is a first-class entity

• Users builds desired schedule through
declarative methods

• Runtime executes simultaneously

• Schedule can be queried during execution

14

Friday, June 18, 2010

Schedule Model

15

Intervals
represent

asynchronous tasks
or group of tasks.

Friday, June 18, 2010

Schedule Model

15

Intervals
represent

asynchronous tasks
or group of tasks.

Interval a = interval {
 ...
};

Friday, June 18, 2010

Schedule Model

15

Intervals
represent

asynchronous tasks
or group of tasks.

Interval a = interval {
 ...
};

Friday, June 18, 2010

Schedule Model

15

Intervals
represent

asynchronous tasks
or group of tasks.

Interval a = interval {
 ...
};

Friday, June 18, 2010

Schedule Model

15

Intervals
represent

asynchronous tasks
or group of tasks.

Interval a = interval {
 ...
};

Friday, June 18, 2010

Schedule Model

16

Start Point

Points represent the moments in time
when the interval begins or ends execution.

End Point

Friday, June 18, 2010

Schedule Model

17

Happens-Before Edges
partially order points.

a.end.addHb(b.start);

a

b

Friday, June 18, 2010

Schedule Model

17

Happens-Before Edges
partially order points.

a.end.addHb(b.start);

a

b

Friday, June 18, 2010

Schedule Model

17

Happens-Before Edges
partially order points.

a.end.addHb(b.start);

a

b

Friday, June 18, 2010

Schedule Model

18

End → Start Start → Start Start → End

Friday, June 18, 2010

Schedule Model

18

End → Start Start → Start Start → End

Friday, June 18, 2010

Schedule Model

18

End → Start Start → Start Start → End

Friday, June 18, 2010

Schedule Model

18

End → Start Start → Start Start → End

Friday, June 18, 2010

Schedule Model

19

Lock lock = context.newLock();

Locks allow
intervals to

be sequential but
unordered.

Friday, June 18, 2010

Schedule Model

20

Intervals may
hold lock(s)

for their
duration.

a.addLock(theLock);
b.addLock(theLock);

b
(theLock)

a
(theLock)

Friday, June 18, 2010

Schedule Model

20

Intervals may
hold lock(s)

for their
duration.

a.addLock(theLock);
b.addLock(theLock);

b
(theLock)

a
(theLock)

Friday, June 18, 2010

Schedule Model

20

Intervals may
hold lock(s)

for their
duration.

a.addLock(theLock);
b.addLock(theLock);

b
(theLock)

a
(theLock)

Friday, June 18, 2010

Schedule Model

20

Intervals may
hold lock(s)

for their
duration.

a.addLock(theLock);
b.addLock(theLock);

b
(theLock)

a
(theLock)

Friday, June 18, 2010

Schedule Model

21

Interval inter = ...;

// add edges, locks

inter.ready();

Invoked by creator of inter when
initial dependencies have been added.

Friday, June 18, 2010

Schedule Model

21

Interval inter = ...;

// add edges, locks

inter.ready();

Invoked by creator of inter when
initial dependencies have been added.

Friday, June 18, 2010

Schedule Model

21

Interval inter = ...;

// add edges, locks

inter.ready();

Invoked by creator of inter when
initial dependencies have been added.

Friday, June 18, 2010

Summary

22

• Schedule Model

• Intervals represent tasks

• Points represents moments in time

• Happens-before edges order points

• Locks permit mutual exclusion of tasks

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

?

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

?

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?
true

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

?

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?
true

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?
true

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?
true

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

true

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?
true

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

true
?

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?
true

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

true

false

?

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?
true

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

true

false

Friday, June 18, 2010

Querying the Schedule

23

a
(lock)

b

a.end.hb(b.start)?
true

a.locks(lock)?

b.end.hb(a.start)?

b.locks(lock)?

true

false

false

Friday, June 18, 2010

Monotonicity

24

• Edges and locks can only be added, not
removed

• Necessary for static analysis:

• Compiler knows that edges and locks it
sees cannot be removed at runtime

Friday, June 18, 2010

Outline

• What is reflective parallel programming?

• Why do we need a new model?

• Intervals model

• Example: Data-race detection

25

Friday, June 18, 2010

Outline

• What is reflective parallel programming?

• Why do we need a new model?

• Intervals model

• Example: Data-race detection

25

Friday, June 18, 2010

Data Race Detection

• Key Idea:

• User defines conditions in which a field
can be accessed

• Use the reflective API to determine
whether conditions are met

26

Friday, June 18, 2010

Locked Fields

27

class TheClass {

 final Lock theLock;

 @GuardedBy(theLock)
 String theString;

 ...
}

Friday, June 18, 2010

Locked Fields

27

class TheClass {

 final Lock theLock;

 @GuardedBy(theLock)
 String theString;

 ...
}

Friday, June 18, 2010

Locked Fields

27

class TheClass {

 final Lock theLock;

 @GuardedBy(theLock)
 String theString;

 ...
}

Friday, June 18, 2010

Locked Fields

27

class TheClass {

 final Lock theLock;

 @GuardedBy(theLock)
 String theString;

 ...
}

Friday, June 18, 2010

Locked Fields

27

class TheClass {

 final Lock theLock;

 @GuardedBy(theLock)
 String theString;

 ...
}

Friday, June 18, 2010

Dynamic Checking

28

 void setString() {
 assert current.locks(theLock);
 theString = "...";
 }

Friday, June 18, 2010

Dynamic Checking

28

 void setString() {
 assert current.locks(theLock);
 theString = "...";
 }

Friday, June 18, 2010

Dynamic Checking

28

 void setString() {
 assert current.locks(theLock);
 theString = "...";
 }

Friday, June 18, 2010

Dynamic Checking

28

 void setString() {
 assert current.locks(theLock);
 theString = "...";
 }

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

x

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

x

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

x
(theLock)

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

x
(theLock)

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

x
(theLock)

Friday, June 18, 2010

Static Checking

29

void staticCheck() {
 Interval x = interval {
 assert current.locks(theLock);
 theString = "...";
 }
 x.addLock(theLock);
 x.ready();
}

x
(theLock)

Friday, June 18, 2010

Guard Objects

• Our compiler automatically enforces these
kind of checks using guard objects

• Guard object defines methods that check
each read and write for validity

• When possible, checks are performed
statically

30

Friday, June 18, 2010

Guard Object
Annotations

31

class TheClass {

 final Lock theLock;

 @GuardedBy(theLock)
 String theString;

 ...
}

Friday, June 18, 2010

Guard Object
Annotations

31

class TheClass {

 final Lock theLock;

 @GuardedBy(theLock)
 String theString;

 ...
}

Friday, June 18, 2010

Guard Object
Annotations

31

class TheClass {

 final Lock theLock;

 @GuardedBy(theLock)
 String theString;

 ...
}

Friday, June 18, 2010

Custom Guards

32

• Example Conditions

• Written only by one interval

• Dynamic monitoring

• Lock only on writes, not reads

• Select lock dynamically

Friday, June 18, 2010

Summary

• User defines conditions to access a field by
writing code against the reflective API

• Compiler runs checks statically if possible

• Runtime can run checks with live schedule

33

Friday, June 18, 2010

Related Work

• Smalltalk

• Reflective objects for stack frames, etc

• Debuggers and other tools require no
special support from VM

• Traditional threading model

• More in the paper

34

Friday, June 18, 2010

Conclusion

• Reflective parallelism empowers users:

• Custom tools for safety checking and
monitoring

• Reflective parallelism as foundation for
static analysis:

• Seamless integration of static and
dynamic checks

35

Friday, June 18, 2010

Thank You

• Intervals library is available for download:

• http://intervals.inf.ethz.ch

36

Friday, June 18, 2010

http://intervals.inf.ethz.ch
http://intervals.inf.ethz.ch

Spare Slides

37

Friday, June 18, 2010

Schedule Model

38

Hierarchical Structure

Friday, June 18, 2010

Illegal Additions

39

• Schedule is being built and executed
simultaneously

• Certain additions are illegal

Friday, June 18, 2010

Adding Edges

40

void method(
 Interval a,
 Interval b)
{
 a.end.addHb(b.start);
}

a

b

Friday, June 18, 2010

Adding Edges

40

void method(
 Interval a,
 Interval b)
{
 a.end.addHb(b.start);
}

a

b

What if b had already begun execution?

Friday, June 18, 2010

Adding Edges

41

void method(
 Interval a,
 Interval b)
{
 a.end.addHb(b.start);
}

a

b

If method is part of c, b cannot have started.

c

Friday, June 18, 2010

Adding Edges

41

void method(
 Interval a,
 Interval b)
{
 a.end.addHb(b.start);
}

a

b

If method is part of c, b cannot have started.

c

Friday, June 18, 2010

// Signal this thread is done
sync[id]++;

// Wait for neighbors;
while(sync[id-1] < sync[id])
	 ;
while(sync[id+1] < sync[id])
	 ;

Point to Point

42

Friday, June 18, 2010

// Signal this thread is done
sync[id]++;

// Wait for neighbors;
while(sync[id-1] < sync[id])
	 ;
while(sync[id+1] < sync[id])
	 ;

Point to Point

42

Friday, June 18, 2010

// Signal this thread is done
sync[id]++;

// Wait for neighbors;
while(sync[id-1] < sync[id])
	 ;
while(sync[id+1] < sync[id])
	 ;

Point to Point

42

Friday, June 18, 2010

// Signal this thread is done
sync[id]++;

// Wait for neighbors;
while(sync[id-1] < sync[id])
	 ;
while(sync[id+1] < sync[id])
	 ;

Point to Point

42

Friday, June 18, 2010

// Signal this thread is done
sync[id]++;

// Wait for neighbors;
while(sync[id-1] < sync[id])
	 ;
while(sync[id+1] < sync[id])
	 ;

Point to Point

42

Friday, June 18, 2010

// Signal this thread is done
sync[id]++;

// Wait for neighbors;
while(sync[id-1] < sync[id])
	 ;
while(sync[id+1] < sync[id])
	 ;

Point to Point

42

Complex patterns are even worse.

Friday, June 18, 2010

Quake Lock

43

• Game map
represented as
tree

• Lock depends on
location in volume
tree

Friday, June 18, 2010

Quake Lock

43

• Game map
represented as
tree

• Lock depends on
location in volume
tree

Friday, June 18, 2010

Quake Lock

43

• Game map
represented as
tree

• Lock depends on
location in volume
tree

Friday, June 18, 2010

Quake Lock

43

• Game map
represented as
tree

• Lock depends on
location in volume
tree

Friday, June 18, 2010

Mirrors

44

• Mirrors allow many implementations

• Compile-time approximations / previews

• Programs on a different machine

Friday, June 18, 2010

Guard Interface

45

class Guard {

 void checkRead(Interval inter);

 void checkWrite(Interval inter);

}

Friday, June 18, 2010

Guard Interface

45

class Guard {

 void checkRead(Interval inter);

 void checkWrite(Interval inter);

}

Friday, June 18, 2010

Guard Interface

45

class Guard {

 void checkRead(Interval inter);

 void checkWrite(Interval inter);

}

Friday, June 18, 2010

Reflective Parallelism
with Intervals

• Query and manipulate program
schedule both statically and
during execution

• “Roll your own” data-race
detectors and other tools

46

Friday, June 18, 2010

Reflective Parallelism
with Intervals

• Query and manipulate program
schedule both statically and
during execution

• “Roll your own” data-race
detectors and other tools

46

Friday, June 18, 2010

Reflective Parallelism
with Intervals

• Query and manipulate program
schedule both statically and
during execution

• “Roll your own” data-race
detectors and other tools

46

Friday, June 18, 2010

