### The Data Furnace:

Heating Up with Cloud Computing



Jie Liu, Michel Goraczko, Sean James, Christian Belady Microsoft Jiakang Lu Kamin Whitehouse University of Virginia

# The Cloud Is Big!



### The Cloud Is Hot!



## The Cloud Is Expensive!









# **Improving Efficiency**







**REDUCE** 

**RENEW** 

**REUSE** 

### **Home Power Provision**



## **Home Energy Usage**



EIA-457A-C, E, and H and other sources (see Table US-1).

**US Energy Information Administration** 

### **The Data Furnace**

- DOE EnergyPlus simulator
- 1700 sqft single family house
- O 70F set point
- 5 climate zones



|               | Outdoor Temp. |       |  |
|---------------|---------------|-------|--|
|               | < 70F         | > 95F |  |
| Minneapolis   | 82%           | 0.11% |  |
| Pittsburgh    | 82%           | 0     |  |
| DC            | 77%           | 0.13% |  |
| San Francisco | 96%           | 0     |  |
| Houston       | 46.5%         | 0.15% |  |

- O 1 min time granularity.
- O Max power required.
- O Assume 300W servers.

### **Ideal Cost Benefits**

- Amortized cost in conventional DC: \$400/server/year
- Urban electricity price overhead: \$0.05/kWh
- Possible T1 network cost: \$2640/year

|                                            | MN     | PA         | DC        | CA    | TX    |
|--------------------------------------------|--------|------------|-----------|-------|-------|
| Provisioned server #                       | 112    | 114        | 101       | 46    | 37    |
| Current heating exp. (\$/year)             | 3K     | 2K         | 2.5K      | 0/0;  | 700   |
| Elec. price overhead heating use (\$/year) | 9525   | t Saving : | 600/0 MBC |       | 1666  |
| Elec. price overhead full use (\$/year)    | 14 Cos |            | 13.3K     | 6K    | 4.9K  |
| Current host cost (\$/year)                | 44.8K  | 45.6K      | 40.4K     | 18.4K | 14.8K |

### FAQ#1: Useful?

#### Low-Cost Seasonal Data Centers

- Opportunistic cycles (SETI)
- Developing communities
- O hobbyists

#### Low-Bandwidth Neighborhood Data Centers

- Email serving
- O Ultra-local web services
- Neighborhood content sharing
- Delay-tolerance jobs

#### Eco-Friendly Urban Data Centers

- Small scale cloud computing
- Content caching
- O Casual collaborations/games

### FAQ#2: Hidden Cost?

- Hardware reliability (Vishwanath et al. SOCC10)
  - O 92% servers never need touch
  - 8% servers failed (repeatedly)
  - Average touches per failed server: 3~4/14months
  - O Predominantly HDD failures
- O Run a service truck: \$100/visit/house
- Technical Challenges System Design & Management:
  - Improve reliability by hardware design (low power density, low vibration)
  - Increase replication
  - Fail gracefully

## FAQ#3: Residential Power?

- Home circuit capacity
- Usage is increasing with electrical cars
- Consumer power generators are emerging
- Residential power quality challenges

#### Technical Challenges – Power Management:

- Close monitoring and control are critical
- Power availability prediction
- O Power capping and tracking
- Local energy storage

## FAQ#4: Secure?

- O Physical security:
- Storage and communication security:
- O Computing security:
- O Technical Challenges Security:
  - O Embedded sensors for anti-tampering.
  - O Isolation and encryption.
  - O Secure execution.

## **FAQ#5: Performance?**

- Not to replace centralized data centers.
- The services can be close to end user physically
- Technical challenges performance:
  - Networking
  - O Placement
  - O Elasticity
  - O Opportunistic processing

### Conclusion

- Data Furnace
  - Reuse existing power infrastructure
  - Reuse heating energy for computing
  - O Be close to end users
- Other forms of heat reuse:
  - Water pre-heating
  - Apartments/office buildings
  - Agriculture
- Many, many challenges

# **Hedging The Cloud**

