
EXACT: The EXperimental Algorithmics Computational
Toolkit

William E. Hart Jonathan W. Berry Robert Heaphy Cynthia A. Phillips
Sandia National Laboratories
Mail Stop 1318, PO Box 5800

Albuquerque, NM
{wehart,jberry,rheaphy,caphill}@sandia.gov

ABSTRACT
In this paper, we introduce EXACT, the EXperimental Al-
gorithmics Computational Toolkit. EXACT is a software
framework for describing, controlling, and analyzing com-
puter experiments. It provides the experimentalist with
convenient software tools to ease and organize the entire ex-
perimental process, including the description of factors and
levels, the design of experiments, the control of experimental
runs, the archiving of results, and analysis of results.

As a case study for EXACT, we describe its interaction
with FAST, the Sandia Framework for Agile Software Test-
ing. EXACT and FAST now manage the nightly testing of
several large software projects at Sandia. We also discuss
EXACT’s advanced features, which include a driver module
that controls complex experiments such as comparisons of
parallel algorithms.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm design and anal-
ysis; D.2.5 [Software Engineering]: Testing and debug-
ging—testing tools

General Terms
experimentation, performance, verification

Keywords
experimental analysis, software testing, experimental design

1. INTRODUCTION
Experimental algorithmics and algorithm engineering have

been active research areas for at least 15 years. The for-
mer is based on the premise that algorithms should be im-
plemented and evaluated empirically in order to augment
theoretical analyses, since these hide constant factors and
therefore may be deceptive. The latter involves leveraging
computer science expertise in hardware and software in or-
der to engineer better implementations of algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExpCS 13-14 June 2007, San Diego, CA
Copyright 2007 ACM 978-1-59593-751-3/07/06 ...$5.00.

Computer experimentation can be a burdensome process,
and many experimental papers have been completed with-
out the care traditionally taken in physical experimentation.
This phenomenon has led David Johnson to publish a fa-
mous list of “pet peeves,” mistakes (and worse) that he has
observed in experimental computer science papers [14].

We developed EXACT to provide the experimental com-
puter science community with a tool to make the whole pro-
cess of computer experimentation easier and more system-
atic. We hope to free researchers from some of the burdens
of computer experimentation, giving them more time to con-
centrate on interpreting results and refining experiments to
obtain even better results.

EXACT has also been strongly motivated by the need
for tools to automate software tests. Before one even be-
gins to experiment with an algorithmic implementation, one
must be reasonably sure the software is correct. The recent
high-profile retraction of three papers from the journal Sci-
ence [17, 7], and possibly two others, is a powerful exam-
ple of the potentially large damage caused by even subtle
bugs. Because a code flipped two columns of a data ma-
trix, Professor Chang’s laboratory group used an inverted
electron-density map to derive incorrect protein structures.

Although there exist many tools for defining and manag-
ing tests, what is missing from these tools is the ability to use
experimental design techniques to explore a wide range of al-
gorithmic combinations in an automated fashion. Thus, the
same features that make our toolkit valuable for developing
experimental algorithmics studies make it an effective plat-
form on which to build, control, and archive nightly tests.
In Section 5.3, we describe FAST, a Framework for Auto-
mated Software Testing as a harness to control automated
runs of EXACT.

EXACT is now a reliable component of our ongoing ex-
perimental algorithmics research and software testing ac-
tivities. For example, we currently use EXACT for nightly
testing of the TEVA Sensor Placement Optimization Toolkit
(SPOT) [12]. TEVA-SPOT integrates solvers and other
tools for the design of contamination warning systems for
water distribution systems. The US Environmental Pro-
tection Agency (EPA) uses TEVA-SPOT to design sensor
networks for large US cities. Thus testing and quality con-
trol are critical. Furthermore, we used EXACT to manage
experiments for a recent publication testing methods for im-
proving scalability in TEVA-SPOT [6].

We have recently released EXACT 1.0 and FAST 1.0 to
the public under a gnu lesser public license (see http://

software.sandia.gov/Acro for downloading instructions).

1

These tools run on a variety of platforms, including linux
boxes and PCs running cygwin, mingw, and MS Windows.
Further information on EXACT and FAST is available at
http://software.sandia.gov/Acro/EXACT and
http://software.sandia.gov/Acro/FAST.

2. BACKGROUND
The concept for EXACT was developed at Sandia Na-

tional Laboratories in 2003 and prototyped in Adams’ un-
dergraduate thesis [5] in 2004. This first-generation proto-
type modeled the experimental process using objects, stor-
ing them in an object-oriented database, and populating
these objects with increasing amounts of data as experimen-
tal studies progressed. At the time, Sandia researchers had
to write custom scripts from scratch for each experimental
study. These scripts were often repetitive, and sometimes
several different scripts would parse the same data. Any
given experimental study may have a specific experimen-
tal procedure most natural for it. Given unbounded time
one could carefully architect the software scaffolding around
each individual experimental study, for example to increase
confidence in the results. But given finite time for any given
study, such customization can be too costly. We hoped EX-
ACT would allow reuse of many basic building blocks for
these sorts of scripts. The EXACT prototype parsed data
exactly once, added information to the database, and there-
after the system manipulated only data encapsulated in ob-
jects.

For several reasons we decided to rewrite the prototype.
There was a fairly constraining taxonomy of objects in the
original, and there was no clear distinction between infor-
mation associated with experiments, controls, and analyses.
The EXACT tookit presented in this article makes these dis-
tinctions explicit, uses a different taxonomy of objects, and
uses XML files as the default medium for storing descrip-
tions of experiments, analyses, and results. This does not
preclude the use of a database for archiving results, and it
frees EXACT from dependence on third party tools. This
has been important for nightly software testing.

To our knowledge, the ExpLab project [13] is the most
similar to EXACT. The goals of ExpLab are to (1) provide
a simple way to set up and run computational experiments,
(2) to provide a means of automatically documenting the
environment in which an experiment is run, and (3) to elim-
inate some of the tedium involved in collecting and analyz-
ing output by providing basic text output processing tools.
ExpLab consists of a set of Python scripts for initializing,
running and summarizing experiments, including facilities
for running experiments on a cluster of workstations.

EXACT differs from Explab in its integrated treatment
of experiments and analyses. In Section 2.2, we introduce
EXACT’s taxonomy of objects, which includes both of these
concepts. The extensible XML interface in EXACT allows
users to specify and control experimental designs, runs of
experiments, and analyses of their results in one concise de-
scription.

Systems like Condor [15] help control experiments on re-
mote machines. Many other software efforts, such as ad-
vanced random number generators [16], and tools for the
design of experiments [1, 2] aid the experimental process at
specific stages. However, EXACT is a framework for de-
scribing and controlling the whole experimental process.

2.1 The Experimental Process
A typical process of computer experimentation is a feed-

back network involving the formulation of problems, the de-
sign and customization of algorithms, the implementation
of those algorithms, the design of experiments to test and
compare them, preprocessing of input data to prepare for
experimental runs, the runs themselves, the archiving of
results, the postprocessing of these results to prepare for
analysis, and finally, the analysis and visualization of data.
Anomolies or bugs discovered during this process may sug-
gest different ways to perform any of these steps, and the
whole process may need to be repeated many times. It is
important to be able to modify experimental studies conve-
niently, and ultimately, to reproduce any experiments that
are published or otherwise retained.

2.2 A Taxonomy of Objects
We define an experimental study to be the top-level object

expressable in EXACT. A study encapsulates one or more
experiments and/or one or more analyses. Experiment ob-
jects include factor objects and the possible level settings
for the factors, as well as one or more control objects that
store information such as the environment in which an ex-
periment is to be run and the program or script that will
actually perform the run. Analysis objects describe the type
of analysis to be run and how it is to be accomplished.

2.3 The Capabilities and Usage Model
EXACT itself is a collection of Python classes with a

driver program that invokes their methods. A user executes
this driver from the command line and provides it with ar-
guments indicating the experimental study to be processed,
along with optional filters that describe exactly which ex-
periments and analyses are to be run, whether to randomize
the order in which experiments are to be run, etc. EXACT
then launches the appropriate processes, logs their progress,
and compiles structured result files.

The EXACT user is responsible for providing a single
script or program that takes three arguments:

• an input file containing ordered pairs of (factor,level)
assignments, along with auxiliary information, such as
random seeds,

• the name of a log file that will hold the raw output of
the experiments and/or analyses to be run, and

• the name of an output file that is to contain (measure-
ment, value) pairs.

EXACT comes with a suite of experimental studies that are
used to test its own functionality. This includes an example
script, which many users will be able to adapt for their own
experiments.

3. A SIMPLE EXAMPLE
A user of EXACT performs computational experiments

and analyses using the python script exact. The exact

script processes an XML input file that specifies an exper-
imental study, which can specify multiple experiments and
multiple analyses.

Figure 1 provides an example of an XML specification
for a simple experimental study. This example illustrates
the use of EXACT to perform a hypothetical experiment

2

to compare hashing strategies. The root of this specifica-
tion is an experimental-study element, for which a name

attribute is required. Three XML elements are supported
in experimental-study: tags, experiment and analysis.
The tags element is discussed in the Section 4.

<experimental-study name="example1">
<tags>

<tag>example</tag>
</tags>

<experiment name="ht">
<factors>

<factor name="hashfn">
<level>Jenkins</level>
<level>FNV</level>

</factor>
<factor name="collisions">

<level>chaining</level>
<level>linear-probing</level>
<level>quadratic-probing</level>

</factor>
<factor name="data">

<level>dataset1</level>
<level>dataset2</level>

</factor>
</factors>
<controls>

<executable>hash_script</executable>
</controls>

</experiment>

<analysis name="LoadFactorUB" type="validation">
<data experiment="ht"/>
<options>_measurement=LoadFactor _value=0.75
</options>

</analysis>

</experimental-study>

Figure 1: A simple experimental study of hash table
options, expressed in EXACT.

3.1 Defining An Experiment
An experiment element specifies the factors that defined

an experiment (in a factors element), as well as how the
experiment is executed (in a controls element). A factors

element is comprised of one or more factor elements. Each
factor represents an experimental choice that can be made in
an experiment. For example, when evaluating hash tables,
you can independently vary the hashing function used and
the collision resolution scheme employed. Further, in com-
putational experiments it is convenient to treat the data set
or problem as an additional factor.

The controls element specifies how the experiment will
be run, including specifications for the design of experi-
ments, replications and random number seeds, and the ex-
ecutable. The default experimental design is a full facto-
rial design with no replications. The executable element
specifies the command that will be used to run a single ex-
perimental treatment, which represents a set of factor-level
choices.1 A treatment can have many trials or replications,

1This terminology comes from the medical and psy-
chological experimental design community. How-
ever, it has become widely accepted within other
communities that employ experimental design tools

individual runs with the same factor-level choices. Running
multiple trials is essential for any code with inherent non-
determinism (randomized algorithms), and is usually nec-
essary to account for nondeterminism such as system load
effects.

The executable used in example1 has the following syntax:

hash_script <input-file> <output-file> <log-file>

It is generally useful for the user to write an executable
script that parses this input file and calls the application
code(s). The EXACT Python module includes routines for
parsing an input file. These are particularly handy when
factors contain experimental options (see below).

The input file is automatically generated by EXACT. It
contains a set of option-value pairs. These options specify
the factor names, the level used for each factor in this treat-
ment, and information about the number of replications.
For example, a valid input file for the experiment defined in
Figure 1 might look like:

_exact_debug 0
_experiment_name example1.ht
_test_name 3
_num_trials 1
seed $PSEUDORANDOM_SEED
_factor_1_name hashfn
_factor_1_level level_1
_factor_1_value Jenkins
_factor_2_name collisions
_factor_2_level level_2
_factor_2_value linear-probing
_factor_3_name data
_factor_3_level level_1
_factor_3_value dataset1

Each line consists of an option name, followed by whitespace,
followed by the option value (which may contain whites-
pace). The seed option in this example has a value that is
defined by an environmental variable, PSEUDORANDOM SEED.
The use of environmental variables for random number seeds
has proven particularly convenient, since it enables the ex-
ecution of different trials with the same input file; the envi-
ronmental variable PSEUDORANDOM SEED simply needs to be
changed for each trial.

EXACT treats the experimental options beginning with
‘ ’ as internal options, and other options are external op-
tions. Both internal and external options are included in
the input file for a given treatment computation. External
options are used by the executable command, and in our
use they typically map directly to command-line options in
our test code. By contrast, internal options can change the
behavior or EXACT. The use of these options is discussed
further in Section 4.

The output file has a similar format; each line represents
a measurement-value pair. For example, an output file for
the experiment in Figure 1 might look like:

"Num Items Hashed" numeric/integer 101
LoadFactor numeric/double 0.8
"Termination Status" text/string "OK"
exit_status numeric/integer 0

The output file can contain an arbitrary set of measure-
ments. However, the exit status measurement is required

(e.g. see the MicQuality Six Sigma glossary:
http://www.micquality.com/six sigma glossary/).

3

for some of the analyses supported by EXACT. This mea-
surement is assumed to be zero if the experimental compu-
tation was executed successfully.

Finally, the log file usually contains the precise call to
application code, anything printed during the execution, and
possibly other miscellaneous information that is useful for
analyzing an experimental computation. This is useful in
diagnosing execution errors.

3.2 Defining An Analysis
The analysis element specifies the type of analysis that

will be done on one or more sets of experimental data. EX-
ACT currently supports several types of analyses, includ-
ing validation that measurement values are correct, baseline
comparison of one experiment with another, and comput-
ing a simple summary of the relative performance of two
experiments.

The example in Figure 1 illustrates a validation test. The
data element specifies the experiment that is tested, and
the options element specifies the options for this analysis.
The options are formatted as a set of option-value pairs. The
measurement option specifies the measurement value that is
being tested, and the value option specifies the target value
for comparison. The default is to test that the experimental
measurement is less than this target value, which in this case
tests that the load factor for the hash table is less than 0.75.

3.3 Running an Experimental Study
Suppose that the file example1.study.xml contains the

text in Figure 1. Then the call to EXACT to run this ex-
perimental study is:

exact example1.study.xml

In this example, the exact script puts the experimental and
analysis results in the example1 subdirectory. It puts the ex-
perimental results for the ht experiment in the example1/ht
subdirectory. It puts the analysis results in the example1 di-
rectory.

The exact script has some command line options to sub-
select portions of a larger study file:

--experiment=<expr>
Executes one or more experiments that match a
regular expression.

--analysis=<expr>
Executes one or more analyses that match a
regular expression.

By default, exact detects whether the example1 subdirec-
tory exists and avoids rerunning experiments and analyses.
These options force these executions, which overwrite the
previous results. In the case of experiments, the previous
experimental directory is deleted and then repopulated with
new results. The --force option can be used to explicitly
rerun all experiments and analyses.

4. ADVANCED FEATURES
The simple experimental study discussed in the previous

section illustrates EXACT’s core capabilities for defining
and performing experiments and analyses. EXACT con-
tains a variety of advanced features that significantly en-
hance the flexibility and extensibility of this capability. The

<factors>
<factor name="search">

<level> </level>
<level>initialDive=true</level>
<level>initialDive=true integralityDive=true
</level>

</factor>
<factor name="problem">

<level>_data=bm23 _optimum=34 _opttol=1e-8</level>
<level>_data=p0033 _optimum=3089 _opttol=1e-6
</level>

</factor>
</factors>

Figure 2: An experimental study using separate ex-
perimental options in its levels.

following sections highlight features that (1) provide a flex-
ible experimental formulation, (2) support the integration
of experimental design tools and replication of experimental
treatments, (3) ensure robust execution of experiments, (4)
enable the integration of driver scripts, (5) enable analyses
with external data, and (6) control the execution of a set of
experimental studies.

4.1 Experimental Options
The factor levels used in our simple example are com-

prised of simple values. In this example, these values nat-
urally correspond to options in our hypothetical hash table
test code. However, for complex computational experiments
it is often necessary have a factor level correspond to a set of
options in a test code. For example, there are many ways to
configure a branch-and-bound search engine depending on
choice of branching strategy, bounding strategy, incumbent
search strategy, etc. Each of these elements of the overall
search strategy can have a variety of options. An appropri-
ate experimental design would not always treat these option
choices as separate factors. In fact, to set up a simple exper-
iment will often require the specification of multiple search
options simultaneously.

Figure 2 illustrates how separate experimental options can
be simultaneously specified in EXACT. This example is a
possible experiment for the PICO mixed-integer linear pro-
gramming solver [9, 8]. The first factor controls the branch-
and-bound search. Specifically, it controls which node to
expand next in the branch-and-bound tree. In PICO, any
parameter left at its default value need not be specified on
the command line. In this example, the first level of the
search factor is empty. This will invoke default values for
the search: best-first search throughout the computation.
Thus the next node expanded is the one with the lowest
lower bound (for a minimization problem). The value of
the second level specifies an initial depth-first search until
PICO finds a feasible solution. At that point, it switches to
best-first search. By default, this initial dive expands a node
at the lowest depth (longest path to the root of the search
tree). The value of the third level tells PICO to do an initial
dive always expanding a node with a linear-programming re-
lation solution closest to integral among all open nodes.

This first factor is actually an example of simple nested
factors. The integrality option does not make sense unless
PICO is doing an initial dive, so this is a nested choice. EX-
ACT does not currently support nested factors, as discussed
briefly in Section 6. For small examples such as this, we can

4

currently finesse the issue with enumeration of relevant tu-
ples of values.

The second factor specifies options for the test problem.
The levels in this factor also specify the value of the optimum
for the corresponding test problem and a tolerance that the
analysis module can use later to determine whether PICO
found the optimal solution.

EXACT parses experimental options and puts them in
the input file as separate option-value pairs. Thus, the ex-
perimental command can use the factor level value, or use
these-option value pairs directly. As noted earlier, EXACT
treats the experimental options beginning with an under-
score (‘ ’) as internal options; other options are external
options. We can specify a generic validation test as follows:

<analysis name="ValgrindErrors" type="validation">
<options>_measurement="Valgrind Errors" _value=0

_cmp_operator=’eq’</options>
</analysis>

The executable creates an output file where the measure-
ment named “Valgrind Errors” is paired with the number of
errors the memory-checking program valgrind reported for
the run. This validation test checks to see whether valgrind
reported no errors.

The following example illustrates the use of analysis op-
tions specified with the experiment:

<analysis name="FinalValue" type="validation">
<options>_measurement=’SolutionValue’

_tolerance=_opttol</options>
</analysis>

The executable creates an output file that pairs the mea-
surement named “SolutionValue” with the solution from the
computation. This validation test checks whether the com-
puted value is optimal within tolerance. The analysis option
value defaults to optimum if it is defined. Both optimum

and the internal option, opttol are defined with the data
in the first example of this section. In this case, opttol

defines a convergence tolerance, which may be different for
different problems.

4.2 Experimental Design
The EXACT control element can specify an experimen-

tal design. The default experimental design is a full facto-
rial design, which contains treatments for all combinations of
factor levels. A full factorial experimental design can quickly
become prohibitively expensive as the number of factors in-
creases. So, EXACT provides a fractional factorial design
generator, which selects a subset of the treatments in a full
factorial design. Specifically, EXACT’s xu doe DOE tool,
specified in the following example, uses Xu’s method [18] to
find a maximally orthogonal fractional factorial design.

<controls>
<doe>xu_doe</doe>
<executable>pico_test</executable>

</controls>

4.3 Experimental Replication
The EXACT control element can specify replication of

experimental treatments using pseudo-random number seeds.
The following example illustrates seeded replication:

<controls>

<replication>4
<seeds>83794 1349870 108392 965210</seeds>

</replication>
<executable>pico_test</executable>

</controls>

Users can also specify seeds from a file. EXACT supports
(pseudorandom) seeded replication for reproducibility and
debugging. When seeds are omitted, EXACT generates
seeds using the system time and a pseudorandom number
generator.

To perform simple, non-seeded replication, an executable
can ignore the seed provided by EXACT. Simple replication
can be used to study the impact of the computing environ-
ment on an algorithm (e.g. the impact of network latencies).
EXACT does not currently recognize that the seed is being
ignored, so this use of EXACT may impact analyses.

4.4 Robust Executable Computations
EXACT leverages new process management mechanisms

in Python 2.4 to ensure that the experimental computations
are managed in a robust manner on both MS Windows and
Unix platforms. It launches subprocesses with a mechanism
that avoids zombie processes. Further, the exact script in-
corporates signal handlers to trap user interrupts and kill
orphaned subprocesses.

If the experimental command is itself a script, then it
is critically important that that script also carefully trap
signals. EXACT can be used to create robust command
scripts. Users can import the EXACT Python module into
their command script, and use the run command function to
encapsulate the necessary subprocess management.

EXACT also extends the Python subprocess mechanism
to enable the specification of time limits for subprocesses.
This feature can ensure that experimental computations do
not run indefinitely due to coding errors. Further, it can
limit the overall computation time for algorithms that have
weak stopping conditions (e.g. heuristic optimization meth-
ods). Users can specify time limits as follows:

<controls>
<executable timelimit="60">pico_test</executable>

</controls>

This example terminates the pico test command after 60
seconds. The command may still create output files for this
execution if it captures the termination signal gracefully.

4.5 Driver Scripts
As we noted earlier, the execution command is generally

a script that parses the input file, constructs a command-
line for the test code, runs the test code, and parses the
output to construct the file of measurement outputs. Al-
though this script has a common flow, a different script will
generally be needed for each EXACT application. However,
the EXACT commands element can customize the test code
execution generically.

Consider the following example, which tells EXACT to
use its driver command exact timing:

<controls>
<executable driver="exact_timing">pico_test
</executable>

</controls>

The exact timing command uses the unix time command
to print execution time information. For example, the com-
mand

5

exact_timing /usr/bin/ls

executes /usr/bin/ls and then prints a summary of timing
information in an easily-parsable format.

When a driver command is specified, EXACT sets the
environmental variable EXACT DRIVER to the name of this
command. If the execution command is a script, then this
environmental variable can be extracted and prepended to
the command-line for the test code.

This functionality provides a simple mechanism for aug-
menting the functionality of an existing command script.
EXACT provides the following driver commands:

• exact timing - This computes timing statistics in a
standard format.

• exact valgrind - This uses valgrind to check for mem-
ory reference errors and memory leaks.

• memmon - This monitors the maximum virtual mem-
ory usage, and prints a summary after the command
terminates.

• exact pexec - This launches the test code in parallel
(e.g. using mpirun).

The driver script also provides a simple mechanism for cus-
tomizing the execution of experiments on different platforms.
For example, the exact pexec command can be customized
to support different parallel communication mechanisms. This
enables the application of parallel tests for a wide range of
experiments, while only needing to customize the platform-
specific characteristics in a single script.

4.6 Analyses with External Data
EXACT currently supports three types of analysis: vali-

dation of experimental measurements, baseline comparison
between experiments, and a comparison of relative perfor-
mance. The latter two experimental analyses may involve
the comparison of two or more sets of experimental results.
Consequently, the EXACT analysis element may contain
an arbitrary number of data elements that specify experi-
mental results for the analysis.

The following example illustrates three ways of specifying
experimental results in a data element:

<analysis name="Comparison" type="baseline">
<data experiment="exp1"/>
<data experiment="exp2"

import="example2.study.xml"/>
<data experiment="exp3"

import="example3.study.xml"
results="example3.exp3.results.xml"/>

<options>_measurement=Value _tolerance=1e-5
</options>

</analysis>

The first data element specifies experiment “exp1” in the
current experimental study; this is the baseline experimental
data for this comparison. The second data element specifies
experiment “exp2” in the experimental study specified by
“example2.study.xml”. EXACT imports this entire study,
assuming that the files lie in the standard example2 subdi-
rectory. The third data element specifies experiment “exp3”
in the experimental study specified by “example3.study.xml”.
However, this import is restricted to the data in the results
file “example3.exp3.results.xml”. This file does not need to
lie in the example3 directory; this can be a file in an arbi-
trary directory.

4.7 Managing Multiple Experimental Studies
Section 5.3 describes how we use EXACT to support soft-

ware testing in the Acro (A Common Repository for Op-
timization)[11] software framework. We use different tests
of the same software depending upon our goals. For exam-
ple, it is convenient to distinguish between “smoke” tests,
which are quick tests of a code’s overall functionality, and
“nightly” tests, which perform a more comprehensive tests
that usually take longer to run.

EXACT supports the execution of multiple experimental
studies. In particular, the tags element associated with an
experimental study can group studies into categories:

<tags>
<tag>smoke</tag>
<tag>nightly</tag>
<tag>pico</tag>

</tags>

EXACT would run the study in this example if it were run-
ning smoke tests, nightly tests, pico tests, or any combi-
nation of the tests matching its tags. But this study would
not run if EXACT were only executing monthly tests.

5. CASE STUDIES
The experimental methods supported by EXACT have

many potential applications including software comparison
and evaluation, improving code robustness and performance,
and software testing. We developed EXACT in conjunction
with several large software projects at Sandia National Lab-
oratories, particularly the Acro optimization library [11].
The following sections provide examples of how we have used
EXACT for experimental algorithmic testing and software
development.

5.1 Code Coverage in DAKOTA
The DAKOTA optimization toolkit integrates a wide range

of optimization, sensitivity analysis, and uncertainty quan-
tification capabilities [10]. DAKOTA provides a generic,
flexible interface to these capabilities, and is particularly
well-suited for complex engineering design applications. A
general problem formulation supported by DAKOTA opti-
mizers is:

min f(x)
s.t. lc ≤ c(x) ≤ uc

lb ≤ x ≤ ub

where c(x) is a set of linear and nonlinear constraints, which
may be bounded above and below.

DAKOTA has recently integrated a set of simple problem
transformations that can be used to bias the optimization
process and make it more numerically robust. These trans-
formations can rescale the search domain in several ways,
including logarithmic scaling (log), automatic scaling into
[0, 1] (auto), and scaling by user-specified characteristic val-
ues (value). Scaling by characteristic values can be com-
bined with logarithmic and automatic scaling, so there are
six different scaling configurations: log, auto, log/value,
auto/value, value, and none. Similarly, objective func-
tions, nonlinear constraints, and linear constraints can be
separately rescaled.

Figure 3 provides an EXACT experimental study that has
been developed to test these rescaling mechanisms. The goal
of this study is to ensure that DAKOTA tests cover a range

6

of different scaling combinations to ensure that this scaling
mechanism works robustly. The factors in this experiment
define the optimizers that will be used, the test problems
that will be optimized, and the scaling controls that will be
exercised.

An interesting aspect of this experiment is that not all
factor-level combinations are feasible. The optimization prob-
lems are:

• nlp-linear - a prototypical nonlinear optimization prob-
lem with linear constraints,

• nlp-nonlinear - a prototypical nonlinear optimization
problem with nonlinear constraints,

• nlls-linear - a prototypical nonlinear least squares
problem with linear constraints, and

• nlls-nonlinear - a prototypical nonlinear least squares
problem with linear constraints.

The optimization solvers are tailored for different types of
problems; JEGA and SNLL-opt can only be applied to the nlp
problems, and SNLL-lsq can only be applied to the nlls

problems. A more intricate constraint on the factor-level
combinations is that log scaling of the search domain cannot
be performed when there exist linear constraints.

To account for these types of constraints, EXACT sup-
ports several mechanisms for filtering experimental designs
to eliminate treatments that are not feasible. The mech-
anism illustrated here uses a python function that is ap-
plied to test the feasibility of a treatment. The python file
rescaling.py is imported when EXACT processes this ex-
perimental study, and the function treatment filter fn is
used to test treatments.

Figure 4 show the definition of treatment filter fn. This
function accepts a single argument, which is a Python dic-
tionary. The keys of this dictionary are the factor names
in the experiment, and the dictionary values are the lev-
els. The treatment element in Figure 3 includes a value

attribute. When this is set to “text”, then the level value is
in the dictionary. When this is set to “name” (the default),
then the level name is in the dictionary. (In this example,
levels are not named explicitly, and thus EXACT gives them
a canonical name like “level 2”, which is not useful.)

Figure 4 illustrates how treatment filter fn naturally
filters out unwanted or infeasible treatments. The first con-
dition verifies that log scaling is not used with linearly con-
strained problems. The next two conditions ensure that
scaling is not considered for constraints that are not repre-
sented in the problem. The last two conditions ensure that
the appropriate solver is used for each problem.

5.2 Parallel Testing for PICO
This section gives an example of parallel testing for the

PICO mixed-integer programming solver. PICO was de-
signed to scale to thousands of processors, but it can run
on any number of processors. If we are testing PICO on
a machine with many processors, the test problem should
be sufficiently large and difficult to stress the system. This
same test problem might be infeasible for a smaller machine.

The experiment in Figure 5, has two factors. The first
gives two integer programming problems. Problem tiny.mps
should only run on machines that have few processors and
problem huge.mps should only run on machines that have a

<experimental-study name="rescaling">

<experiment>
<factors>

<factor name="solver">
<level>JEGA</level>
<level>SNLL-opt</level>
<level>SNLL-lsq</level>

</factor>

<factor name="problem">
<level>nlp-linear</level>
<level>nlls-linear</level>
<level>nlp-nonlinear</level>
<level>nlls-nonlinear</level>

</factor>

<factor name="domain-scale">
<level>auto</level>
<level>log</level>
<level>auto/value</level>
<level>log/value</level>
<level>value</level>
<level>none</level>

</factor>

<factor name="objective-scale">
<level>log</level>
<level>log/value</level>
<level>value</level>
<level>none</level>

</factor>

<factor name="nonlinear-constraints-scale">
<level>auto</level>
<level>log</level>
<level>auto/value</level>
<level>log/value</level>
<level>value</level>
<level>none</level>

</factor>

<factor name="linear-constraints-scale">
<level>auto</level>
<level>auto/value</level>
<level>value</level>
<level>none</level>

</factor>
</factors>
</factors>
<controls>

<executable>rescale_test</executable>
<filter>

<python>rescaling</python>
<treatment value="text">

rescaling.treatment_filter_fn
</treatment>

</filter>
</controls>

</experiment>

</experimental-study>

Figure 3: An experimental study for testing rescal-
ing in DAKOTA.

7

def treatment_filter_fn(self,combination):
if combination["domain"][:3] == "log" and \

combination["problem"][-6:] == "linear":
return False

if combination["linear-constraints-scale"] != "none" and \
combination["problem"][-6:] != "linear":
return False

if combination["nonlinear-constraints-scale"] != "none" and \
combination["problem"][-8:] != "nonlinear":
return False

if combination["problem"][:4] == "nlls" and \
combination["solver"] != "SNLL-lsq":
return False

if combination["problem"][:3] == "nlp" and \
combination["solver"] == "SNLL-lsq":
return False

return True

Figure 4: The Python filter function used in the
rescaling experiment.

lot of processors. The second factor specifies the number of
processors for a run. As in the DAKOTA example, we can
provide a filter to suppress unreasonable pairings of factor
values. Suppose every machine we will use for parallel test-
ing defines an environmental variable specifying a maximum
number of processors. For a network of workstations, this
could depend on the number of machines to which the work-
station can launch a secure remote shell, the number of cores
on the workstation, and the number of “virtual” machines
it can reasonably emulate through multiple processes. The
filter might, then, for example, run the tiny problem only
on machines with at most 6 processors and run the huge
problem only on machines with at least 32 processors.

This script can run on any platform that supports MPI-
like interprocessor communication. PICO orginallly had its
own set of parallel testing scripts (called a qa-suite), which
we have migrated to EXACT.

5.3 Software Testing for Acro
For large software projects, software testing is a complex

endeavor. Though testing may never “prove” that a partic-
ular code works correctly, it can provide high confidence in
the code’s quality. In particular, we then have reasonable
confidence in the correctness of the code in applications and
experiments.

Acro illustrates many of the challenges that we have seen
for large software development projects within the Depart-
ment of Energy. Acro is supports end-user applications, as
well as the development of new research capabilities. Con-
sequently, code stability is a critical issue. Further, Acro
requires the integration of a diverse set of third-party li-
braries. Tracking changes in these libraries, and assessing
their impact is a significant challenge. Finally, Acro needs
to run on a diverse set of high-performance computing archi-
tectures. Thus, code portability is an essential requirement
for the deployment of Acro.

EXACT supports canonical software testing techniques
in a generic, automated fashion to help meet these goals:
unit testing, regression testing, memory testing, integration
testing and functional testing. Perhaps the simplest appli-
cation of EXACT is for unit testing. Unit testing tests the
basic software components that comprise a large software
project, for which a test result simply indicates whether the
unit test passed. EXACT does not support the specifica-
tion of unit tests, as is done in frameworks like cppUnit and

<experiment>
<factors>

<factor name="instances">
<level>tiny.mps</level>
<level>huge.mps</level>

</factor>
<factor name="numProcessors">

<level>1</level>
<level>2</level>
<level>4</level>
<level>32</level>
<level>128</level>
<level>256</level>

</factor>
</factors>
<controls>

<executable driver="exact_pexec">
pico_test --milp

</executable>
<filter>

<python>parallel_pico</python>
<treatment value="text">

parallel_pico.treatment_filter_fn
</treatment>

</filter>
</controls>

</experiment>

Figure 5: An experimental study for testing PICO
in parallel.

jUnit. However, EXACT can help coordinate the execu-
tion and summary of unit tests. Furthermore, EXACT sup-
ports simple difference-comparison analyses for simple appli-
cations where a unit test framework is unnecessary. These
difference-comparison analyses also support regression test-
ing. Regression testing compares previously passing tests to
the same tests on the modified software to ensure that the
modifications have not unintentionally caused a degrada-
tion of previous functionality. EXACT also includes baseline
comparison analyses that can perform regression for numer-
ical values within specified tolerance.

Memory tests check for memory leaks and errors involv-
ing using corrupted or uninitialized data. EXACT’s driver
scripts support these tests seamlessly. For example, con-
sider the exact valgrind driver. This driver simply aug-
ments the measurements reported by the user application
code with information about memory violations.

EXACT’s experimental design capabilities have effectively
supported integration and functional testing. Integration
testing exposes defects in the interfaces and interaction be-
tween integrated components (modules), and functional test-
ing tests a code to confirm that it supports adequate func-
tionality (e.g. adequate response time to solve a problem).
EXACT’s experimental design capabilities can be leveraged
to quickly design a large number of tests that exercise a code
in a wide range of conditions. For example, EXACT facili-
tates applying a code to many data sets using many control
parameters. Thus, EXACT has been an effective testing
mechanism for software tools like PICO, which has a lot of
command-line parameters that control its behavior. These
parameters impact running time, but should not impact the
correctness of the computation. Also, PICO integrates com-
plex linear programming software libraries. Testing the in-
terface between PICO and these libraries is an ongoing chal-
lenge as these third-party libraries evolve.

8

The FAST (Framework for Automated Software Testing)
test harness uses EXACT’s testing summaries to coordinate
software testing for Acro. FAST supports a lightweight, dis-
tributed build mechanism that facilitates portability tests
on a heterogenous set of compute platforms. Further, FAST
supports the evaluation of codes with different software con-
figurations on the a homogenous set of workstations. FAST
integrates EXACT experimental outputs to provide a dash-
board that summarizes testing results. This dashboard or-
ganizes test results around category labels associated with
each EXACT analysis.2

FAST runs nightly tests of evolving Acro software projects.
Each morning, it sends all developers an email with an sum-
mary information about build and test failures. Developers
can then follow links to web pages with quick access to log
files from failed runs, analysis results, etc. If a developer pro-
duces code on one platform and commits that code to a cen-
tral repository, he then finds out within 24 hours if that code
has caused errors on other diverse platforms. Normally it
may take users on these other platforms considerably longer
to discover a problem. With immediate feedback, the devel-
oper knows what changes he just made, and can therefore
immediately narrow the search for the source of the new
problems.

Because the EXACT nightly tests run automatically and
continuously, they can expose rare errors. For example,
this nightly testing recently found a bug in the PICO code.
PICO is inherently nondeterministic, so the tests grow dif-
ferent search trees for the same problem each night. This
bug occurred only when multiple rare conditions happened
simultaneously. The logfiles captured the error and gave a
seed that reliably reproduced the bug.

6. CONCLUSIONS AND FUTURE WORK
EXACT has proven to be a flexible framework for defin-

ing, executing and analyzing computational experiments.
Development of EXACT has been motivated by the need
for tools to support experimental algorithmics research, as
well as robust techniques for software testing. EXACT is
now in regular use for software testing and development at
Sandia, and software releases for Acro and related projects
now rely on it as part of their release process. Furthermore,
we now use EXACT to manage computational experiments
for algorithmic research [6].

There are many commercial and open-source software test-
ing tools available. To contrast our use of EXACT, we have
noted that EXACT’s experimental design capabilities enable
the rapid application of a large number of diverse tests. Fur-
ther, this capability supports empirical comparisons of per-
formance, which is not a goal of traditional software testing
tools. However, these tools provide a more integrated ability
to define tests and track how they relate to software features.
This tracking is more difficult with the experiments defined
by EXACT, as is the confirmation that specific code fea-
ture requirements have been met (at least, without targeted
experiments).

The active use of EXACT continues to drive the develop-
ment of this tool. The Python module that underlies EX-
ACT has proven quite extensible, as has the XML formats
for defining experimental studies and experimental results.

2See http://software.sandia.gov/Acro/testing for the
Acro testing dashboard.

For example, the DAKOTA scaling study was suggested to
us while writing this article. This study required a more
sophisticated filtering mechanism for experimental factors
than had previously existed in EXACT. The filtering mech-
anism described in Section 5.1 was easily added to EXACT,
and a working example of this for the scaling example was
working within a few hours.

Our use of EXACT has highlighted a number of capa-
bilities that would significantly enhance the functionality of
EXACT. These can be broadly categorized as follows:

Experimental Design.
The experimental design capabilities currently supported

in EXACT are quite simple. Several projects, such as the
PICO example described in Section 4.1 would benefit from
explicit support for nested factors. This would allow more
concise representation of experiments involving nested fac-
tors, but our design-of-experiments code does not currently
handle nested factors. We are still exploring the best way
to support nested factors. We also plan to support other
external experimental design tools. In particular, applica-
tions like the DAKOTA scaling example highlight the need
for experimental design tools that can integrate constraints
in the design process.

Experimental Control.
Currently, EXACT does not support randomization of ex-

periments. Although that is easy to add, a more funda-
mental feature is blocking factors. For example, in many
contexts we wish to compare algorithms on a given set of
test problems. Such experiments could be blocked by test
problem to ensure that different algorithms are tested on
the same problem at approximately the same time, in or-
der to minimize the variance due to changing environmental
conditions such as network or computer loads.

Another control issue is the management of replications
of seeded experiments. Software like the PICO integer pro-
gramming solver are inherently nondeterministic. PICO’s
management of cuts (added constraints) relies on timing in-
formation, and its asynchronous parallel computation may
be sensitive to network delays. However, some aspects of
PICO can be controlled with a pseudo-random number gen-
erator. Thus, EXACT should support replications of a seeded
experiment.

Management of the execution of computational experi-
ments is also an area for future work. Although process
management is robust in most cases, the use of EXACT
under Cygwin with native Windows applications remains
a challenge in some cases (e.g. when processes fail due to
memory errors). Also, parallelization of computational ex-
periments would be particularly nice for interactive analy-
sis of large experiments. The execution process in EXACT
is quite modular, so we could easily create a more general
mechanism.

Experiment Execution.
Probably the most difficult aspect of using EXACT is the

development of the executable used to execute each experi-
mental trial. In our experience, this most often will consist
of a script that calls the underlying application code that
is being tested. Several issues complicate the design of this
script. First, it needs to be able to accurately parse the
input file, and generate the appropriate XML output file.

9

EXACT includes Python routines to aid in these steps, but
non-Python developers will need to develop similar mecha-
nism. Further, the script needs to manage the execution of
the application code in a robust manner. Although EXACT
carefully manages signals and passes them on to the exe-
cutable script, if this script is not robust then the EXACT
user will see processes hanging after EXACT is interrupted.

Another major complication concerns how the factor level
content is translated into a command that executes the user’s
application code. Figure 1 and 2 illustrate two different con-
ventions for defining factor level content. The experiment
in Figure 1 uses simple keywords, which can be used to set
appropriate command-line options in the test application.
Figure 2 uses sets of option-value pairs, which can be used to
define the application command-line with the specified op-
tion values. EXACT does not enforce a specific convention,
and thus the user needs to select an appropriate convention
when developing an experimental study.

Statistical Analysis.
Perhaps the most glaring omission in EXACT is the inte-

gration of statistical analysis techniques. Although we have
prototyped the use of R for performing simple statistical
tests, this capability was not sufficiently mature to include
in the initial EXACT release. However, the framework for
analyses in the EXACT Python module was specifically de-
signed to enable the easy integration of new analysis classes.
New analyses classes can be registered with a simple mecha-
nism, so we expect that it will be straightforward to support
many different statistical analyses in EXACT.

Interactive Interface.
The development of EXACT has been strongly driven by

the need to automate the execution of computational ex-
periments. However, some applications, like experimental
analysis of algorithms, are inherently interactive. For these
contexts, it would be nice to have graphical user interface
to support the definition, management and analysis of ex-
periments. Such an interface could eliminate the need for a
user to edit the XML definition of a computational study,
and it would enable inspection of the computational results
generated by EXACT. However, the user may still need to
develop a customized script for running their application.
Simple experiment scripts could be automatically generated,
but more sophisticated scripts might still need to be devel-
oped for some specific applications.

Experimental Artifacts.
The default experimental artifacts generated by EXACT

are XML files with log information, experimental measure-
ments, and experimental analyses. To facilitate post-
experimental analysis, we plan to also support the gener-
ation of data tables that can easily be loaded into R and
Splus. Although EXACT will eventually support a stan-
dard set of statistical analyses, a more flexible environment
like R and Splus is often needed for a complete analysis in
real-world applications.

EXACT is currently used to generate a database of ex-
perimental results for software tests. This artifact is not
closely integrated with the current EXACT release, though
this was a core design feature of the earlier version of EX-
ACT developed by Adams [5]. Reintegrating this capability
into EXACT provides support for persistent experimental

results, which can be accessed from multiple sites if the un-
derlying database is supported on a network server. Further,
this capability can support the comparative analysis of ex-
periments at different points in time, which facilitates the
robust application of baseline experiments.

In a larger context, EXACT has the potential to serve
as an interface between scientific experimentation and the
developing Semantic Web. Currently, there are specifica-
tions for artifacts supporting this web and mechanisms im-
plementing those specifications. For example, the Web On-
tology Language (OWL) [4] supports the definition of on-
tologies over data, and SPARQL [3] supports semantic web
queries. The semantic web vision is appealing in the context
of the archiving of scientific experiments. Years or decades
after experiments have been done, new knowledge may call
their results into question or require the mining of corrobo-
rating results. Were the data to have been stored without
classification into ontologies and ample meta-data for repro-
ducibility, this task may well be impossible.

As scientific research groups generate results, it would be
desirable for them to agree upon ontologies for storage, or
at least to store results with locally-defined provenance in-
formation. The experiments themselves can be run (or their
results processed) using a framework like EXACT, and this
framework can be made to support OWL and to generate
results in Semantic Web format. Without such an integra-
tion, it may be difficult for the scientific enterprise to take
advantage of the the most promising long-term storage al-
ternatives.

Acknowledgements
We thank Stefan Chakerian for collaborating on the inter-
face of FAST and EXACT. We also thank Brian Adams
for suggesting the use of EXACT to test DAKOTA’s rescal-
ing mechanism. Sandia is a multiprogram laboratory oper-
ated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nu-
clear Security Administration under Contract DE-AC04-94-
A L85000.

7. REFERENCES
[1] DDACE: Distributed design and analysis of computer

experiments.
http://csmr.ca.sandia.gov/projects/ddace.

[2] JMP. http://www.jmp.com.

[3] SPARQL. http://www.w3.org/TR/rdf-sparql-query/.

[4] The OWL Web Ontology Language.
http://www.w3.org/TR/owl-features/.

[5] Adams, K. EXACT: The EXperimental Algorithmics
Computational Toolkit. Undergraduate thesis,
Computer Science Department, Lafayette College,
May 2004.

[6] Berry, J. W., Carr, R. D., Hart, W. E., and
Phillips, C. A. Scalable water network sensor
placement via aggregation. In Proc. World Water and
Environmental Resources Conference (2007),
American Society of Civil Engineers.

[7] Chang, G., Roth, C. B., Reyes, C. L., Pornillos,
O., Chen, Y.-J., and Chen, A. P. Retraction.
Science 314, 5807 (Dec 2006), 1875.

[8] Eckstein, J., Hart, W. E., and Phillips, C. A.
Massively parallel mixed-integer programming:

10

Algorithms and applications. In Frontiers of Parallel
Processing for Scientific Computing, M. A. Heroux,
P. Raghavan, and H. D. Simon, Eds. SIAM, 2006.

[9] Eckstein, J., Phillips, C. A., and Hart, W. E.
PICO: An object-oriented framework for parallel
branch-and-bound. In Proc Inherently Parallel
Algorithms in Feasibility and Optimization and Their
Applications (2001), Elsevier Scientific Series on
Studies in Computational Mathematics, pp. 219–265.

[10] Eldred, M. S., Hart, W. E., Bohnhoff, W. J.,
Romero, V. J., Hutchinson, S. A., and Salinger,
A. G. Utilizing object-oriented design to build
advanced optimization strategies with generic
implementation. In Proc Sixth
AIAA/USAF/NASA/ISSMO Symp on
Multidisciplinary Analysis and Optimization (1996),
pp. 1568–1582.

[11] Hart, W. E. The ACRO optimization home page.
http://software.sandia.gov/acro.

[12] Hart, W. E., Berry, J. W., Riesen, L. A.,
Murray, R., Phillips, C. A., and Watson, J.-P.
SPOT: A sensor placement optimization toolkit for
drinking water contaminant warning system design. In
Proc. World Water and Environmental Resources
Conference (2007), American Society of Civil
Engineers.

[13] Hert, S., Kettner, L., Polzin, T., and Schäfer,
G. ExpLab: A tool set for computational experiments.
http://explab.sourceforge.net.

[14] Johnson, D. S. A theoretician’s guide to the
experimental analysis of algorithms. In Data
Structures, Near Neighbor Searches, and Methodology:
Fifth and Sixth DIMACS Implementation Challenges,
M. H. Goldwasser, D. S. Johnson, and C. C.
McGeoch, Eds. American Mathematical Society,
Providence, 2002, pp. 215–250.

[15] Litzkow, M. J., Livny, M., and Mutka, M. W.
Condor - A hunter of idle workstations. In Proceedings
of the 8th International Conference on Distributed
Computing Systems (1988), pp. 123–130.

[16] Mascagni, M., and Srinivasan, A. Algorithm 806:
SPRNG: a scalable library for pseudorandom number
generation. ACM Transactions on Mathematical
Software 26 (2000).

[17] Miller, G. A scientists’s nightmare: Software
problem leads to five retractions. Science 314, 5807
(Dec 2006), 1856–1857.

[18] Xu, H. An algorithm for constructing orthogonal and
nearly-orthogonal arrays with mixed levels and small
runs. Technometrics 44, 4 (Nov 2002), 356–368.

11

