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Abstract
Current traditional models of parallel computing rely on the
static breaking-up of computation or data: multiple parallel
threads independently execute different parts of the overall
computation with little or no communication between them.
Under current models, inter-thread communication is limited
to data that carries little semantic information about the role
of the thread in the overall application. Adding such knowl-
edge and sharing it among threads would allow a collaborative
model of computation.

In this paper, we present a novel programming model where
threads expose their internal higher order computational state
allowing the construction of a global view of the program’s
computations, which we call the computational state tree
(CST), enabling several optimizations. We discuss how the
CST can be used by threads to orient the computation where it
would be most useful or to re-use results already computed by
other threads.

We present a method to extract collaborative information
from the states of threads and insert it into the CST. We im-
plement our method through a runtime and develop an API
that can be used to leverage collaboration. We demonstrate
how collaboration can be used to orient the computation of a
SAT solver to maximize the number of satisfiable assignments
found and also how collaboration through results sharing can
be used to speedup a K-Means computation.

1 Introduction
Parallel programming today mostly relies on the concept of
threads. Threads were introduced in the operating systems
world to enable spawning off of long blocking-calls mainly
involving I/O while still allowing the processor to be utilized
fully. Today, threads are the main workhorses of parallel pro-
gramming, playing a central role in the execution of concur-
rent computations on multi-core machines. Thread semantics
have, however, remained mostly unchanged from the days they
were used to achieve multi-tasking on a single processor to
their present avatar where they run concurrently on multi-
ple cores. Different programming paradigms effectively uti-
lize threads such as: the producer-consumer paradigm [10],
the thread-pool paradigm, etc. More recently, programming

models have emerged to create higher abstractions on top of
threads: the use of languages such as Cilk [7], X10 [2] or li-
braries such as Intel’s Threading Building Blocks [6] allow the
programmer to think in terms of parallel tasks and automati-
cally manage the mapping between tasks and threads. STMs
[9, 5] have greatly alleviated the problems of deadlocks and
race conditions by allowing the programmer to reason at a
much higher level of abstraction than pure locks. Models such
as the Galois programming model [8] leverage both the task-
ing model and STMs to offer a very high-level abstraction to
“Joe” programmers.

All of these models, however, fail to add expressiveness to
threads: a computation running in a thread is unaware of its
role in the overall program as well as the role of other concur-
rent computations. Communication between threads is limited
to the sharing of values (shared data communication through
shared memory or message passing), and basic synchroniza-
tion (such as waiting at a barrier) and carry little semantic in-
formation about a thread’s semantic state. Such lack of knowl-
edge of a thread’s computational state and semantics limits its
expressiveness.

Parallel computing was traditionally envisioned as the di-
vision or splitting-up of work and trying to load balance it as
best as possible. In [3], we advocated a new view of leveraging
parallelism to overcome sequential bottlenecks by using par-
allel resources to trigger competing computation and letting
the winner be decided dynamically for best speed-up. In this
work, we propose another alternative view of parallelism: the
use of parallelism to promote collaboration amongst threads
to better parallelize and steer useful computation. We propose
that threads share their higher-order computational state infor-
mation. By this we mean that threads should be made aware
of the semantic value of their computation and that of oth-
ers. This semantic higher-order computational state could be
representative of several different kinds of information includ-
ing: the results threads are computing, the role they play in
the computation, the insight they may have gained about the
problem, how much time peer threads take to execute, etc. Ex-
posing such state information and its subsequent usage allows
us to envision a model where a task is not bound to a particu-
lar thread but is modified based on the global state of all other



concurrent tasks. A task could therefore dynamically change
itself based on the work performed by other tasks.

1.1 Contributions

We make the following contributions in this paper:
• We motivate the need and utility of sharing computational

state amongst threads.
• We introduce the Computational State Tree, an efficient

representation of the semantic computational states of threads.
• We demonstrate a system which enables the use of shared

state information to speed-up a SAT problem through the ori-
entation of its computation as well as the K-Means algorithm
through result sharing.
The remainder of the paper is organized as follows. In Section
2 we present several examples of computational state and their
applications. We then discuss modeling of this state informa-
tion in Section 3. Our API and its use are described in Section
4. We evaluate two specific instances of sharing higher order
semantic state: computation orientation and computational re-
sult sharing in Section 5 before concluding with future work
in Section 6.

2 Computational state: use-cases
Before discussing the modeling of computational state in Sec-
tion 3 we motivate a few use cases of computational state
through examples.

2.1 Hot/Cold spots: orientation

In certain algorithms where a large space has to be explored,
sharing meta-information about the space already explored
can be leveraged by sibling threads to navigate away from
“cold” spots and towards “hot” spots where solutions are more
likely. This is particularly true of SAT problems in the region
between the SAT and UNSAT phases [1], which we shall fur-
ther discuss in Section 4.3.1. As an illustrative example, con-
sider the simple problem of finding a maxima of a complex
function in a n-dimensional space. A simple approach could
be to concurrently pick randomized starting points and per-
form a local search from that starting point (such as simulated
annealing). As the algorithm progresses, certain areas of the
space become “hot”, where the function takes on large values,
whereas others become “cold” where smaller values are ob-
served. Therefore, instead of picking random starting points
or solely relying on simulated annealing to give the direc-
tion of search, this added meta-information about the problem
space can be leveraged to orient the computation towards what
seems to be more profitable areas.

2.2 Computational results: reducing redundancy

Threads can also benefit from sharing certain computational
results. Other threads performing similar computations can
leverage these previously computed results rather than re-
computing them from scratch. This is particularly true for
combinatorial algorithms which frequently compute but inter-
nalize partial results. As an illustrative example, consider the
NP-complete sum of subsets problem which is stated as fol-

lows: given a set of positive and negative integers, does the
sum of some non-empty subset exactly equals zero? The brute
force algorithm will iterate over all 2n subsets of the input data
set (of size n). Trivial parallelization can achieve a speedup by
dividing and assigning the work among the threads: each sub-
set computation is assigned to one thread. Sharing of results
can be very useful here. For example, consider the computa-
tion of the sum of {1, 2, 3, 4, 5, 6, 8, 9}. If some other thread
has already computed the sum of {1, 2, 3, 4, 5, 6, 7, 8}, we
can simply re-use this sum by adding {9} to it. Similarly, if
some other thread has computed {2, 3, 4, 5, 6, 8, 9, 10}, we can
still re-use this information by making minor modifications
(adding {1} and subtracting {10}). This example illustrates an
important point in our model: the non-specificity of the shared
result. Statically, it is not known which sub-result can and will
be used and our model accounts for this fact. Our approach
is in a way similar to incremental computations or dynamic
programming [4, Chap. 15] but is far more flexible and im-
precise. In dynamic programming, results to statically deter-
mined sub-problems are reused, whereas we use the results of
a similar and potentially unspecified (at compile time) com-
putation. The specific scheduling order of threads will com-
pletely change which results are already computed and there-
fore change which ones can be reused. This makes our ap-
proach much more amenable to multi-threaded environments
where any sort of dependency typically induces a slow-down.

3 Modeling
Fundamental to our model is the sharing and utilization of
the computational state. This Section details how we can effi-
ciently model computational state.

3.1 Semantic state

Traditionally, the state of a computation C at a given point
in time t can be defined as the state of the memory, the reg-
isters and the program counter. However, this information is
extremely low level and does not give any indication of what
C is actually doing for the application as a whole. Take for ex-
ample a sorting computation on an arrayA using the quicksort
algorithm after the selection of 3 pivot points. The state of the
computation, in the traditional sense, would be captured by the
state of the array in memory whereas the semantic computa-
tional state would be “sort on A having placed 3 elements”.
In this trivial example, we can already see that the semantic
state must answer the questions: a) what computation, b) on
what data and optionally c) what progress the computation has
made. The computational state is thus not abstract or difficult
to obtain for the programmer, rather it is information that is
lost in translation between the design of the program and its
actual implementation in code. The exact nature of the com-
putational state can vary from program to program. To main-
tain generality, we simply impose the following two restric-
tions:
• Distinguishability Two different computations should be

distinguishable. This rule enforces that two identical computa-
tional states represent the same computation from a semantic



point of view.
• Minimality While the first restriction will push to expand

the amount of information encompassed in the computational
state, this restriction forces the state to be as small as possible.
In other words, two computations that are the same semanti-
cally should have the same computational state. Note that this
does not mean that the underlying computations are exactly
the same. For example, different algorithms could be used to
implement the same semantic “sort” in the example above.

3.2 State representation

We adopt a simple (key, value)model where key is rep-
resentative of a single computational state. The keyminimally
distinguishes between different computations in a program.
The value is an arbitrary value that says something about
the computation represented by key. For example, in the case
of orienting the computation (Section 2.1) the value would
be a measure of the success of the computation and in the case
of result sharing (Section 2.2), the value would be the result
of the computation itself.

3.3 State clustering

To effectively use all the state that has been expressed by
threads we first need to construct a system-wide view of this
information in the runtime. Since collaboration is most effec-
tive amongst computations that are similar we cluster similar
computations based on the similarity of the key in the (key,
value) pair. To improve efficiency, we construct a hierar-
chical representation which we call the Computational
State Tree or CST for short. The CST is therefore the se-
mantic representation of the state of the entire program up until
a certain point in time: it contains all current and past compu-
tations that have shared information. We use a hierarchical in-
cremental approximate clustering algorithm to build the CST,
for the following reasons:

• Hierarchical When presented with a key, quick identifica-
tion of the cluster to which the key belongs is important. Stor-
ing clusters hierarchically allows a logarithmic time lookup
in the clusters. Hierarchy also allows us to trade accuracy for
speed.
• Incremental Keys are generated continually and hence the

data set to be clustered (the keys) is not available in its entirety
during clustering. An incremental algorithm allows us to up-
date the structure without rebuilding it from scratch.
• Approximate The algorithm we use is not guaranteed to

form the best clusters at all times. However, it will do this very
quickly and allow quick insertion and lookups.

Figure 1 shows a clustering that our model would generate.

4 Basic API

The API to the runtime has two distinct roles: a) support the
identification and comparison of computational state and b)
support the sharing of computational state.

Representation of Thread State:

Figure 1: CST: A hierarchical clustering of the states of
threads.

4.1 State representation and comparison

A computational state is represented by a (key, value)
pair as discussed in Section 3.2. We define a similarity
measure that evaluates how close two computational states are.
The similarity measure can be viewed as a distance (in
the mathematical sense of the term) on the space of computa-
tional states. With the help of this programmer defined mea-
sure, our system can quickly identify other past/current com-
putations that have/are performing similar computations and
leverage it to perform various optimizations. This user-defined
function takes as input two keys and simply returns a floating
point value which is proportional to the distance between the
computational states:

double s i m i l a r i t y ( key1 , key2 ) ;

This function needs to be able to compute similarity very
quickly. This function is called many times during the oper-
ation of the runtime and hence speed is of critical importance.

As an example, consider the sum of subsets problem again.
This problem would benefit from the sharing of results be-
tween threads as discussed in Section 2.2. Here, the key, a
minimal representation of the computation, is the set itself.
The value is the sum computed. For the computation over
{−1, 3, 6,−10} the keywould be the set itself and the value
would be −2. The similarity function would simply compute
the cardinality of the symmetric difference between the two
keys. We can observe that it is extremely simple for the pro-
grammer to identify the key, value and the similarity
function based on the semantics of the program.

4.2 Computational state sharing

The two most basic primitives that our API provides to support
state sharing are:

void s h a r e ( key , v a l u e ) ;
{key , v a l u e} g e t C l o s e s t S t a t e ( key ) ;

Threads can therefore publish their current state to the run-
time through the share primitive as well as lookup the
closest, most relevant state to the key through the primitive
getClosestState(key).



4.3 CST usage

We demonstrate how the API can be used to allow threads to
share their computational state and query the closest computa-
tions stored in the CST. We demonstrate the utility of the API
in two applications: GSat to demonstrate the hot/cold spot ori-
entation use-case and K-Means to demonstrate the sharing of
computational results use-case.

4.3.1 Hot/Cold Spots: Orientation

We demonstrate our approach to hot/cold spots with the GSat
SAT Solver. The GSat SAT solver assigns a random truth as-
signment and then iteratively refines this solution by choosing
and flipping a variable which minimizes the number of unsat-
isfied clauses in the new assignment. This is repeated until a
satisfying solution is found or the maximum number of itera-
tions is reached at which point the algorithm fails. We use the
GSat SAT Solver as an all-solution SAT solver aimed at find-
ing all satisfying assignments. A trivial parallelization of this
problem is to assign different threads with different random
truth assignments (in different parts of the solution space) and
run them until the entire space is explored.

Opportunity in GSat For a given number of boolean vari-
ables, the problem is known to be most difficult when the ratio
α of the number of clauses to the number of boolean vari-
ables is approximately 4.27 [1] due to the appearance of small
pockets of satisfying solutions separated by large distances.
Typical solvers like GSat easily get stuck in local minimas.
Since we know that solutions are clustered, we use threads
which discover satisfying results as indicative of “hot” spots
in the solution space. Threads which discover satisfying as-
signments publish this information into the CST by using the
share primitive. Their current truth assignment (which is sat-
isfying) serves as the key. For example, the truth assignment
(A = true,B = false, C = true) serves as the key and
the value is simply 1 indicating that a solution was found
for that key. The similarity metric is simply the Hamming
Distance between two keys in the solution space. The higher
the number of threads publishing successes in certain regions
of the solution space, the denser those clusters become in the
CST. Other threads request the system for close-by “hot” areas
by issuing a simple lookup call getClosestState(key)
where key is their current truth assignment. With a probabil-
ity of p, we migrate threads working in other areas over to
these “hot” spots to increase the rate of generation of satis-
fying assignments. Migration is performed by making minor
modifications to the current assignment to move towards the
“hot” spots in the solution space. This leads to a quicker rate
of discovery of satisfying assignments.

4.3.2 Computational Results: Reducing redundancy

We demonstrate our approach to reusing results through the
K-Means algorithm. K-Means is an extremely popular cluster-
ing method. It clusters a set of N points into K clusters. Each
point is clustered into the cluster which has the closest mean
or centroid. The most common algorithm that is used to im-
plement K-Means is an iterative refinement technique referred

to as Lloyd’s algorithm which we briefly describe. K initial
centroids are randomly selected from the N input points. K
clusters are then generated by associating each point to its
nearest centroid. The centroid is then recalculated for each
of these clusters and the algorithm starts again, re-associating
points to their closest means. This continues until convergence
is reached. K-Means is trivially data-parallel and each thread
is in charge of a disjoint set of points.

Opportunity in K-Means The most time consuming stage
of Lloyd’s algorithm is the stage in which each of the N
points’ closest centroids are determined. The standard algo-
rithm makes K distance computations for each point (to each
of the centroids). As the number of centroids (K) increases,
the cost of computing these distances quickly increases.

However, if we observe the operation of the algorithm care-
fully, we note that a large amount of computation can be re-
used between the computations for each point. For example, if
we compute the closest centroid, say C, for a particular point
A, by computing all the K distances to each centroid. A point
B, extremely close to point A, will with very high probability
have C itself as its closest centroid as well. Even in the case
that it is not C it will be one of the closest centroids of A. We
use this observation to re-use the closest centroid computation
from one point to another.

Using our model, when a thread computes the closest cen-
troid it publishes it into the CST using the share primitive. Its
current spatial co-ordinates (x1, x2, ..., xn) serve as the key
to the computation. The similarity metric is simply the Eu-
clidean Distance between two keys in the clustering space.
The value is a list of closest centroids. To generate this list,
let us assume that the closest centroid a point found was C1

at a distance d1. While computing this closest centroid we
also generate a list of its closest centroids within a distance of
d1+2∗T where T is a user-defined lookup threshold. This list,
(C1, C2, C3...Cn) serves as the value. Subsequently, when a
thread begins a computation for a point it looks for close-by re-
sults to see if it can re-use any. By looking up results within a
lookup threshold, T , the thread can determine its closest cen-
troid by computing distances only with the centroids in the
value list instead of all K centroids. This leads to a large
reduction in computation time.

5 Experimental results
To validate our work, we have implemented a simple runtime
implementing the CST and we have used it to share informa-
tion on hot/cold spots as well as results across threads. The
runtime and examples were all implemented in Java and run
with Sun Java 1.6. All experiments were performed on a dual
quad-core Intel Xeon E5540 (2.53GHz) with up to 8 concur-
rent threads.

5.1 Hot/Cold Spots

As explained in Section 4.3.1 we demonstrate our approach to
hot/cold spots with the GSat SAT Solver.



Speedups We ran a parallel version of the GSat algorithm
over a problem with 38 boolean variables and an α of 4.2. We
observed that a larger number of successful assignments are
discovered in a given time frame when we enable collabora-
tion using “hot” spot information. Note that we used a low
number of variables due to limitations in the Java implemen-
tation of GSat used. We ran the parallel versions for 2 min-
utes each and measured the number of unique satisfying so-
lutions that the solvers were able to find. The solver which
was running with collaboration turned off (ie: the original non-
collaborative parallel solver) discovered 11 solutions whereas
the solver running with collaboration turned on discovered 14
unique solutions, an improvement of over 25%.

5.2 Result sharing

As explained in Section 4.3.2 we demonstrate our approach to
result sharing with the popular K-Means clustering algorithm.

Speedups Figure 2 shows the speedup obtained with result
sharing for 100, 000 points randomly distributed into K clus-
ters. The speedup is measured by comparing the execution
time of the vanilla parallel K-Means solver with that of the
same solver using our collaboration framework. We can see
that the benefit of sharing is fairly constant and increases dra-
matically as the number of clusters increases.
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Figure 2: Speedups obtained through results-sharing in K-
Means

5.3 Runtime overhead

One of the design goals of the CST was low overhead while
inserting and looking elements up. Figure 3 shows both over-
heads in microseconds as a function of the size of the CST.
The measure for the look-up overhead is an average over 1000
random look-ups in a CST of a fixed size. The insertion over-
head for X nodes corresponds to the average time to insert
10, 000 elements in a CST of size X − 10000. The look-up
time smoothly increases logarithmically with the number of
nodes in the CST which is consistent with a tree representa-
tion. The insertion times are more chaotic as the insertion of
an element may cause certain clusters to be split-up and re-
organized; however they scale well with the number of ele-

ments (150% increase in time for a 2500% increase in CST
size).
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Figure 3: Overhead of insertions and look-ups in the CST

6 Conclusion and future work
In this paper we proposed a new programming model for
parallel computing leveraging collaboration between threads
through the sharing of their computational state. We motivated
the utility of collaboration and demonstrated it in the orienta-
tion of the computations and the sharing of results. We believe
our proposed representation of the global semantic state of a
program through the CST will lead to many interesting collab-
oration opportunities which we have briefly touched on in this
paper.

We are currently working on several other uses of the shared
state in the CST including core selection and prioritization of
highly requested computations. We are also looking at how
best to manage the amount of shared information. Indeed, scal-
ability is very important for our work and since information
is only shared and not deleted, we are looking at how best to
garbage collect it. Finally we are also looking at ways of better
expressing the semantic state of a computation. Currently, we
leave it up to the programmer to determine the state to share
but would like to make it much more seamless.

More generally, we are also investigating how making more
semantic information, of which the CST is an example, avail-
able at runtime can improve the performance of applications.
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